Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Nucl Cardiol ; 30(5): 2089-2095, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37495763

RESUMEN

BACKGROUND: Cardiac sympathetic nervous system molecular imaging has demonstrated prognostic value. Compared with meta-[11C]hydroxyephedrine, [18F]flubrobenguane (FBBG) facilitates reliable estimation of SNS innervation using similar analytical methods and possesses a more convenient physical half-life. The aim of this study was to evaluate pharmacokinetic and metabolic properties of FBBG in target clinical cohorts. METHODS: Blood sampling was performed on 20 participants concurrent to FBBG PET imaging (healthy = NORM, non-ischemic cardiomyopathy = NICM, ischemic cardiomyopathy = ICM, post-traumatic stress disorder = PTSD). Image-derived blood time-activity curves were transformed to plasma input functions using cohort-specific corrections for plasma protein binding, plasma-to-whole blood distribution, and metabolism. RESULTS: The plasma-to-whole blood ratio was 0.78 ± 0.06 for NORM, 0.64 ± 0.06 for PTSD and 0.60 ± 0.14 for (N)ICM after 20 minutes. 22 ± 4% of FBBG was bound to plasma proteins. Metabolism of FBBG in (N)ICM was delayed, with a parent fraction of 0.71 ± 0.05 at 10 minutes post-injection compared to 0.53 ± 0.03 for PTSD/NORM. While there were variations in metabolic rate, metabolite-corrected plasma input functions were similar across all cohorts. CONCLUSIONS: Rapid plasma clearance of FBBG limits the impact of disease-specific corrections of the blood input function for tracer kinetic modeling.


Asunto(s)
Cardiomiopatías , Guanidinas , Humanos , Tomografía de Emisión de Positrones/métodos , Corazón
2.
Mov Disord ; 36(2): 389-397, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33090574

RESUMEN

BACKGROUND: The serotonergic system is known to contribute to levodopa-derived dopamine release in advanced Parkinson's disease. OBJECTIVE: We investigated the role of the serotonergic system in determining response to treatment in early disease and risk for complications concurrently with dopaminergic alterations. METHODS: Eighteen patients with early and stable Parkinson's disease underwent multitracer positron emission tomography using [11 C]dihydrotetrabenazine (vesicular monoamine transporter 2 marker), [11 C]methylphenidate (dopamine transporter marker), [11 C]-3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile (DASB, serotonin transporter marker), and [11 C]raclopride (D2 marker) to investigate relationships between striatal dopaminergic and serotonergic alterations and levodopa-induced dopamine release, related to motor response to treatment and risk for dyskinesias, using a novel joint pattern analysis. RESULTS: The joint pattern analysis revealed correlated spatial patterns conceptually related to abnormal dopamine turnover in the putamen (higher dopamine release associated with dopaminergic and serotonergic denervation); response to treatment significantly inversely correlated with turnover-related dopamine release (P < 10-5 ). Patterns identified without inclusion of the DASB data showed no correlation with clinical data, indicating an important contribution from the serotonergic system to a clinically relevant abnormal dopamine release in early disease. Subjects who experienced dyskinesia 3 years after baseline scans showed higher turnover-related dopamine release compared with subjects who remained stable (P < 0.01). CONCLUSIONS: Joint analysis of dopaminergic and serotonergic data identified a turnover-related dopamine release component, strongly related to motor response to levodopa in early disease and contributing to higher risk for dyskinesia. These findings suggest that the contribution of the serotonergic system to dopamine release not only increases the risk for motor complications but also fails to provide sustained therapeutic advantage in early disease. © 2020 International Parkinson and Movement Disorder Society.


Asunto(s)
Discinesias , Enfermedad de Parkinson , Dopamina , Humanos , Levodopa/efectos adversos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/tratamiento farmacológico , Tomografía de Emisión de Positrones , Putamen/diagnóstico por imagen
3.
J Nucl Cardiol ; 28(1): 50-54, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32909238

RESUMEN

In contrast to cardiac sympathetic activity which can be assessed with established PET tracers, there are currently no suitable radioligands to measure cardiac parasympathetic (cholinergic) activity. A radioligand able to measure cardiac cholinergic activity would be an invaluable clinical and research tool since cholinergic dysfunction has been associated with a wide array of pathologies (e.g., chronic heart failure, myocardial infarction, arrythmias). [18F]Fluoroethoxybenzovesamicol (FEOBV) is a cholinergic radiotracer that has been extensively validated in the brain. Whether FEOBV PET can be used to assess cholinergic activity in the heart is not known. Hence, this study aimed to evaluate the properties of FEOBV for cardiac PET imaging and cholinergic activity mapping. PET data were collected for 40 minutes after injection of 230 ± 50 MBq of FEOBV in four healthy participants (1 female; Age: 37 ± 10; BMI: 25 ± 2). Dynamic LV time activity curves were fitted with Logan graphical, 1-tissue compartment, and 2-tissue compartment models, yielding similar distribution volume estimates for each participant. Our initial data show that FEOBV PET has favorable tracer kinetics for quantification of cholinergic activity and is a promising new method for assessing parasympathetic function in the heart.


Asunto(s)
Corazón/diagnóstico por imagen , Miocardio/metabolismo , Piperidinas/farmacocinética , Tomografía de Emisión de Positrones , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valores de Referencia
4.
Mov Disord ; 34(12): 1891-1900, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31584222

RESUMEN

BACKGROUND: The objective of this study was to examine the effects of aerobic exercise on evoked dopamine release and activity of the ventral striatum using positron emission tomography and functional magnetic resonance imaging in Parkinson's disease (PD). METHODS: Thirty-five participants were randomly allocated to a 36-session aerobic exercise or control intervention. Each participant underwent an functional magnetic resonance imaging scan while playing a reward task before and after the intervention to determine the effect of exercise on the activity of the ventral striatum in anticipation of reward. A subset of participants (n = 25) completed [11 C] raclopride positron emission tomography scans to determine the effect of aerobic exercise on repetitive transcranial magnetic stimulation-evoked release of endogenous dopamine in the dorsal striatum. All participants completed motor (MDS-UPDRS part III, finger tapping, Timed-up-and-go) and nonmotor assessments (Starkstein Apathy Scale, Beck Depression Inventory, reaction time, Positive and Negative Affect Schedule, Trail Making Test [A and B], and Montreal Cognitive Assessment) before and after the interventions. RESULTS: The aerobic group exhibited increased activity in the ventral striatum during functional magnetic resonance imaging in anticipation of 75% probability of reward (P = 0.01). The aerobic group also demonstrated increased repetitive transcranial magnetic stimulation-evoked dopamine release in the caudate nucleus (P = 0.04) and increased baseline nondisplaceable binding potential in the posterior putamen of the less affected repetitive transcranial magnetic stimulation-stimulated hemisphere measured by position emission tomography (P = 0.03). CONCLUSIONS: Aerobic exercise alters the responsivity of the ventral striatum, likely related to changes to the mesolimbic dopaminergic pathway, and increases evoked dopamine release in the caudate nucleus. This suggests that the therapeutic benefits of exercise are in part related to corticostriatal plasticity and enhanced dopamine release. © 2019 International Parkinson and Movement Disorder Society.


Asunto(s)
Núcleo Caudado/metabolismo , Dopamina/metabolismo , Ejercicio Físico/fisiología , Enfermedad de Parkinson/metabolismo , Estriado Ventral/metabolismo , Anciano , Anciano de 80 o más Años , Núcleo Caudado/diagnóstico por imagen , Terapia por Ejercicio , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/psicología , Tomografía de Emisión de Positrones , Estudios Prospectivos , Tomografía Computarizada por Rayos X , Estimulación Magnética Transcraneal , Estriado Ventral/diagnóstico por imagen
5.
Mov Disord ; 33(12): 1945-1950, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30376184

RESUMEN

BACKGROUND: The benefits of exercise in PD have been linked to enhanced dopamine (DA) transmission in the striatum. OBJECTIVE: To examine differences in DA release, reward signaling, and clinical features between habitual exercisers and sedentary subjects with PD. METHODS: Eight habitual exercisers and 9 sedentary subjects completed [11 C]raclopride PET scans before and after stationary cycling to determine exercise-induced release of endogenous DA in the dorsal striatum. Additionally, functional MRI assessed ventral striatum activation during reward anticipation. All participants completed motor (UPDRS III; finger tapping; and timed-up-and-go) and nonmotor (Beck Depression Inventory; Starkstein Apathy Scale) assessments. RESULTS: [11 C]Raclopride analysis before and after stationary cycling demonstrated greater DA release in the caudate nuclei of habitual exercisers compared to sedentary subjects (P < 0.05). Habitual exercisers revealed greater activation of ventral striatum during the functional MRI reward task (P < 0.05) and lower apathy (P < 0.05) and bradykinesia (P < 0.05) scores versus sedentary subjects. CONCLUSIONS: Habitual exercise is associated with preservation of motor and nonmotor function, possibly mediated by increased DA release. This study formulates a foundation for prospective, randomized controlled studies. © 2018 International Parkinson and Movement Disorder Society.


Asunto(s)
Imagen por Resonancia Magnética , Enfermedad de Parkinson/diagnóstico por imagen , Anciano , Núcleo Caudado/patología , Núcleo Caudado/fisiopatología , Dopamina/metabolismo , Ejercicio Físico , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Imagen Multimodal/métodos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/fisiopatología , Tomografía de Emisión de Positrones , Racloprida , Recompensa , Estriado Ventral/patología , Estriado Ventral/fisiopatología
6.
Mov Disord ; 32(7): 1016-1024, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28568506

RESUMEN

BACKGROUND AND OBJECTIVES: To study selective regional binding for tau pathology in vivo, using PET with [11 C]PBB3 in PSP patients, and other conditions not typically associated with tauopathy. METHODS: Dynamic PET scans were obtained for 70 minutes after the bolus injection of [11 C]PBB3 in 5 PSP subjects, 1 subject with DCTN1 mutation and PSP phenotype, 3 asymptomatic SNCA duplication carriers, 1 MSA subject, and 6 healthy controls of similar age. Tissue reference Logan analysis was applied to each region of interest using a cerebellar white matter reference region. RESULTS: In comparison to the control group, PSP subjects showed specific uptake of [11 C]PBB3 in putamen, midbrain, GP, and SN. Longer disease duration and more advanced clinical severity were generally associated with higher tracer retention. A DCTN1/PSP phenotype case showed increased binding in putamen, parietal lobe, and GP. In SNCA duplication carriers, there was a significant increase of [11 C] PBB3 binding in GP, putamen, thalamus, ventral striatum, SN, and pedunculopontine nucleus. The MSA case showed increased binding in frontal lobe, GP, midbrain, parietal lobe, putamen, temporal lobe, SN, thalamus, and ventral striatum. CONCLUSIONS: All PSP patients showed increased retention of the tracer in the basal ganglia, as expected. Binding was also present in asymptomatic SNCA duplication carriers and in an MSA case, which are not typically associated with pathological tau deposition. This suggests the possibility that [11 C]PBB3 binds to alpha-synuclein. © 2017 International Parkinson and Movement Disorder Society.


Asunto(s)
Ganglios Basales/diagnóstico por imagen , Benzotiazoles , Radioisótopos de Carbono , Trastornos Parkinsonianos/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Parálisis Supranuclear Progresiva/diagnóstico por imagen , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , Anciano , Ganglios Basales/metabolismo , Complejo Dinactina/genética , Humanos , Persona de Mediana Edad , Atrofia de Múltiples Sistemas/diagnóstico por imagen , Atrofia de Múltiples Sistemas/metabolismo , Trastornos Parkinsonianos/metabolismo , Parálisis Supranuclear Progresiva/metabolismo , alfa-Sinucleína/genética
7.
Mov Disord ; 31(3): 405-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26685774

RESUMEN

INTRODUCTION: The basis for SWEDD is unclear, with most cases representing PD mimics but some later developing PD with a dopaminergic deficit. METHODS: We studied a patient initially diagnosed with SWEDD (based on (18)F-dopa PET) who developed unequivocal PD associated with a leucine-rich repeat kinase 2 p.G2019S mutation. Repeat multitracer PET was performed at 17 years' disease duration, including (+)[11C]dihydrotetrabenazine, [11C](N,N-dimethyl-2-(2-amino-4-cyanophenylthio) benzylamine (which binds the serotonin transporter), and (18)F-dopa. RESULTS: The patient showed bilateral striatal dopaminergic denervation (right putamen 28% of age-matched normal, left putamen 33%). (18)F-dopa uptake was decreased, particularly on the left (mean 31% of normal vs. 45% on the more affected right side). Serotonin transporter binding was relatively preserved in the putamen (right mean 90% of normal, left 81%) and several cortical regions. CONCLUSIONS: SWEDD can occur in genetically determined PD and may, in some cases, be the result of compensatory nondopaminergic mechanisms operating in early disease.


Asunto(s)
Encéfalo/patología , Dopamina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Mutación/genética , Enfermedad de Parkinson/diagnóstico , Encéfalo/metabolismo , Dopamina/metabolismo , Femenino , Heterocigoto , Humanos , Leucina/metabolismo , Persona de Mediana Edad , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Tomografía de Emisión de Positrones/métodos , Cintigrafía
8.
Synapse ; 70(4): 147-52, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26749375

RESUMEN

[11C]-dihydrotetrabenazine (DTBZ) Positron Emission Tomography was used to evaluate the vesicular monoamine transporter type 2 as an index of dopaminergic function in the striatum of adult Sprague-Dawley rats obtained from two different animal sources (Charles River Laboratories [CR] or UBC's Animal Care Centre [ACC]) and later submitted to two different unilateral lesions of the nigro-striatal pathway. The results showed a significant difference in the striatal binding potential (BP(ND)) at baseline (before lesioning) between the CR and ACC groups providing evidence that the origin of the animals, possibly due to differences in early environmental factors or breeding conditions associated with different animal vendors plays a role in the development of the adult dopaminergic system. Further, in both animal models, an increase in DTBZ BP(ND) was observed, after unilateral intervention, in the striatum contralateral to the lesion, likely reflecting compensatory effects. Based on these findings, we conclude that in unilateral models, the unlesioned side/hemisphere may not be an appropriate control and that care should be taken to control for the origin of the animals in any given study, especially in longitudinal and replication studies.


Asunto(s)
Radiofármacos/farmacocinética , Tetrabenazina/análogos & derivados , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , Análisis de Varianza , Animales , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/metabolismo , Interpretación Estadística de Datos , Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones/normas , Unión Proteica , Ratas , Ratas Sprague-Dawley , Especificidad de la Especie , Tetrabenazina/farmacocinética
9.
BMC Neurol ; 15: 197, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26459220

RESUMEN

BACKGROUND: Mixed pathology, particularly Alzheimer's disease with cerebrovascular lesions, is reported as the second most common cause of dementia. Research on mixed dementia typically includes people with a primary AD diagnosis and hence, little is known about the effects of co-existing amyloid pathology in people with vascular cognitive impairment (VCI). The purpose of this study was to understand whether individual differences in amyloid pathology might explain variations in cognitive impairment among individuals with clinical subcortical VCI (SVCI). METHODS: Twenty-two participants with SVCI completed an (11)C Pittsburgh compound B (PIB) position emission tomography (PET) scan to quantify global amyloid deposition. Cognitive function was measured using: 1) MOCA; 2) ADAS-Cog; 3) EXIT-25; and 4) specific executive processes including a) Digits Forward and Backwards Test, b) Stroop-Colour Word Test, and c) Trail Making Test. To assess the effect of amyloid deposition on cognitive function we conducted Pearson bivariate correlations to determine which cognitive measures to include in our regression models. Cognitive variables that were significantly correlated with PIB retention values were entered in a hierarchical multiple linear regression analysis to determine the unique effect of amyloid on cognitive function. We controlled for age, education, and ApoE ε4 status. RESULTS: Bivariate correlation results showed that PIB binding was significantly correlated with ADAS-Cog (p < 0.01) and MOCA (p < 0.01); increased PIB binding was associated with worse cognitive function on both cognitive measures. PIB binding was not significantly correlated with the EXIT-25 or with specific executive processes (p > 0.05). Regression analyses controlling for age, education, and ApoE ε4 status indicated an independent association between PIB retention and the ADAS-Cog (adjusted R-square change of 15.0%, Sig F Change = 0.03). PIB retention was also independently associated with MOCA scores (adjusted R-Square Change of 27.0%, Sig F Change = 0.02). CONCLUSION: We found that increased global amyloid deposition was significantly associated with greater memory and executive dysfunctions as measured by the ADAS-Cog and MOCA. Our findings point to the important role of co-existing amyloid deposition for cognitive function in those with a primary SVCI diagnosis. As such, therapeutic approaches targeting SVCI must consider the potential role of amyloid for the optimal care of those with mixed dementia. TRIAL REGISTRATION: NCT01027858.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides/metabolismo , Trastornos del Conocimiento , Demencia Vascular , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Trastornos del Conocimiento/metabolismo , Trastornos del Conocimiento/fisiopatología , Demencia Vascular/metabolismo , Demencia Vascular/fisiopatología , Femenino , Humanos , Masculino , Tomografía de Emisión de Positrones , Ensayos Clínicos Controlados Aleatorios como Asunto
11.
Synapse ; 64(3): 200-8, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19862685

RESUMEN

Small animal positron emission tomography (PET) imaging allows in vivo quantification of lesion- or treatment-induced neurochemical changes in animal models of disease. Important for quantification are the kinetic modeling methods used to determine biologically-relevant parameters of tracer-tissue interaction. In this work, we evaluate modeling algorithms for the dopaminergic tracers (11)C-dihydrotetrabenazine (DTBZ), (11)C-methylphenidate (MP), and (11)C-raclopride (RAC), used to image the dopaminergic system in the unilateral 6-hydroxydopamine lesioned rat model of Parkinson's disease. For the presynaptic tracers, PET measures are compared with autoradiographic binding measurements using DTBZ and [(3)H]WIN 35,428 (WIN). We independently developed a new variant of the tissue-input Logan graphical modeling method, and compared its performance with the simplified Logan graphical method and the simplified reference tissue with basis functions method (SRTM), for region of interest (ROI) averaged time activity curves (TACs) and parametric imaging. The modified graphical method was found to be effectively unbiased by target tissue noise and has advantages for parametric imaging, while all tested methods were equivalent for ROI-averaged data.


Asunto(s)
Encéfalo/diagnóstico por imagen , Dopamina/metabolismo , Tomografía de Emisión de Positrones/métodos , Algoritmos , Animales , Autorradiografía , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Procesamiento de Imagen Asistido por Computador , Modelos Neurológicos , Oxidopamina/farmacología , Ratas , Ratas Sprague-Dawley , Análisis de Regresión
12.
Neuroimage Clin ; 23: 101856, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31091502

RESUMEN

Most neurodegenerative diseases are known to affect several aspects of brain function, including neurotransmitter systems, metabolic and functional connectivity. Diseases are generally characterized by common clinical characteristics across subjects, but there are also significant inter-subject variations. It is thus reasonable to expect that in terms of brain function, such clinical behaviors will be related to a general overall multi-system pattern of disease-induced alterations and additional brain system-specific abnormalities; these additional abnormalities would be indicative of a possible unique system response to disease or subject-specific propensity to a specific clinical progression. Based on the above considerations we introduce and validate the use of a joint pattern analysis approach, canonical correlation analysis and orthogonal signal correction, to analyze multi-tracer PET data to identify common (reflecting functional similarities) and unique (reflecting functional differences) information provided by each tracer/target. We apply the method to [11C]-DTBZ (VMAT2 marker) and [11C]-MP (DAT marker) data from 15 early Parkinson's disease (PD) subjects; the behavior of these two tracers/targets is well characterized providing robust reference information for the method's outcome. Highly significant common subject profiles were identified that decomposed the characteristic dopaminergic changes into three distinct orthogonal spatial patterns: 1) disease-induced asymmetry between the less and more affected dorsal striatum; 2) disease-induced gradient with caudate and ventral striatum being relatively spared compared to putamen; 3) progressive loss in the less affected striatum, which correlated significantly with disease duration (p < 0.01 for DTBZ, p < 0.05 for MP). These common spatial patterns reproduce all known aspects of these two targets/tracers. In addition, orthogonality of the patterns may indicate different mechanisms underlying disease initiation or progression. Information unique to each tracer revealed a residual striatal asymmetry when targeting VMAT2, consistent with the notion that VMAT2 density is highly related to terminal degeneration; and a residual DAT disease-induced gradient in the striatum with relative DAT preservation in the substantia nigra. This finding may be indicative either of a possible DAT specific early disease compensation and/or related to disease origin. These results demonstrate the applicability and relevance of the joint pattern analysis approach to datasets obtained with two PET tracers; this data driven method, while recapitulating known aspects of the PD-induced tracer/target behaviour, was found to be statistically more robust and provided additional information on (i) correlated behaviors of the two systems, identified as orthogonal patterns, possibly reflecting different disease-induced alterations and (ii) system specific effects of disease. It is thus expected that this approach will be very well suited to the analysis of multi-tracer and/or multi-modality data and to relating the outcomes to different aspects of disease.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/metabolismo , Tomografía de Emisión de Positrones/métodos , Terminales Presinápticos/metabolismo , Proteínas de Transporte Vesicular de Monoaminas/metabolismo , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad
13.
Nucl Med Commun ; 29(6): 574-81, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18458606

RESUMEN

BACKGROUND AND AIM: In high-resolution emission tomography imaging, even small patient movements can considerably degrade image quality. The aim of this work was to develop a general approach to motion-corrected reconstruction of motion-contaminated data in the case of rigid motion (particularly brain imaging) which would be applicable to any PET scanner in the field, without specialized data-acquisition requirements. METHODS: Assuming the ability to externally track subject motion during scanning (e.g., using the Polaris camera), we proposed to incorporate the measured rigid motion information into the system matrix of the expectation maximization reconstruction algorithm. Furthermore, we noted and developed a framework to incorporate the additional effect of motion on modifying the attenuation factors. A new mathematical brain phantom was developed and used along with elaborate combined Simset/GATE simulations to compare the proposed framework with the cases of no motion correction. RESULTS AND CONCLUSION: Clear qualitative and quantitative improvements were observed when incorporating the proposed framework. The method is very practical to implement for any scanner in the field, not requiring any hardware modifications or access to the list-mode acquisition capability.


Asunto(s)
Artefactos , Encéfalo/diagnóstico por imagen , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Modelos Biológicos , Movimiento (Física) , Algoritmos , Simulación por Computador , Reconocimiento de Normas Patrones Automatizadas/métodos , Cintigrafía , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
15.
Exp Neurol ; 247: 19-24, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23557600

RESUMEN

Several independent lines of research suggest that disruption of the ubiquitin proteasome system (UPS) may play a role in the pathophysiology of Parkinson's disease. Direct intracerebral injection of UPS inhibitors (e.g. lactacystin) in animals has consistently produced important features of the disease. In this study, a range of lactacystin doses (0.5, 1, 2, 10 and 20 µg) were injected into the right substantia nigra in rats to determine the ideal dose required to produce a robust and specific lesion of the dopamine nigro-striatal system and motor deficits. Motor behavior, assessed with the tapered ledged beam task, was severely affected in animals that received high doses (10 and 20 µg) but only mild, impairments were observed in animals that received low doses (0.5, 1, and 2 µg). Positron emission tomography was performed with a dedicated small animal scanner on the rats following the injection of the radio-labeled tracer (±)[(11)C]dihydrotetrabenazine (DTBZ) which labels vesicular monoamine transporter type 2. Severe loss of [(11)C]DTBZ binding in the ipsilateral striatum was observed in the higher dose groups and mild loss was observed in the low dose groups. Stereological cell counting of tyrosine hydroxylase immunoreactive cells in the substantia nigra and the ventral tegmental area indicated a dose dependent loss of dopaminergic neurons. Significant correlations were found between the behavioral motor deficits, striatal [(11)C]DTBZ binding and cell counts of tyrosine hydroxylase immunoreactive cells. Taken together these results indicate that intranigral injection of lactacystin produces dose dependent effects on the dopamine nigro-striatal system and a dose of 10 µg will produce a consistent severe lesion.


Asunto(s)
Acetilcisteína/análogos & derivados , Inhibidores de Cisteína Proteinasa/administración & dosificación , Locomoción/efectos de los fármacos , Trastornos del Movimiento/fisiopatología , Sustancia Negra/efectos de los fármacos , Acetilcisteína/administración & dosificación , Análisis de Varianza , Animales , Isótopos de Carbono/farmacocinética , Recuento de Células , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Lateralidad Funcional , Miembro Posterior/fisiopatología , Trastornos del Movimiento/etiología , Tomografía de Emisión de Positrones , Ratas , Ratas Sprague-Dawley , Tetrabenazina/análogos & derivados , Tetrabenazina/farmacocinética , Factores de Tiempo , Tirosina 3-Monooxigenasa/metabolismo
16.
Neurology ; 81(15): 1322-31, 2013 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-24005336

RESUMEN

OBJECTIVE: In this prospective cohort study, we investigated cerebral glucose metabolism reductions on [(18)F]-fluorodeoxyglucose (FDG)-PET in progranulin (GRN) mutation carriers prior to frontotemporal dementia (FTD) onset. METHODS: Nine mutation carriers (age 51.5 ± 13.5 years) and 11 noncarriers (age 52.7 ± 9.5 years) from 5 families with FTD due to GRN mutations underwent brain scanning with FDG-PET and MRI and clinical evaluation. Normalized FDG uptake values were calculated with reference to the pons. PET images were analyzed with regions of interest (ROI) and statistical parametric mapping (SPM) approaches. RESULTS: Compared with noncarriers, GRN mutation carriers had a lowered anterior-to-posterior (AP) ratio of FDG uptake (0.86 ± 0.09 vs 0.92 ± 0.05) and less left-right asymmetry, consistent with an overall pattern of right anterior cerebral hypometabolism. This pattern was observed regardless of whether they were deemed clinically symptomatic no dementia or asymptomatic. Individual ROIs with lowered FDG uptake included right anterior cingulate, insula, and gyrus rectus. SPM analysis supported and extended these findings, demonstrating abnormalities in the right and left medial frontal regions, right insular cortex, right precentral and middle frontal gyri, and right cerebellum. Right AP ratio was correlated with cognitive and clinical scores (modified Mini-Mental State Examination r = 0.74; Functional Rating Scale r = -0.73) but not age and years to estimated onset in mutation carriers. CONCLUSION: The frontotemporal lobar degenerative process associated with GRN mutations appears to begin many years prior to the average age at FTD onset (late 50s-early 60s). Right medial and ventral frontal cortex and insula may be affected in this process but the specific regional patterns associated with specific clinical variants remain to be elucidated.


Asunto(s)
Demencia , Lóbulo Frontal/metabolismo , Glucosa/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Mutación/genética , Adulto , Anciano , Mapeo Encefálico , Demencia/complicaciones , Demencia/genética , Demencia/patología , Progresión de la Enfermedad , Femenino , Fluorodesoxiglucosa F18 , Lóbulo Frontal/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones , Progranulinas , Estudios Retrospectivos
17.
IEEE Trans Med Imaging ; 27(8): 1018-33, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18672420

RESUMEN

With continuing improvements in spatial resolution of positron emission tomography (PET) scanners, small patient movements during PET imaging become a significant source of resolution degradation. This work develops and investigates a comprehensive formalism for accurate motion-compensated reconstruction which at the same time is very feasible in the context of high-resolution PET. In particular, this paper proposes an effective method to incorporate presence of scattered and random coincidences in the context of motion (which is similarly applicable to various other motion correction schemes). The overall reconstruction framework takes into consideration missing projection data which are not detected due to motion, and additionally, incorporates information from all detected events, including those which fall outside the field-of-view following motion correction. The proposed approach has been extensively validated using phantom experiments as well as realistic simulations of a new mathematical brain phantom developed in this work, and the results for a dynamic patient study are also presented.


Asunto(s)
Algoritmos , Artefactos , Encéfalo/diagnóstico por imagen , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Tomografía de Emisión de Positrones/métodos , Simulación por Computador , Humanos , Modelos Biológicos , Modelos Estadísticos , Movimiento (Física) , Fantasmas de Imagen , Tomografía de Emisión de Positrones/instrumentación , Reproducibilidad de los Resultados , Dispersión de Radiación , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA