Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cancer ; 127(6): 850-864, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33270909

RESUMEN

BACKGROUND: Despite the significant societal burden of human papillomavirus (HPV)-associated cancers, clinical screening interventions for HPV-associated noncervical cancers are not available. Blood-based biomarkers may help close this gap in care. METHODS: Five databases were searched, 5687 articles were identified, and 3631 unique candidate titles and abstracts were independently reviewed by 2 authors; 702 articles underwent a full-text review. Eligibility criteria included the assessment of a blood-based biomarker within a cohort or case-control study. RESULTS: One hundred thirty-seven studies were included. Among all biomarkers assessed, HPV-16 E seropositivity and circulating HPV DNA were most significantly correlated with HPV-associated cancers in comparison with cancer-free controls. In most scenarios, HPV-16 E6 seropositivity varied nonsignificantly according to tumor type, specimen collection timing, and anatomic site (crude odds ratio [cOR] for p16+ or HPV+ oropharyngeal cancer [OPC], 133.10; 95% confidence interval [CI], 59.40-298.21; cOR for HPV-unspecified OPC, 25.41; 95% CI, 8.71-74.06; cOR for prediagnostic HPV-unspecified OPC, 59.00; 95% CI, 15.39-226.25; cOR for HPV-unspecified cervical cancer, 12.05; 95% CI, 3.23-44.97; cOR for HPV-unspecified anal cancer, 73.60; 95% CI, 19.68-275.33; cOR for HPV-unspecified penile cancer, 16.25; 95% CI, 2.83-93.48). Circulating HPV-16 DNA was a valid biomarker for cervical cancer (cOR, 15.72; 95% CI, 3.41-72.57). In 3 cervical cancer case-control studies, cases exhibited unique microRNA expression profiles in comparison with controls. Other assessed biomarker candidates were not valid. CONCLUSIONS: HPV-16 E6 antibodies and circulating HPV-16 DNA are the most robustly analyzed and most promising blood-based biomarkers for HPV-associated cancers to date. Comparative validity analyses are warranted. Variations in tumor type-specific, high-risk HPV DNA prevalence according to anatomic site and world region highlight the need for biomarkers targeting more high-risk HPV types. Further investigation of blood-based microRNA expression profiling appears indicated.


Asunto(s)
Anticuerpos Antivirales/sangre , Neoplasias del Ano/virología , Biomarcadores/sangre , ADN Viral/sangre , Neoplasias Orofaríngeas/virología , Infecciones por Papillomavirus/complicaciones , Femenino , Papillomavirus Humano 16/aislamiento & purificación , Humanos , Neoplasias del Cuello Uterino/virología
2.
Mol Cell ; 35(6): 856-67, 2009 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-19782034

RESUMEN

Previous studies have suggested that the HIF transcription factors can both activate and inhibit gene expression. Here we show that HIF1 regulates the expression of mir-210 in a variety of tumor types through a hypoxia-responsive element. Expression analysis in primary head and neck tumor samples indicates that mir-210 may serve as an in vivo marker for tumor hypoxia. By Argonaute protein immunoprecipitation, we identified 50 potential mir-210 targets and validated randomly selected ones. The majority of these 50 genes are not classical hypoxia-inducible genes, suggesting mir-210 represses genes expressed under normoxia that are no longer necessary to adapt and survive in a hypoxic environment. When human head and neck or pancreatic tumor cells ectopically expressing mir-210 were implanted into immunodeficient mice, mir-210 repressed initiation of tumor growth. Taken together, these data implicate an important role for mir-210 in regulating the hypoxic response of tumor cells and tumor growth.


Asunto(s)
Transformación Celular Neoplásica/genética , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Neoplasias de Cabeza y Cuello/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , MicroARNs/metabolismo , Neoplasias Pancreáticas/genética , Estrés Fisiológico/genética , Animales , Secuencia de Bases , Hipoxia de la Célula , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Factor 2 Eucariótico de Iniciación/metabolismo , Perfilación de la Expresión Génica/métodos , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Inmunoprecipitación , Masculino , Ratones , Ratones Desnudos , Datos de Secuencia Molecular , Trasplante de Neoplasias , Análisis de Secuencia por Matrices de Oligonucleótidos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Unión Proteica , Receptor Tipo 5 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 5 de Factor de Crecimiento de Fibroblastos/metabolismo , Reproducibilidad de los Resultados , Elementos de Respuesta , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Transducción Genética , Regulación hacia Arriba
3.
Mutagenesis ; 30(5): 685-94, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26001755

RESUMEN

The early transcriptional response and subsequent induction of anchorage-independent growth after exposure to particles of high Z and energy (HZE) as well as γ-rays were examined in human bronchial epithelial cells (HBEC3KT) immortalised without viral oncogenes and an isogenic variant cell line whose p53 expression was suppressed but that expressed an active mutant K-RAS(V12) (HBEC3KT-P53KRAS). Cell survival following irradiation showed that HBEC3KT-P53KRAS cells were more radioresistant than HBEC3KT cells irrespective of the radiation species. In addition, radiation enhanced the ability of the surviving HBEC3KT-P53RAS cells but not the surviving HBEC3KT cells to grow in anchorage-independent fashion (soft agar colony formation). HZE particle irradiation was far more efficient than γ-rays at rendering HBEC3KT-P53RAS cells permissive for soft agar growth. Gene expression profiles after radiation showed that the molecular response to radiation for HBEC3KT-P53RAS, similar to that for HBEC3KT cells, varies with radiation quality. Several pathways associated with anchorage independent growth, including the HIF-1α, mTOR, IGF-1, RhoA and ERK/MAPK pathways, were over-represented in the irradiated HBEC3KT-P53RAS cells compared to parental HBEC3KT cells. These results suggest that oncogenically progressed human lung epithelial cells are at greater risk for cellular transformation and carcinogenic risk after ionising radiation, but particularly so after HZE radiations. These results have implication for: (i) terrestrial radiation and suggests the possibility of enhanced carcinogenic risk from diagnostic CT screens used for early lung cancer detection; (ii) enhanced carcinogenic risk from heavy particles used in radiotherapy; and (iii) for space radiation, raising the possibility that astronauts harbouring epithelial regions of dysplasia or hyperplasia within the lung that contain oncogenic changes, may have a greater risk for lung cancers based upon their exposure to heavy particles present in the deep space environment.


Asunto(s)
Células Epiteliales/efectos de la radiación , Radiación Ionizante , Mucosa Respiratoria/efectos de la radiación , Transducción de Señal/efectos de la radiación , Transcriptoma/efectos de la radiación , Bronquios/citología , Línea Celular , Transformación Celular Neoplásica , Relación Dosis-Respuesta en la Radiación , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Transferencia Lineal de Energía , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología
4.
BMC Genomics ; 14: 372, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23724988

RESUMEN

BACKGROUND: Ionizing radiation composed of accelerated ions of high atomic number (Z) and energy (HZE) deposits energy and creates damage in cells in a discrete manner as compared to the random deposition of energy and damage seen with low energy radiations such as γ- or x-rays. Such radiations can be highly effective at cell killing, transformation, and oncogenesis, all of which are concerns for the manned space program and for the burgeoning field of HZE particle radiotherapy for cancer. Furthermore, there are differences in the extent to which cells or tissues respond to such exposures that may be unrelated to absorbed dose. Therefore, we asked whether the energy deposition patterns produced by different radiation types would cause different molecular responses. We performed transcriptome profiling using human bronchial epithelial cells (HBECs) after exposure to γ-rays and to two different HZE particles (28Si and 56Fe) with different energy transfer properties to characterize the molecular response to HZE particles and γ-rays as a function of dose, energy deposition pattern, and time post-irradiation. RESULTS: Clonogenic assay indicated that the relative biological effectiveness (RBE) for 56Fe was 3.91 and for 28Si was 1.38 at 34% cell survival. Unsupervised clustering analysis of gene expression segregated samples according to the radiation species followed by the time after irradiation, whereas dose was not a significant parameter for segregation of radiation response. While a subset of genes associated with p53-signaling, such as CDKN1A, TRIM22 and BTG2 showed very similar responses to all radiation qualities, distinct expression changes were associated with the different radiation species. Gene enrichment analysis categorized the differentially expressed genes into functional groups related to cell death and cell cycle regulation for all radiation types, while gene pathway analysis revealed that the pro-inflammatory Acute Phase Response Signaling was specifically induced after HZE particle irradiation. A 73 gene signature capable of predicting with 96% accuracy the radiation species to which cells were exposed, was developed. CONCLUSIONS: These data suggest that the molecular response to the radiation species used here is a function of the energy deposition characteristics of the radiation species. This novel molecular response to HZE particles may have implications for radiotherapy including particle selection for therapy and risk for second cancers, risk for cancers from diagnostic radiation exposures, as well as NASA's efforts to develop more accurate lung cancer risk estimates for astronaut safety. Lastly, irrespective of the source of radiation, the gene expression changes observed set the stage for functional studies of initiation or progression of radiation-induced lung carcinogenesis.


Asunto(s)
Bronquios/citología , Células Epiteliales/metabolismo , Células Epiteliales/efectos de la radiación , Rayos gamma/efectos adversos , Perfilación de la Expresión Génica , Línea Celular , Supervivencia Celular/efectos de la radiación , Células Epiteliales/citología , Humanos , Transferencia Lineal de Energía , Efectividad Biológica Relativa
5.
Mutagenesis ; 28(1): 71-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22987027

RESUMEN

Exposure to sparsely ionising gamma- or X-ray irradiation is known to increase the risk of leukaemia in humans. However, heavy ion radiotherapy and extended space exploration will expose humans to densely ionising high linear energy transfer (LET) radiation for which there is currently no understanding of leukaemia risk. Murine models have implicated chromosomal deletion that includes the hematopoietic transcription factor gene, PU.1 (Sfpi1), and point mutation of the second PU.1 allele as the primary cause of low-LET radiation-induced murine acute myeloid leukaemia (rAML). Using array comparative genomic hybridisation, fluorescence in situ hybridisation and high resolution melt analysis, we have confirmed that biallelic PU.1 mutations are common in low-LET rAML, occurring in 88% of samples. Biallelic PU.1 mutations were also detected in the majority of high-LET rAML samples. Microsatellite instability was identified in 42% of all rAML samples, and 89% of samples carried increased microsatellite mutant frequencies at the single-cell level, indicative of ongoing instability. Instability was also observed cytogenetically as a 2-fold increase in chromatid-type aberrations. These data highlight the similarities in molecular characteristics of high-LET and low-LET rAML and confirm the presence of ongoing chromosomal and microsatellite instability in murine rAML.


Asunto(s)
Rayos gamma/efectos adversos , Leucemia Mieloide Aguda/etiología , Leucemia Inducida por Radiación , Inestabilidad de Microsatélites , Proteínas Proto-Oncogénicas/genética , Transactivadores/genética , Animales , Radioisótopos de Cesio , Cromátides/efectos de la radiación , Aberraciones Cromosómicas , Relación Dosis-Respuesta en la Radiación , Hibridación Fluorescente in Situ , Hierro , Leucemia Mieloide Aguda/genética , Leucemia Inducida por Radiación/genética , Transferencia Lineal de Energía , Masculino , Ratones , Ratones Endogámicos CBA , Mutación , Análisis de la Célula Individual
6.
Nucleic Acids Res ; 39(13): 5474-88, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21421565

RESUMEN

DNA damage and consequent mutations initiate the multistep carcinogenic process. Differentiated cells have a reduced capacity to repair DNA lesions, but the biological impact of unrepaired DNA lesions in differentiated lung epithelial cells is unclear. Here, we used a novel organotypic human lung three-dimensional (3D) model to investigate the biological significance of unrepaired DNA lesions in differentiated lung epithelial cells. We showed, consistent with existing notions that the kinetics of loss of simple double-strand breaks (DSBs) were significantly reduced in organotypic 3D culture compared to kinetics of repair in two-dimensional (2D) culture. Strikingly, we found that, unlike simple DSBs, a majority of complex DNA lesions were irreparable in organotypic 3D culture. Levels of expression of multiple DNA damage repair pathway genes were significantly reduced in the organotypic 3D culture compared with those in 2D culture providing molecular evidence for the defective DNA damage repair in organotypic culture. Further, when differentiated cells with unrepaired DNA lesions re-entered the cell cycle, they manifested a spectrum of gross-chromosomal aberrations in mitosis. Our data suggest that downregulation of multiple DNA repair pathway genes in differentiated cells renders them vulnerable to DSBs, promoting genome instability that may lead to carcinogenesis.


Asunto(s)
Rotura Cromosómica , Roturas del ADN de Doble Cadena , Diferenciación Celular , Línea Celular , Aberraciones Cromosómicas , Reparación del ADN/genética , Regulación hacia Abajo , Células Epiteliales/metabolismo , Células Epiteliales/efectos de la radiación , Humanos , Imagenología Tridimensional , Hierro/toxicidad , Cinética , Transferencia Lineal de Energía , Pulmón/citología , Técnicas de Cultivo de Órganos
7.
BMC Genomics ; 13: 153, 2012 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-22537182

RESUMEN

BACKGROUND: The fetal and adult globin genes in the human ß-globin cluster on chromosome 11 are sequentially expressed to achieve normal hemoglobin switching during human development. The pharmacological induction of fetal γ-globin (HBG) to replace abnormal adult sickle ßS-globin is a successful strategy to treat sickle cell disease; however the molecular mechanism of γ-gene silencing after birth is not fully understood. Therefore, we performed global gene expression profiling using primary erythroid progenitors grown from human peripheral blood mononuclear cells to characterize gene expression patterns during the γ-globin to ß-globin (γ/ß) switch observed throughout in vitro erythroid differentiation. RESULTS: We confirmed erythroid maturation in our culture system using cell morphologic features defined by Giemsa staining and the γ/ß-globin switch by reverse transcription-quantitative PCR (RT-qPCR) analysis. We observed maximal γ-globin expression at day 7 with a switch to a predominance of ß-globin expression by day 28 and the γ/ß-globin switch occurred around day 21. Expression patterns for transcription factors including GATA1, GATA2, KLF1 and NFE2 confirmed our system produced the expected pattern of expression based on the known function of these factors in globin gene regulation. Subsequent gene expression profiling was performed with RNA isolated from progenitors harvested at day 7, 14, 21, and 28 in culture. Three major gene profiles were generated by Principal Component Analysis (PCA). For profile-1 genes, where expression decreased from day 7 to day 28, we identified 2,102 genes down-regulated > 1.5-fold. Ingenuity pathway analysis (IPA) for profile-1 genes demonstrated involvement of the Cdc42, phospholipase C, NF-Kß, Interleukin-4, and p38 mitogen activated protein kinase (MAPK) signaling pathways. Transcription factors known to be involved in γ-and ß-globin regulation were identified.The same approach was used to generate profile-2 genes where expression was up-regulated over 28 days in culture. IPA for the 2,437 genes with > 1.5-fold induction identified the mitotic roles of polo-like kinase, aryl hydrocarbon receptor, cell cycle control, and ATM (Ataxia Telangiectasia Mutated Protein) signaling pathways; transcription factors identified included KLF1, GATA1 and NFE2 among others. Finally, profile-3 was generated from 1,579 genes with maximal expression at day 21, around the time of the γ/ß-globin switch. IPA identified associations with cell cycle control, ATM, and aryl hydrocarbon receptor signaling pathways. CONCLUSIONS: The transcriptome analysis completed with erythroid progenitors grown in vitro identified groups of genes with distinct expression profiles, which function in metabolic pathways associated with cell survival, hematopoiesis, blood cells activation, and inflammatory responses. This study represents the first report of a transcriptome analysis in human primary erythroid progenitors to identify transcription factors involved in hemoglobin switching. Our results also demonstrate that the in vitro liquid culture system is an excellent model to define mechanisms of global gene expression and the DNA-binding protein and signaling pathways involved in globin gene regulation.


Asunto(s)
Células Eritroides/citología , Células Eritroides/metabolismo , Perfilación de la Expresión Génica , gamma-Globinas/genética , Sitios de Unión , Diferenciación Celular , Minería de Datos , Bases de Datos Genéticas , Genómica , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Recombinación Genética , Transducción de Señal/genética , Factores de Tiempo , Factores de Transcripción/metabolismo
8.
Sci Rep ; 12(1): 10927, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35764780

RESUMEN

Research examining the potential for circulating miRNA to serve as markers for preneoplastic lesions or early-stage hepatocellular carcinoma (HCC) is hindered by the difficulties of obtaining samples from asymptomatic individuals. As a surrogate for human samples, we identified hub miRNAs in gene co-expression networks using HCC-bearing C3H mice. We confirmed 38 hub miRNAs as associated with HCC in F2 hybrid mice derived from radiogenic HCC susceptible and resistant founders. When compared to a panel of 12 circulating miRNAs associated with human HCC, two had no mouse ortholog and 7 of the remaining 10 miRNAs overlapped with the 38 mouse HCC hub miRNAs. Using small RNA sequencing data generated from serially collected plasma samples in F2 mice, we examined the temporal levels of these 7 circulating miRNAs and found that the levels of 4 human circulating markers, miR-122-5p, miR-100-5p, miR-34a-5p and miR-365-3p increased linearly as the time approaching HCC detection neared, suggesting a correlation of miRNA levels with oncogenic progression. Estimation of change points in the kinetics of the 4 circulating miRNAs suggested the changes started 17.5 to 6.8 months prior to HCC detection. These data establish these 4 circulating miRNAs as potential sentinels for preneoplastic lesions or early-stage HCC.


Asunto(s)
Carcinoma Hepatocelular , MicroARN Circulante , Neoplasias Hepáticas , MicroARNs , Animales , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/patología , MicroARN Circulante/genética , Humanos , Neoplasias Hepáticas/patología , Ratones , Ratones Endogámicos C3H , MicroARNs/genética , Radiofármacos
9.
Front Oncol ; 12: 812961, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35280731

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide. Thirty percent of patients will experience locoregional recurrence for which median survival is less than 1 year. Factors contributing to treatment failure include inherent resistance to X-rays and chemotherapy, hypoxia, epithelial to mesenchymal transition, and immune suppression. The unique properties of 12C radiotherapy including enhanced cell killing, a decreased oxygen enhancement ratio, generation of complex DNA damage, and the potential to overcome immune suppression make its application well suited to the treatment of HNSCC. We examined the 12C radioresponse of five HNSCC cell lines, whose surviving fraction at 3.5 Gy ranged from average to resistant when compared with a larger panel of 38 cell lines to determine if 12C irradiation can overcome X-ray radioresistance and to identify biomarkers predictive of 12C radioresponse. Cells were irradiated with 12C using a SOBP with an average LET of 80 keV/µm (CNAO: Pavia, Italy). RBE values varied depending upon endpoint used. A 37 gene signature was able to place cells in their respective radiosensitivity cohort with an accuracy of 86%. Radioresistant cells were characterized by an enrichment of genes associated with radioresistance and survival mechanisms including but not limited to G2/M Checkpoint MTORC1, HIF1α, and PI3K/AKT/MTOR signaling. These data were used in conjunction with an in silico-based modeling approach to evaluate tumor control probability after 12C irradiation that compared clinically used treatment schedules with fixed RBE values vs. the RBEs determined for each cell line. Based on the above analysis, we present the framework of a strategy to utilize biological markers to predict which HNSCC patients would benefit the most from 12C radiotherapy.

10.
Sci Rep ; 11(1): 14052, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34234215

RESUMEN

High-charge, high-energy ion particle (HZE) radiations are extraterrestrial in origin and characterized by high linear energy transfer (high-LET), which causes more severe cell damage than low-LET radiations like γ-rays or photons. High-LET radiation poses potential cancer risks for astronauts on deep space missions, but the studies of its carcinogenic effects have relied heavily on animal models. It remains uncertain whether such data are applicable to human disease. Here, we used genomics approaches to directly compare high-LET radiation-induced, low-LET radiation-induced and spontaneous hepatocellular carcinoma (HCC) in mice with a human HCC cohort from The Cancer Genome Atlas (TCGA). We identified common molecular pathways between mouse and human HCC and discovered a subset of orthologous genes (mR-HCC) that associated high-LET radiation-induced mouse HCC with a subgroup (mrHCC2) of the TCGA cohort. The mrHCC2 TCGA cohort was more enriched with tumor-suppressing immune cells and showed a better prognostic outcome than other patient subgroups.


Asunto(s)
Carcinoma Hepatocelular/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Neoplasias Hepáticas/genética , Radiación Ionizante , Transcriptoma , Animales , Biomarcadores de Tumor , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidad , Biología Computacional/métodos , Modelos Animales de Enfermedad , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidad , Ratones , Pronóstico , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
11.
Sci Rep ; 11(1): 14899, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34290258

RESUMEN

The space radiation environment consists of multiple species of charged particles, including 28Si ions, that may impact brain function during and following missions. To develop biomarkers of the space radiation response, BALB/c and C3H female and male mice and their F2 hybrid progeny were irradiated with 28Si ions (350 MeV/n, 0.2 Gy) and tested for behavioral and cognitive performance 1, 6, and 12 months following irradiation. The plasma of the mice was collected for analysis of miRNA levels. Select pertinent brain regions were dissected for lipidomic analyses and analyses of levels of select biomarkers shown to be sensitive to effects of space radiation in previous studies. There were associations between lipids in select brain regions, plasma miRNA, and cognitive measures and behavioral following 28Si ion irradiation. Different but overlapping sets of miRNAs in plasma were found to be associated with cognitive measures and behavioral in sham and irradiated mice at the three time points. The radiation condition revealed pathways involved in neurodegenerative conditions and cancers. Levels of the dendritic marker MAP2 in the cortex were higher in irradiated than sham-irradiated mice at middle age, which might be part of a compensatory response. Relationships were also revealed with CD68 in miRNAs in an anatomical distinct fashion, suggesting that distinct miRNAs modulate neuroinflammation in different brain regions. The associations between lipids in selected brain regions, plasma miRNA, and behavioral and cognitive measures following 28Si ion irradiation could be used for the development of biomarker of the space radiation response.


Asunto(s)
Conducta Animal/efectos de la radiación , Encéfalo/metabolismo , Cognición/efectos de la radiación , Metabolismo de los Lípidos/efectos de la radiación , MicroARNs/sangre , Silicio/efectos adversos , Irradiación Corporal Total/efectos adversos , Animales , Radiación Cósmica/efectos adversos , Relación Dosis-Respuesta en la Radiación , Femenino , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Radiación Ionizante
12.
Sci Transl Med ; 13(593)2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980575

RESUMEN

Avasopasem manganese (AVA or GC4419), a selective superoxide dismutase mimetic, is in a phase 3 clinical trial (NCT03689712) as a mitigator of radiation-induced mucositis in head and neck cancer based on its superoxide scavenging activity. We tested whether AVA synergized with radiation via the generation of hydrogen peroxide, the product of superoxide dismutation, to target tumor cells in preclinical xenograft models of non-small cell lung cancer (NSCLC), head and neck squamous cell carcinoma, and pancreatic ductal adenocarcinoma. Treatment synergy with AVA and high dose per fraction radiation occurred when mice were given AVA once before tumor irradiation and further increased when AVA was given before and for 4 days after radiation, supporting a role for oxidative metabolism. This synergy was abrogated by conditional overexpression of catalase in the tumors. In addition, in vitro NSCLC and mammary adenocarcinoma models showed that AVA increased intracellular hydrogen peroxide concentrations and buthionine sulfoximine- and auranofin-induced inhibition of glutathione- and thioredoxin-dependent hydrogen peroxide metabolism selectively enhanced AVA-induced killing of cancer cells compared to normal cells. Gene expression in irradiated tumors treated with AVA suggested that increased inflammatory, TNFα, and apoptosis signaling also contributed to treatment synergy. These results support the hypothesis that AVA, although reducing radiotherapy damage to normal tissues, acts synergistically only with high dose per fraction radiation regimens analogous to stereotactic ablative body radiotherapy against tumors by a hydrogen peroxide-dependent mechanism. This tumoricidal synergy is now being tested in a phase I-II clinical trial in humans (NCT03340974).


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Compuestos Organometálicos , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Humanos , Peróxido de Hidrógeno , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/radioterapia , Ratones , Superóxido Dismutasa
13.
Carcinogenesis ; 31(10): 1889-96, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20663777

RESUMEN

DNA double-strand breaks (DSBs) are the most deleterious lesion inflicted by ionizing radiation. Although DSBs are potentially carcinogenic, it is not clear whether complex DSBs that are refractory to repair are more potently tumorigenic compared with simple breaks that can be rapidly repaired, correctly or incorrectly, by mammalian cells. We previously demonstrated that complex DSBs induced by high-linear energy transfer (LET) Fe ions are repaired slowly and incompletely, whereas those induced by low-LET gamma rays are repaired efficiently by mammalian cells. To determine whether Fe-induced DSBs are more potently tumorigenic than gamma ray-induced breaks, we irradiated 'sensitized' murine astrocytes that were deficient in Ink4a and Arf tumor suppressors and injected the surviving cells subcutaneously into nude mice. Using this model system, we find that Fe ions are potently tumorigenic, generating tumors with significantly higher frequency and shorter latency compared with tumors generated by gamma rays. Tumor formation by Fe-irradiated cells is accompanied by rampant genomic instability and multiple genomic changes, the most interesting of which is loss of the p15/Ink4b tumor suppressor due to deletion of a chromosomal region harboring the CDKN2A and CDKN2B loci. The additional loss of p15/Ink4b in tumors derived from cells that are already deficient in p16/Ink4a bolsters the hypothesis that p15 plays an important role in tumor suppression, especially in the absence of p16. Indeed, we find that reexpression of p15 in tumor-derived cells significantly attenuates the tumorigenic potential of these cells, indicating that p15 loss may be a critical event in tumorigenesis triggered by complex DSBs.


Asunto(s)
Inhibidor p15 de las Quinasas Dependientes de la Ciclina/fisiología , Roturas del ADN de Doble Cadena , Neoplasias/etiología , Animales , Células Cultivadas , Aberraciones Cromosómicas , Deleción Cromosómica , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/fisiología , Reparación del ADN , Inestabilidad Genómica , Humanos , Ratones
14.
Nucleic Acids Res ; 36(10): e58, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18450815

RESUMEN

Despite the tremendous growth of microarray usage in scientific studies, there is a lack of standards for background correction methodologies, especially in single-color microarray platforms. Traditional background subtraction methods often generate negative signals and thus cause large amounts of data loss. Hence, some researchers prefer to avoid background corrections, which typically result in the underestimation of differential expression. Here, by utilizing nonspecific negative control features integrated into Illumina whole genome expression arrays, we have developed a method of model-based background correction for BeadArrays (MBCB). We compared the MBCB with a method adapted from the Affymetrix robust multi-array analysis algorithm and with no background subtraction, using a mouse acute myeloid leukemia (AML) dataset. We demonstrated that differential expression ratios obtained by using the MBCB had the best correlation with quantitative RT-PCR. MBCB also achieved better sensitivity in detecting differentially expressed genes with biological significance. For example, we demonstrated that the differential regulation of Tnfr2, Ikk and NF-kappaB, the death receptor pathway, in the AML samples, could only be detected by using data after MBCB implementation. We conclude that MBCB is a robust background correction method that will lead to more precise determination of gene expression and better biological interpretation of Illumina BeadArray data.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Modelos Estadísticos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Animales , Perfilación de la Expresión Génica/normas , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Ratones , Ratones Endogámicos CBA , Análisis de Secuencia por Matrices de Oligonucleótidos/normas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética
15.
Transl Res ; 217: 33-46, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31707040

RESUMEN

Tumor treating fields (TTFields) is a noninvasive physical modality of cancer therapy that applies low-intensity, intermediate frequency, and alternating electric fields to a tumor. Interference with mitosis was the first mechanism describing the effects of TTFields on cancer cells; however, TTFields was shown to not only reduce the rejoining of radiation-induced DNA double-strand breaks (DSBs), but to also induce DNA DSBs. The mechanism(s) by which TTFields generates DNA DSBs is related to the generation of replication stress including reduced expression of the DNA replication complex genes MCM6 and MCM10 and the Fanconi's Anemia pathway genes. When markers of DNA replication stress as a result of TTFields exposure were examined, newly replicated DNA length was reduced with TTFields exposure time and there was increased R-loop formation. Furthermore, as cells were exposed to TTFields a conditional vulnerability environment developed which rendered cells more susceptible to DNA damaging agents or agents that interfere with DNA repair or replication fork maintenance. The effect of TTFields exposure with concomitant exposure to cisplatin or PARP inhibition, the combination of TTFields plus concomitant PARP inhibition followed by radiation, or radiation alone at the end of a TTFields exposure were all synergistic. Finally, gene expression analysis of 47 key mitosis regulator genes suggested that TTFields-induced mitotic aberrations and DNA damage/replication stress events, although intimately linked to one another, are likely initiated independently of one another. This suggests that enhanced replication stress and reduced DNA repair capacity are also major mechanisms of TTFields effects, effects for which there are therapeutic implications.


Asunto(s)
Replicación del ADN , Terapia por Estimulación Eléctrica/métodos , Neoplasias/terapia , Línea Celular Tumoral , Cisplatino/farmacología , Daño del ADN , Humanos , Neoplasias/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas
16.
Int J Oncol ; 34(4): 1051-60, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19287962

RESUMEN

Hypoxia and hypoxia inducible factor-1alpha (HIF-1alpha) play a critical role in glioblastoma (GBM) which is characterized by highly aggressive and widespread cell invasion into adjacent normal brain tissue. The purpose of this study was to investigate the effect of the novel aminothiazole com-pound SNS-032 in glioblastoma cell invasion under hypoxic condition. SNS-032 is a potent and selective inhibitor of cyclin-dependent kinases 2, 7 and 9 and inhibits both cell cycle and transcription. We analyzed the effect of SNS-032 (0.5 microM) on HIF-1alpha expression and its major trans-regulating factors including COX-2, VEGF, MMP-2 and uPAR that are involved in cellular invasion in tumor hypoxia. Our observations demonstrate SNS-032: i) inhibited hypoxia-induced U87MG cell invasion and among all the other inhibitors tested, SNS-032 is the most effective, ii) blocked HIF-1alpha mediated transcription of COX-2, MMP-2, VEGF and uPAR expression in U87MG cells in response to hypoxia, iii) blocked HIF-1alpha expression by a proteasome independent pathway. The effects were similar to those observed with HIF-1alpha siRNA which prevented cellular invasion by blocking HIF-1alpha expression and its downstream effectors. Taken together, our data suggest that SNS-032 prevents hypoxia-mediated U87MG cell invasion by blocking the expression of HIF-1alpha and its trans-regulating factors. Our results present an opportunity in controlling highly invasive tumors such as glioblastoma using this novel class of compounds.


Asunto(s)
Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Hipoxia , Oxazoles/farmacología , Tiazoles/farmacología , Línea Celular Tumoral , Colágeno/química , Inhibidores de la Ciclooxigenasa 2/farmacología , Cartilla de ADN/química , Combinación de Medicamentos , Humanos , Laminina/química , Inhibidores de la Metaloproteinasa de la Matriz , Invasividad Neoplásica , Proteoglicanos/química , ARN Interferente Pequeño/metabolismo , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores
17.
Neoplasia ; 21(9): 849-862, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31325708

RESUMEN

MicroRNAs (miRNAs) are short single-stranded RNAs, measuring 21 to 23 nucleotides in length and regulate gene expression at the post-transcriptional level through mRNA destabilization or repressing protein synthesis. Dysregulation of miRNAs can lead to tumorigenesis through changes in regulation of key cellular processes such as cell proliferation, cell survival, and apoptosis. miR-125a-5p has been implicated as a tumor suppressor miRNA in malignancies such as non-small cell lung cancer and colon cancer. However, the role of miR-125a-5p has not been fully investigated in head and neck squamous cell carcinoma (HNSCC). We performed microRNA microarray profiling of HNSCC tumor samples obtained from a prospective clinical trial evaluating the role of postoperative radiotherapy in head and neck cancer. We also mined through The Cancer Genome Atlas to evaluate expression and survival data. Biological experiments, including cell proliferation, flow cytometry, cell migration and invasion, clonogenic survival, and fluorescent microscopy, were conducted using HN5 and UM-SCC-22B cell lines. miR-125a-5p downregulation was associated with recurrent disease in a panel of high-risk HNSCC and then confirmed poor survival associated with low expression in HNSCC via the Cancer Genome Atlas, suggesting that miR-125a-5p acts as a tumor suppressor miRNA. We then demonstrated that miR-125a-5p regulates cell proliferation through cell cycle regulation at the G1/S transition. We also show that miR-125a-5p can alter cell migration and modulate sensitivity to ionizing radiation. Finally, we identified putative mRNA targets of miR-125a-5p, including ERBB2, EIF4EBP1, and TXNRD1, which support the tumor suppressive mechanism of miR-125a-5p. Functional validation of ERBB2 suggests that miR-125a-5p affects cell proliferation and sensitivity to ionizing radiation, in part, through ERBB2. Our data suggests that miR-125a-5p acts as a tumor suppressor miRNA, has potential as a diagnostic tool and may be a potential therapeutic target for the management and treatment of squamous cell carcinoma of the head and neck.


Asunto(s)
Biomarcadores de Tumor , Genes Supresores de Tumor , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/mortalidad , MicroARNs/genética , Regiones no Traducidas 3' , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/mortalidad , Carcinoma de Células Escamosas/patología , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Supervivencia Celular/genética , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Neoplasias de Cabeza y Cuello/patología , Humanos , Recurrencia Local de Neoplasia , Pronóstico , Interferencia de ARN , ARN Mensajero/genética , Radiación Ionizante
18.
Cell Death Dis ; 8(3): e2711, 2017 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-28358361

RESUMEN

The use of tumor-treating fields (TTFields) has revolutionized the treatment of recurrent and newly diagnosed glioblastoma (GBM). TTFields are low-intensity, intermediate frequency, alternating electric fields that are applied to tumor regions and cells using non-invasive arrays. The predominant mechanism by which TTFields are thought to kill tumor cells is the disruption of mitosis. Using five non-small cell lung cancer (NSCLC) cell lines we found that there is a variable response in cell proliferation and cell killing between these NSCLC cell lines that was independent of p53 status. TTFields treatment increased the G2/M population, with a concomitant reduction in S-phase cells followed by the appearance of a sub-G1 population indicative of apoptosis. Temporal changes in gene expression during TTFields exposure was evaluated to identify molecular signaling changes underlying the differential TTFields response. The most differentially expressed genes were associated with the cell cycle and cell proliferation pathways. However, the expression of genes found within the BRCA1 DNA-damage response were significantly downregulated (P<0.05) during TTFields treatment. DNA double-strand break (DSB) repair foci increased when cells were exposed to TTFields as did the appearance of chromatid-type aberrations, suggesting an interphase mechanism responsible for cell death involving DNA repair. Exposing cells to TTFields immediately following ionizing radiation resulted in increased chromatid aberrations and a reduced capacity to repair DNA DSBs, which were likely responsible for at least a portion of the enhanced cell killing seen with the combination. These findings suggest that TTFields induce a state of 'BRCAness' leading to a conditional susceptibility resulting in enhanced sensitivity to ionizing radiation and provides a strong rationale for the use of TTFields as a combined modality therapy with radiation or other DNA-damaging agents.


Asunto(s)
Proteína BRCA1/biosíntesis , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Roturas del ADN de Doble Cadena/efectos de la radiación , Reparación del ADN/efectos de la radiación , Regulación hacia Abajo/efectos de la radiación , Rayos gamma , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Neoplasias Pulmonares/metabolismo , Transducción de Señal/efectos de la radiación , Células A549 , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/radioterapia
19.
Mol Cancer Res ; 15(11): 1503-1516, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28801308

RESUMEN

EGFR signaling has been implicated in hypoxia-associated resistance to radiation or chemotherapy. Non-small cell lung carcinomas (NSCLC) with activating L858R or ΔE746-E750 EGFR mutations exhibit elevated EGFR activity and downstream signaling. Here, relative to wild-type (WT) EGFR, mutant (MT) EGFR expression significantly increases radiosensitivity in hypoxic cells. Gene expression profiling in human bronchial epithelial cells (HBEC) revealed that MT-EGFR expression elevated transcripts related to cell cycle and replication in aerobic and hypoxic conditions and downregulated RAD50, a critical component of nonhomologous end joining and homologous recombination DNA repair pathways. NSCLCs and HBEC with MT-EGFR revealed elevated basal and hypoxia-induced γ-H2AX-associated DNA lesions that were coincident with replication protein A in the S-phase nuclei. DNA fiber analysis showed that, relative to WT-EGFR, MT-EGFR NSCLCs harbored significantly higher levels of stalled replication forks and decreased fork velocities in aerobic and hypoxic conditions. EGFR blockade by cetuximab significantly increased radiosensitivity in hypoxic cells, recapitulating MT-EGFR expression and closely resembling synthetic lethality of PARP inhibition.Implications: This study demonstrates that within an altered DNA damage response of hypoxic NSCLC cells, mutant EGFR expression, or EGFR blockade by cetuximab exerts a synthetic lethality effect and significantly compromises radiation resistance in hypoxic tumor cells. Mol Cancer Res; 15(11); 1503-16. ©2017 AACR.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Replicación del ADN , ADN/metabolismo , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Células A549 , Ácido Anhídrido Hidrolasas , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Hipoxia de la Célula , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Cetuximab/farmacología , Daño del ADN , Reparación del ADN , Enzimas Reparadoras del ADN/genética , Proteínas de Unión al ADN/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Mutación , Tolerancia a Radiación/efectos de los fármacos , Fármacos Sensibilizantes a Radiaciones/farmacología
20.
Exp Biol Med (Maywood) ; 241(7): 706-18, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27022141

RESUMEN

Sickle cell disease (SCD) is a group of inherited blood disorders that have in common a mutation in the sixth codon of the ß-globin (HBB) gene on chromosome 11. However, people with the same genetic mutation display a wide range of clinical phenotypes. Fetal hemoglobin (HbF) expression is an important genetic modifier of SCD complications leading to milder symptoms and improved long-term survival. Therefore, we performed a genome-wide association study (GWAS) using a case-control experimental design in 244 African Americans with SCD to discover genetic factors associated with HbF expression. The case group consisted of subjects with HbF≥8.6% (133 samples) and control group subjects with HbF≤£3.1% (111 samples). Our GWAS results replicated SNPs previously identified in an erythroid-specific enhancer region located in the second intron of the BCL11A gene associated with HbF expression. In addition, we identified SNPs in the SPARC, GJC1, EFTUD2 and JAZF1 genes as novel candidates associated with HbF levels. To gain insights into mechanisms of globin gene regulation in the HBB locus, linkage disequilibrium (LD) and haplotype analyses were conducted. We observed strong LD in the low HbF group in contrast to a loss of LD and greater number of haplotypes in the high HbF group. A search of known HBB locus regulatory elements identified SNPs 5' of δ-globin located in an HbF silencing region. In particular, SNP rs4910736 created a binding site for a known transcription repressor GFi1 which is a candidate protein for further investigation. Another HbF-associated SNP, rs2855122 in the cAMP response element upstream of Gγ-globin, was analyzed for functional relevance. Studies performed with siRNA-mediated CREB binding protein (CBP) knockdown in primary erythroid cells demonstrated γ-globin activation and HbF induction, supporting a repressor role for CBP. This study identifies possible molecular determinants of HbF production.


Asunto(s)
Anemia de Células Falciformes/genética , Hemoglobina Fetal/genética , Adulto , Anemia de Células Falciformes/sangre , Estudios de Casos y Controles , Mapeo Cromosómico , Femenino , Hemoglobina Fetal/análisis , Regulación de la Expresión Génica/genética , Estudio de Asociación del Genoma Completo , Haplotipos , Humanos , Desequilibrio de Ligamiento , Masculino , Polimorfismo de Nucleótido Simple/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA