Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Molecules ; 29(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474593

RESUMEN

Lycorine is a kind of natural active ingredient with a strong antitumor effect. In this study, folate ligand-conjugated polyethylene glycol-block-poly(l-lactide) (PEG-PLLA) nanoparticles (FA-PEG-PLLA NPs) were designed to deliver lycorine to enhance its anti-glioma activity. The successful preparation of the FA-PEG-PLLA polymer was confirmed by 1H-NMR, FT-IR, XRD, TGA, and DSC. The optimal formulation for LYC@FA-PEG-PLLA NPs was determined by response surface analysis as follows: sodium dodecyl sulfate (SDS) of 1%, carrier material of 0.03 g, organic phase volume of 3 mL, and ultrasonic power of 20%. The LYC@FA-PEG-PLLA NPs exhibited an encapsulation efficiency of 83.58% and a particle size of 49.71 nm, demonstrating good stability. Hemolysis experiments, MTT assays, and cell scratch assays revealed excellent biocompatibility of FA-PEG-PLLA and superior anti-glioma activity of LYC@FA-PEG-PLLA NPs compared to the raw drug. Additionally, cell apoptosis assays, ROS experiments, and western blot analysis demonstrated that LYC@FA-PEG-PLLA NPs contributed to cell apoptosis by inducing ROS generation and increasing the expression of NF-κB inhibitory protein IκBα. These results suggested that LYC@FA-PEG-PLLA NPs hold promise for glioma treatment.


Asunto(s)
Alcaloides de Amaryllidaceae , Glioma , Nanopartículas , Fenantridinas , Humanos , Ácido Fólico/química , Especies Reactivas de Oxígeno , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas/química , Polietilenglicoles/química , Portadores de Fármacos/química , Tamaño de la Partícula , Línea Celular Tumoral
2.
Cell Commun Signal ; 21(1): 269, 2023 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-37777761

RESUMEN

Protein‒protein, protein‒RNA, and protein‒DNA interaction networks form the basis of cellular regulation and signal transduction, making it crucial to explore these interaction networks to understand complex biological processes. Traditional methods such as affinity purification and yeast two-hybrid assays have been shown to have limitations, as they can only isolate high-affinity molecular interactions under nonphysiological conditions or in vitro. Moreover, these methods have shortcomings for organelle isolation and protein subcellular localization. To address these issues, proximity labeling techniques have been developed. This technology not only overcomes the limitations of traditional methods but also offers unique advantages in studying protein spatial characteristics and molecular interactions within living cells. Currently, this technique not only is indispensable in research on mammalian nucleoprotein interactions but also provides a reliable approach for studying nonmammalian cells, such as plants, parasites and viruses. Given these advantages, this article provides a detailed introduction to the principles of proximity labeling techniques and the development of labeling enzymes. The focus is on summarizing the recent applications of TurboID and miniTurbo in mammals, plants, and microorganisms. Video Abstract.


Asunto(s)
Mapas de Interacción de Proteínas , Proteínas , Animales , Mamíferos
3.
Future Microbiol ; 19: 349-354, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38411117

RESUMEN

A large proportion of the world's population is infected with HSV-1. Antiviral CD8+ T cells and CD8α+ dendritic cells are closely related to HSV-1 infection and latency. Latency-associated transcript of HSV-1 and PD-1 are involved in the regulation of latency and reactivation of HSV-1. Here, the role of latency-associated transcript, PD-1, CD8+ T cells and CD8α+ dendritic cells in HSV-1 infection, the inter-relationships between them and how these interactions lead to latency are discussed, possibly providing new ideas for the treatment of HSV-1 infection.


Antiviral immune cells are closely related to infection and latency of HSV-1. Here, the role of several immune cells in HSV-1 infection, the inter-relationships between them and how these interactions lead to latency are discussed.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Humanos , Linfocitos T CD8-positivos , Receptor de Muerte Celular Programada 1/genética , Latencia del Virus , Herpesvirus Humano 1/genética
4.
Future Microbiol ; 19(6): 519-524, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38411103

RESUMEN

Ferroptosis, known as a type of programmed cell death that is iron dependent, is characterized by intracellular iron accumulation, glutathione depletion, glutathione peroxidase inactivation and lipid peroxidation. More and more research in recent years has demonstrated the tight connection between viral infections and ferroptosis. This article reviews the potential role and mechanism of ferroptosis in viral infection, and these findings will help in the prevention and treatment of the virus.


Ferroptosis is a newly discovered type of cell death. More and more studies have shown that ferroptosis is closely related to infection by a variety of viruses. This article reviews the potential role and mechanism of ferroptosis in viral infection.


Asunto(s)
Ferroptosis , Hierro , Peroxidación de Lípido , Virosis , Ferroptosis/efectos de los fármacos , Humanos , Virosis/metabolismo , Virosis/tratamiento farmacológico , Virosis/virología , Hierro/metabolismo , Animales , Glutatión/metabolismo , Glutatión Peroxidasa/metabolismo , Antivirales/farmacología , Antivirales/uso terapéutico
5.
Front Pharmacol ; 15: 1398320, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903991

RESUMEN

MFSD12 protein has recently risen as a key factor in malignancy and plays a potential role in a variety of complex oncogenic signaling cascades. Current studies suggest that MFSD12 has a positive complex role in the growth and progression of tumors such as melanoma, breast cancer, and lung cancer. At the same time, as a transporter of cysteine, MFSD12 is also involved in the development of lysosomal storage diseases. Therefore, MFSD12 may be an effective target to inhibit tumor development, block metastasis, and expand the therapeutic effect. This article reviews the molecular mechanisms of MFSD12 in a variety of cancers and lysosomal storage diseases.

6.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1551-1559, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37668687

RESUMEN

Lycorine is a naturally active alkaloid that has been shown to have inhibitory effects on a variety of cancers. However, the underlying mechanism of lycorine in the treatment of glioblastoma (GBM) is unclear. In this study, we investigated the mechanism of lycorine in the treatment of GBM based on network pharmacology and molecular docking. Lycorine-related targets overlapped with GBM-related targets to obtain intersections that represent potential anti-GBM targets for lycorine. The protein-protein interaction (PPI) network was constructed using the STRING online database and analyzed by Cytoscape software, and 10 key target genes (AKT1, SRC, HSP90AA1, HRAS, MMP9, BCL2L1, IGF1, MAPK14, STAT1, and KDR) were obtained, which played an important role in the therapeutic effect of lycorine on GBM. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that lycorine acts on GBM by multiple pathways, including inducing apoptosis and reactive oxygen species production. The molecular docking results showed that lycorine had strong binding efficiency with the 10 key genes. In addition, we found that the use of lycorine-induced apoptosis in U-87 MG glioblastoma cells. Here, the mechanism of action of lycorine against GBM was elucidated and verified by experiments, which provided evidence support for its clinical application.


Asunto(s)
Alcaloides de Amaryllidaceae , Glioblastoma , Fenantridinas , Humanos , Simulación del Acoplamiento Molecular , Glioblastoma/tratamiento farmacológico , Farmacología en Red , Alcaloides de Amaryllidaceae/farmacología , Alcaloides de Amaryllidaceae/uso terapéutico
7.
Int J Nanomedicine ; 19: 4589-4605, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799695

RESUMEN

Background: Medical imaging modalities, such as magnetic resonance imaging (MRI), ultrasound, and fluorescence imaging, have gained widespread acceptance in clinical practice for tumor diagnosis. Each imaging modality has its own unique principles, advantages, and limitations, thus necessitating a multimodal approach for a comprehensive disease understanding of the disease process. To enhance diagnostic precision, physicians frequently integrate data from multiple imaging modalities, driving research advancements in multimodal imaging technology research. Methods: In this study, hematoporphyrin-poly (lactic acid) (HP-PLLA) polymer was prepared via ring-opening polymerization and thoroughly characterized using FT-IR, 1H-NMR, XRD, and TGA. HP-PLLA based nanoparticles encapsulating perfluoropentane (PFP) and salicylic acid were prepared via emulsion-solvent evaporation. Zeta potential and mean diameter were assessed using DLS and TEM. Biocompatibility was evaluated via cell migration, hemolysis, and cytotoxicity assays. Ultrasonic imaging was performed with a dedicated apparatus, while CEST MRI was conducted using a 7.0 T animal scanner. Results: We designed and prepared a novel dual-mode nanoimaging probe SA/PFP@HP-PLLA NPs. PFP enhanced US imaging, while salicylic acid bolstered CEST imaging. With an average size of 74.43 ± 1.12 nm, a polydispersity index of 0.175 ± 0.015, and a surface zeta potential of -64.1 ± 2.11 mV. These NPs exhibit excellent biocompatibility and stability. Both in vitro and in vivo experiments confirmed the SA/PFP@HP-PLLA NP's ability to improve tumor characterization and diagnostic precision. Conclusion: The SA/PFP@HP-PLLA NPs demonstrate promising dual-modality imaging capabilities, indicating their potential for preclinical and clinical use as a contrast agent.


Asunto(s)
Fluorocarburos , Hematoporfirinas , Imagen por Resonancia Magnética , Nanopartículas , Poliésteres , Ácido Salicílico , Fluorocarburos/química , Imagen por Resonancia Magnética/métodos , Animales , Poliésteres/química , Nanopartículas/química , Humanos , Ácido Salicílico/química , Ácido Salicílico/farmacocinética , Ácido Salicílico/administración & dosificación , Hematoporfirinas/química , Hematoporfirinas/farmacocinética , Hematoporfirinas/farmacología , Ratones , Ultrasonografía/métodos , Medios de Contraste/química , Medios de Contraste/farmacocinética , Línea Celular Tumoral , Imagen Multimodal/métodos , Pentanos
8.
Sensors (Basel) ; 13(8): 9896-908, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23917261

RESUMEN

A wireless passive high-temperature pressure sensor without evacuation channel fabricated in high-temperature co-fired ceramics (HTCC) technology is proposed. The properties of the HTCC material ensure the sensor can be applied in harsh environments. The sensor without evacuation channel can be completely gastight. The wireless data is obtained with a reader antenna by mutual inductance coupling. Experimental systems are designed to obtain the frequency-pressure characteristic, frequency-temperature characteristic and coupling distance. Experimental results show that the sensor can be coupled with an antenna at 600 °C and max distance of 2.8 cm at room temperature. The senor sensitivity is about 860 Hz/bar and hysteresis error and repeatability error are quite low.


Asunto(s)
Cerámica/química , Monitoreo del Ambiente/instrumentación , Sistemas Microelectromecánicos/instrumentación , Transductores de Presión , Tecnología Inalámbrica/instrumentación , Ecosistema , Diseño de Equipo , Análisis de Falla de Equipo , Miniaturización , Temperatura
9.
Future Microbiol ; 18: 911-916, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37584568

RESUMEN

HSV can evade host defenses and cause lifelong infection and severe illness. Lysosomes are catabolic organelles that play an important role in the regulation of cellular homeostasis. Lysosomal dysfunction and alterations in the process of autophagy have been identified in a variety of diseases, including HSV infection, and targeting lysosomes is a potential anti-HSV therapeutic strategy. This article reviews the role of lysosomes and lysosome-associated proteins in HSV infection, providing attractive targets and novel strategies for the treatment of HSV infection.


Asunto(s)
Autofagia , Lisosomas , Homeostasis , Lisosomas/metabolismo
10.
Naunyn Schmiedebergs Arch Pharmacol ; 396(6): 1247-1255, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36715733

RESUMEN

Glioma is an extremely aggressive primary brain tumor, which is highly resistant to chemotherapy, presenting a therapeutic challenge. Here, we explored the anti-glioma effects and the underlying mechanism of lycorine, an isoquinoline alkaloid isolated from lycoris on glioma cells. We found that lycorine could dose dependently inhibit C6 glioma cell growth and induce cell apoptosis and intracellular reactive oxygen species (ROS) production. The half-maximal inhibitory concentration (IC50) values of lycorine on C6 glioma cells at 48 h was 2.85 µM. Meanwhile, lycorine treatment caused dysfunction of the NF-κB signal, as demonstrated by the up-regulation of NF-κB inhibitor protein IκB and the downregulation of the NF-κB phosphorylation protein p-p65. The addition of NF-κB inhibitor SC75741 further confirmed the importance of the NF-κB pathway in lycorine-induced cell-growth inhibition. Moreover, lycorine might act synergically with temozolomide (TMZ) to reduce drug resistance by blocking the NF-κB pathway. Our study suggested that lycorine exerts an anti-glioma effect by inducing ROS production and inhibiting NF-κB, which validated that lycorine may be a potential candidate for glioma treatment alone or in combination with TMZ.


Asunto(s)
Glioma , FN-kappa B , Humanos , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Línea Celular Tumoral , Glioma/tratamiento farmacológico , Glioma/metabolismo , Glioma/patología , Temozolomida/farmacología , Temozolomida/uso terapéutico , Apoptosis
11.
Sci Rep ; 13(1): 1764, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36720950

RESUMEN

RNA-binding proteins (RBPs) are involved in the regulation of RNA splicing, stability, and localization. How RBPs control the development of atherosclerosis, is not fully understood. To explore the relevant RNA-binding proteins (RBPs) and alternative splicing events (ASEs) in atherosclerosis. We made a comprehensive work to integrate analyses of differentially expressed genes, including differential RBPs, and variable splicing characteristics related to different stages of atherosclerosis in dataset GSE104140. A total of 3712 differentially expressed genes (DEGs) were identified, including 2921 upregulated genes and 791 downregulated genes. Further analysis screened out 54 RBP genes, and 434 AS genes overlapped DEGs. We selected high expression ten RBP genes (SAMHD1, DDX60 L, TLR7, RBM47, MYEF2, RNASE6, PARP12, APOBEC3G, SMAD9, and RNASE1) for co-expression analysis. Meanwhile, we found seven regulated alternative splicing genes (RASGs) (ABI1, FXR1, CHID1, PLEC, PRKACB, BNIP2, PPP3CB) that could be regulated by RBPs. The co-expression network was used to further elucidate the regulatory and interaction relationship between RBPs and AS genes. Apoptotic process and innate immune response, revealed by the functional enrichment analysis of RASGs regulated by RBPs were closely related to atherosclerosis. In addition, 26 of the 344 alternative splicing genes regulated by the above 10 RBPs were transcription factors (TFs), We selected high expression nine TFs (TFDP1, RBBP7, STAT2, CREB5, ERG, ELF1, HMGN3, BCLAF1, and ZEB2) for co-expression analysis. The target genes of these TFs were mainly enriched in inflammatory and immune response pathways that were associated with atherosclerosis. indicating that AS abnormalities of these TFs may have a function in atherosclerosis. Furthermore, the expression of differentially expressed RBPs and the alternative splicing events of AS genes was validated by qRT-PCR in umbilical vein endothelial cells (HUVEC). The results showed that RBM47 were remarkedly difference in HUVEC treated with ox-LDL and the splicing ratio of AS in BCLAF1which is regulated by RBM47 significantly changed. In conclusion, the differentially expressed RBPs identified in our analysis may play important roles in the development of atherosclerosis by regulating the AS of these TF genes.


Asunto(s)
Empalme Alternativo , Aterosclerosis , Humanos , Aterosclerosis/genética , Células Endoteliales , Empalme del ARN , Transcriptoma
12.
Front Genet ; 14: 1293393, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38145212

RESUMEN

The obstructed coronary artery undergoes a series of pathological changes due to ischemic-hypoxic shocks during acute myocardial infarction (AMI). However, the altered DNA methylation levels in endothelial cells under these conditions and their implication for the etiopathology of AMI have not been investigated in detail. This study aimed to explore the relationship between DNA methylation and pathologically altered gene expression profile in human umbilical vein endothelial cells (HUVECs) subjected to oxygen-glucose deprivation (OGD), and its clinical implications in AMI patients. The Illumina Infinium MethylationEPIC BeadChip assay was used to explore the genome-wide DNA methylation profile using the Novaseq6000 platform for mRNA sequencing in 3 pairs of HUVEC-OGD and control samples. GO and KEGG pathway enrichment analyses, as well as correlation, causal inference test (CIT), and protein-protein interaction (PPI) analyses identified 22 hub genes that were validated by MethylTarget sequencing as well as qRT-PCR. ELISA was used to detect four target molecules associated with the progression of AMI. A total of 2,524 differentially expressed genes (DEGs) and 22,148 differentially methylated positions (DMPs) corresponding to 6,642 differentially methylated genes (DMGs) were screened (|Δß|>0.1 and detection p < 0.05). After GO, KEGG, correlation, CIT, and PPI analyses, 441 genes were filtered. qRT-PCR confirmed the overexpression of VEGFA, CCL2, TSP-1, SQSTM1, BCL2L11, and TIMP3 genes, and downregulation of MYC, CD44, BDNF, GNAQ, RUNX1, ETS1, NGFR, MME, SEMA6A, GNAI1, IFIT1, and MEIS1. DNA fragments BDNF_1_ (r = 0.931, p < 0.0001) and SQSTM1_2_NEW (r = 0.758, p = 0.0043) were positively correlated with the expressions of corresponding genes, and MYC_1_ (r = -0.8245, p = 0.001) was negatively correlated. Furthermore, ELISA confirmed TNFSF10 and BDNF were elevated in the peripheral blood of AMI patients (p = 0.0284 and p = 0.0142, respectively). Combined sequencing from in vitro cellular assays with clinical samples, aiming to establish the potential causal chain of the causal factor (DNA methylation) - mediator (mRNA)-cell outcome (endothelial cell ischemic-hypoxic injury)-clinical outcome (AMI), our study identified promising OGD-specific genes, which provided a solid basis for screening fundamental diagnostic and prognostic biomarkers of coronary endothelial cell injury of AMI. Moreover, it furnished the first evidence that during ischemia and hypoxia, the expression of BNDF was regulated by DNA methylation in endothelial cells and elevated in peripheral blood.

13.
J Biomater Appl ; 36(6): 1064-1075, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34338057

RESUMEN

Due to the low bioavailability and severe toxic side effects caused by the lack of selectivity of traditional chemotherapy drugs, the targeted delivery of chemotherapy drugs has become the key to tumor treatment. The activity and transmembrane potential of mitochondria in cancer cells were significantly higher than that of normal cells, making them a potential target for chemotherapeutic drug delivery. In this study, triphenylphosphine (TPP) based mitochondria targeting polylactic acid (PLLA) nanoparticles (TPP-PLLA NPs) were synthesized to improve the delivery efficiency of anticancer drugs. The carrier material was characterized by 1H NMR and FT-IR and 7-hydroxyl coumarin (7-HC) was successfully loaded into TPP-PLLA to form 7-HC/TPP-PLLA NPs. Further studies showed that TPP-PLLA NPs were primarily accumulated in the mitochondrial and 7-HC/TPP-PLLA NPs had higher antitumor activity. Taken together, our results indicated that TPP-PLLA NPs could be a promising mitochondria-targeted drug delivery system for cancer therapy.


Asunto(s)
Antineoplásicos , Nanopartículas , Antineoplásicos/química , Línea Celular Tumoral , Cumarinas , Portadores de Fármacos/farmacología , Sistemas de Liberación de Medicamentos , Mitocondrias , Nanopartículas/química , Compuestos Organofosforados , Poliésteres , Espectroscopía Infrarroja por Transformada de Fourier
14.
Cells ; 11(15)2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35954175

RESUMEN

At present, the barrier to HIV-1 functional cure is the persistence of HIV-1 reservoirs. The "shock (reversing latency) and kill (antiretroviral therapy)" strategy sheds light on reducing or eliminating the latent reservoir of HIV-1. However, the current limits of latency-reversing agents (LRAs) are their toxicity or side effects, which limit their practicability pharmacologically and immunologically. Our previous research found that HSF1 is a key transcriptional regulatory factor in the reversion of HIV-1 latency. We then constructed the in vitro HSF1-knockout (HSF1-KO) HIV-1 latency models and found that HSF1 depletion inhibited the reactivation ability of LRAs including salubrinal, carfizomib, bortezomib, PR-957 and resveratrol, respectively. Furthermore, bortezomib/carfizomib treatment induced the increase of heat shock elements (HSEs) activity after HSF1-KO, suggesting that HSEs participated in reversing the latent HIV-1. Subsequent investigation showed that latent HIV-1-reversal by H2O2-induced DNA damage was inhibited by PARP1 inhibitors, while PARP1 was unable to down-regulate HSF1-depleted HSE activity, indicating that PARP1 could serve as a replaceable protein for HSF1 in HIV-1 latent cells. In summary, we succeeded in finding the mechanisms by which HSF1 reactivates the latent HIV-1, which also provides a theoretical basis for the further development of LRAs that specifically target HSF1.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Bortezomib/farmacología , Linfocitos T CD4-Positivos/metabolismo , Infecciones por VIH/tratamiento farmacológico , VIH-1/fisiología , Respuesta al Choque Térmico , Humanos , Peróxido de Hidrógeno/farmacología , Poli(ADP-Ribosa) Polimerasa-1/farmacología , Factores de Transcripción/metabolismo , Activación Viral/genética , Latencia del Virus
15.
J Biomater Appl ; 36(4): 613-625, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33899561

RESUMEN

In this experiment, a new amphiphilic chitosan-poly(lactide) graft copolymer was synthesized and characterized by IR, 1H-NMR, XRD, TGA. The obtained chitosan-poly (lactide) graft copolymer was used as the matrix material to prepare nanodroplets (NDs) encapsulating with liquid PFP by double-emulsion and solvent evaporation method. The resulting NDs were characterized by photon correlation spectroscopy and transmission electron microscopy (TEM). The biocompatibility was explored by cytotoxicity assay, cell migration assay and blood biochemistry analysis. The experiments of ultrasonic imaging in vitro and in vivo were carried out with a B-mode clinical ultrasound imaging system. The results of FI-IR and 1H-NMR confirmed the successful grafting reaction of polylactic acid(PLLA) to chitosan with a graft rate of 365%. The average size of the NDs was 101.1 ± 2.7 nm, with the polydispersity index (PDI) of 0.127 ± 0.020, and the zeta potential was -31.8 ± 1.5 mV. From the TEM results, NDs were highly dispersed and had a spherical shape with a distinct capsule structure. The NDs exhibited good stability during storage at 4°C. The NDs solution with different concentrations did not affect cell growth and showed good biocompatibility in cytotoxicity, cell migration and blood biochemistry studies. Under the irradiation of ultrasonic waves, the NDs formed an ultrasonic high signal, which could significantly enhance the ultrasound imaging of tumor tissue in vivo. Taken together, the NDs hold great potential for ultrasound imaging as a nanosized contrast agent.


Asunto(s)
Quitosano/química , Nanopartículas/química , Poliésteres/química , Polímeros/química , Trasplantes , Ultrasonografía/métodos , Animales , Materiales Biocompatibles , Línea Celular Tumoral , Medios de Contraste/química , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Tamaño de la Partícula
16.
Eur J Pharmacol ; 892: 173782, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33279521

RESUMEN

Herpes simplex virus type 2 (HSV-2) is a highly contagious sexually transmitted virus. The increasing emergence of drug-resistant viral strains has highlighted the crucial need for the development of new anti-HSV-2 drugs with different mechanisms. Ion channels that govern a wide range of cellular functions represent attractive targets for viral manipulation. Here, we tried to identify novel compounds to suppress HSV-2 infection in vitro by screening a small library with ion channels modulators. We found that several T-type calcium channel blockers including benidipine, lercanidipine, lomerizine and mibefradil inhibited HSV-2 infection, while L-type calcium channel blockers nifedipine and nitrendipine showed no significant effect on HSV-2 infection. Furthermore, we found that benidipine exerted the antiviral effect by suppressing the expression of viral genes in the late stage of viral infection. In conclusion, our study suggested that T-type calcium channel blockers, which are clinically wide used, could effectively inhibit HSV-2 infection. These findings could shed light on the mechanism and pharmacological study for HSV-2 infection in the future.


Asunto(s)
Antivirales/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Herpes Genital/tratamiento farmacológico , Herpesvirus Humano 2/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , Canales de Calcio Tipo T/metabolismo , Chlorocebus aethiops , Dihidropiridinas/farmacología , Regulación Viral de la Expresión Génica/efectos de los fármacos , Células HeLa , Herpes Genital/metabolismo , Herpes Genital/virología , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/crecimiento & desarrollo , Interacciones Huésped-Patógeno , Humanos , Piperazinas/farmacología , Células Vero
17.
Biochem Pharmacol ; 171: 113691, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31704236

RESUMEN

Resveratrol is a natural compound found in many plant species that has broad therapeutic benefits. Here, we investigated the effects of resveratrol on the replication of HSV-2. We found that resveratrol accelerated replication of HSV-2 and increased release of progeny virion. A time-of-addition study suggested that resveratrol worked primarily in the early stage of viral infection. Resveratrol regulated HSV-2 infection by increasing histone acetylation and activating NF-κB. In addition, inhibition of CDK9 activity restrained the promoting effect of resveratrol on HSV-2 infection. Altogether, our experiments revealed the regulatory effect of resveratrol and its mechanism of action on HSV-2 replication.


Asunto(s)
Herpesvirus Humano 2/efectos de los fármacos , Histonas/metabolismo , FN-kappa B/metabolismo , Resveratrol/farmacología , Replicación Viral/efectos de los fármacos , Acetilación/efectos de los fármacos , Animales , Antioxidantes/química , Antioxidantes/farmacología , Chlorocebus aethiops , Regulación Viral de la Expresión Génica/efectos de los fármacos , Células HEK293 , Células HeLa , Herpesvirus Humano 2/genética , Herpesvirus Humano 2/fisiología , Interacciones Huésped-Patógeno , Humanos , Ratones , Células RAW 264.7 , Resveratrol/química , Células Vero , Proteínas del Envoltorio Viral/genética , Replicación Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA