RESUMEN
Metagenomics involves the study of genetic material obtained directly from communities of microorganisms living in natural environments. The field of metagenomics has provided valuable insights into the structure, diversity and ecology of microbial communities. Once an environmental sample is sequenced and processed, metagenomic binning clusters the sequences into bins representing different taxonomic groups such as species, genera, or higher levels. Several computational tools have been developed to automate the process of metagenomic binning. These tools have enabled the recovery of novel draft genomes of microorganisms allowing us to study their behaviors and functions within microbial communities. This review classifies and analyzes different approaches of metagenomic binning and different refinement, visualization, and evaluation techniques used by these methods. Furthermore, the review highlights the current challenges and areas of improvement present within the field of research.
Asunto(s)
Metagenómica , Metagenómica/métodos , Biología Computacional/métodos , Metagenoma , Algoritmos , Genómica/métodosRESUMEN
MOTIVATION: Microbial communities have a profound impact on both human health and various environments. Viruses infecting bacteria, known as bacteriophages or phages, play a key role in modulating bacterial communities within environments. High-quality phage genome sequences are essential for advancing our understanding of phage biology, enabling comparative genomics studies and developing phage-based diagnostic tools. Most available viral identification tools consider individual sequences to determine whether they are of viral origin. As a result of challenges in viral assembly, fragmentation of genomes can occur, and existing tools may recover incomplete genome fragments. Therefore, the identification and characterization of novel phage genomes remain a challenge, leading to the need of improved approaches for phage genome recovery. RESULTS: We introduce Phables, a new computational method to resolve phage genomes from fragmented viral metagenome assemblies. Phables identifies phage-like components in the assembly graph, models each component as a flow network, and uses graph algorithms and flow decomposition techniques to identify genomic paths. Experimental results of viral metagenomic samples obtained from different environments show that Phables recovers on average over 49% more high-quality phage genomes compared to existing viral identification tools. Furthermore, Phables can resolve variant phage genomes with over 99% average nucleotide identity, a distinction that existing tools are unable to make. AVAILABILITY AND IMPLEMENTATION: Phables is available on GitHub at https://github.com/Vini2/phables.
Asunto(s)
Bacteriófagos , Humanos , Bacteriófagos/genética , Genoma Viral , Genómica , Metagenoma , Metagenómica/métodos , Bacterias/genéticaRESUMEN
The coral holobiont is comprised of a highly diverse microbial community that provides key services to corals such as protection against pathogens and nutrient cycling. The coral surface mucus layer (SML) microbiome is very sensitive to external changes, as it constitutes the direct interface between the coral host and the environment. Here, we investigate whether the bacterial taxonomic and functional profiles in the coral SML are shaped by the local reef zone and explore their role in coral health and ecosystem functioning. The analysis was conducted using metagenomes and metagenome-assembled genomes (MAGs) associated with the coral Pseudodiploria strigosa and the water column from two naturally distinct reef environments in Bermuda: inner patch reefs exposed to a fluctuating thermal regime and the more stable outer reefs. The microbial community structure in the coral SML varied according to the local environment, both at taxonomic and functional levels. The coral SML microbiome from inner reefs provides more gene functions that are involved in nutrient cycling (e.g., photosynthesis, phosphorus metabolism, sulfur assimilation) and those that are related to higher levels of microbial activity, competition, and stress response. In contrast, the coral SML microbiome from outer reefs contained genes indicative of a carbohydrate-rich mucus composition found in corals exposed to less stressful temperatures and showed high proportions of microbial gene functions that play a potential role in coral disease, such as degradation of lignin-derived compounds and sulfur oxidation. The fluctuating environment in the inner patch reefs of Bermuda could be driving a more beneficial coral SML microbiome, potentially increasing holobiont resilience to environmental changes and disease.
Asunto(s)
Antozoos , Microbiota , Animales , Antozoos/microbiología , Ecosistema , Metagenoma , Arrecifes de Coral , Bacterias/genética , Bacterias/metabolismo , Microbiota/genética , Agua de Mar/microbiologíaRESUMEN
The epidermis of Chondrichthyan fishes consists of dermal denticles with production of minimal but protein-rich mucus that collectively, influence the attachment and biofilm development of microbes, facilitating a unique epidermal microbiome. Here, we use metagenomics to provide the taxonomic and functional characterization of the epidermal microbiome of the Triakis semifasciata (leopard shark) at three time-points collected across 4 years to identify links between microbial groups and host metabolism. Our aims include (1) describing the variation of microbiome taxa over time and identifying recurrent microbiome members (present across all time-points); (2) investigating the relationship between the recurrent and flexible taxa (those which are not found consistently across time-points); (3) describing the functional compositions of the microbiome which may suggest links with the host metabolism; and (4) identifying whether metabolic processes are shared across microbial genera or are unique to specific taxa. Microbial members of the microbiome showed high similarity between all individuals (Bray-Curtis similarity index = 82.7, where 0 = no overlap, 100 = total overlap) with the relative abundance of those members varying across sampling time-points, suggesting flexibility of taxa in the microbiome. One hundred and eighty-eight genera were identified as recurrent, including Pseudomonas, Erythrobacter, Alcanivorax, Marinobacter, and Sphingopxis being consistently abundant across time-points, while Limnobacter and Xyella exhibited switching patterns with high relative abundance in 2013, Sphingobium and Sphingomona in 2015, and Altermonas, Leeuwenhoekiella, Gramella, and Maribacter in 2017. Of the 188 genera identified as recurrent, the top 19 relatively abundant genera formed three recurrent groups. The microbiome also displayed high functional similarity between individuals (Bray-Curtis similarity index = 97.6) with gene function composition remaining consistent across all time-points. These results show that while the presence of microbial genera exhibits consistency across time-points, their abundances do fluctuate. Microbial functions however remain stable across time-points; thus, we suggest the leopard shark microbiomes exhibit functional redundancy. We show coexistence of microbes hosted in elasmobranch microbiomes that encode genes involved in utilizing nitrogen, but not fixing nitrogen, degrading urea, and resistant to heavy metal.
Asunto(s)
Microbiota , Tiburones , Animales , EpidermisRESUMEN
BACKGROUND: Bacteriophages encode genes that modify bacterial functions during infection. The acquisition of phage-encoded virulence genes is a major mechanism for the rise of bacterial pathogens. In coral reefs, high bacterial density and lysogeny has been proposed to exacerbate reef decline through the transfer of phage-encoded virulence genes. However, the functions and distribution of these genes in phage virions on the reef remain unknown. RESULTS: Here, over 28,000 assembled viral genomes from the free viral community in Atlantic and Pacific Ocean coral reefs were queried against a curated database of virulence genes. The diversity of virulence genes encoded in the viral genomes was tested for relationships with host taxonomy and bacterial density in the environment. These analyses showed that bacterial density predicted the profile of virulence genes encoded by phages. The Shannon diversity of virulence-encoding phages was negatively related with bacterial density, leading to dominance of fewer genes at high bacterial abundances. A statistical learning analysis showed that reefs with high microbial density were enriched in viruses encoding genes enabling bacterial recognition and invasion of metazoan epithelium. Over 60% of phages could not have their hosts identified due to limitations of host prediction tools; for those which hosts were identified, host taxonomy was not an indicator of the presence of virulence genes. CONCLUSIONS: This study described bacterial virulence factors encoded in the genomes of bacteriophages at the community level. The results showed that the increase in microbial densities that occurs during coral reef degradation is associated with a change in the genomic repertoire of bacteriophages, specifically in the diversity and distribution of bacterial virulence genes. This suggests that phages are implicated in the rise of pathogens in disturbed marine ecosystems.
Asunto(s)
Bacterias/genética , Bacteriófagos/genética , Genes Bacterianos , Factores de Virulencia/genética , Bacterias/patogenicidad , Arrecifes de Coral , Ecosistema , Genoma Viral , GenómicaRESUMEN
MOTIVATION: Currently there are no tools specifically designed for annotating genes in phages. Several tools are available that have been adapted to run on phage genomes, but due to their underlying design, they are unable to capture the full complexity of phage genomes. Phages have adapted their genomes to be extremely compact, having adjacent genes that overlap and genes completely inside of other longer genes. This non-delineated genome structure makes it difficult for gene prediction using the currently available gene annotators. Here we present PHANOTATE, a novel method for gene calling specifically designed for phage genomes. Although the compact nature of genes in phages is a problem for current gene annotators, we exploit this property by treating a phage genome as a network of paths: where open reading frames are favorable, and overlaps and gaps are less favorable, but still possible. We represent this network of connections as a weighted graph, and use dynamic programing to find the optimal path. RESULTS: We compare PHANOTATE to other gene callers by annotating a set of 2133 complete phage genomes from GenBank, using PHANOTATE and the three most popular gene callers. We found that the four programs agree on 82% of the total predicted genes, with PHANOTATE predicting more genes than the other three. We searched for these extra genes in both GenBank's non-redundant protein database and all of the metagenomes in the sequence read archive, and found that they are present at levels that suggest that these are functional protein-coding genes. AVAILABILITY AND IMPLEMENTATION: https://github.com/deprekate/PHANOTATE. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)
Bacteriófagos , Genoma Viral , Metagenoma , Sistemas de Lectura Abierta , Análisis de Secuencia de ADN , Programas InformáticosRESUMEN
BACKGROUND: Life in the ocean will increasingly have to contend with a complex matrix of concurrent shifts in environmental properties that impact their physiology and control their life histories. Rhodoliths are coralline red algae (Corallinales, Rhodophyta) that are photosynthesizers, calcifiers, and ecosystem engineers and therefore represent important targets for ocean acidification (OA) research. Here, we exposed live rhodoliths to near-future OA conditions to investigate responses in their photosynthetic capacity, calcium carbonate production, and associated microbiome using carbon uptake, decalcification assays, and whole genome shotgun sequencing metagenomic analysis, respectively. The results from our live rhodolith assays were compared to similar manipulations on dead rhodolith (calcareous skeleton) biofilms and water column microbial communities, thereby enabling the assessment of host-microbiome interaction under climate-driven environmental perturbations. RESULTS: Under high pCO2 conditions, live rhodoliths exhibited positive physiological responses, i.e. increased photosynthetic activity, and no calcium carbonate biomass loss over time. Further, whereas the microbiome associated with live rhodoliths remained stable and resembled a healthy holobiont, the microbial community associated with the water column changed after exposure to elevated pCO2. CONCLUSIONS: Our results suggest that a tightly regulated microbial-host interaction, as evidenced by the stability of the rhodolith microbiome recorded here under OA-like conditions, is important for host resilience to environmental stress. This study extends the scarce comprehension of microbes associated with rhodolith beds and their reaction to increased pCO2, providing a more comprehensive approach to OA studies by assessing the host holobiont.
Asunto(s)
Microbiota , Rhodophyta/microbiología , Biodiversidad , Concentración de Iones de Hidrógeno , Metagenoma , Microbiota/genética , Océanos y Mares , Fotosíntesis , Rhodophyta/metabolismo , Rhodophyta/fisiología , Agua de Mar/química , Agua de Mar/microbiología , Estrés FisiológicoRESUMEN
BACKGROUND: Microbiome/host interactions describe characteristics that affect the host's health. Shotgun metagenomics includes sequencing a random subset of the microbiome to analyze its taxonomic and metabolic potential. Reconstruction of DNA fragments into genomes from metagenomes (called metagenome-assembled genomes) assigns unknown fragments to taxa/function and facilitates discovery of novel organisms. Genome reconstruction incorporates sequence assembly and sorting of assembled sequences into bins, characteristic of a genome. However, the microbial community composition, including taxonomic and phylogenetic diversity may influence genome reconstruction. We determine the optimal reconstruction method for four microbiome projects that had variable sequencing platforms (IonTorrent and Illumina), diversity (high or low), and environment (coral reefs and kelp forests), using a set of parameters to select for optimal assembly and binning tools. METHODS: We tested the effects of the assembly and binning processes on population genome reconstruction using 105 marine metagenomes from 4 projects. Reconstructed genomes were obtained from each project using 3 assemblers (IDBA, MetaVelvet, and SPAdes) and 2 binning tools (GroopM and MetaBat). We assessed the efficiency of assemblers using statistics that including contig continuity and contig chimerism and the effectiveness of binning tools using genome completeness and taxonomic identification. RESULTS: We concluded that SPAdes, assembled more contigs (143,718 ± 124 contigs) of longer length (N50 = 1632 ± 108 bp), and incorporated the most sequences (sequences-assembled = 19.65%). The microbial richness and evenness were maintained across the assembly, suggesting low contig chimeras. SPAdes assembly was responsive to the biological and technological variations within the project, compared with other assemblers. Among binning tools, we conclude that MetaBat produced bins with less variation in GC content (average standard deviation: 1.49), low species richness (4.91 ± 0.66), and higher genome completeness (40.92 ± 1.75) across all projects. MetaBat extracted 115 bins from the 4 projects of which 66 bins were identified as reconstructed metagenome-assembled genomes with sequences belonging to a specific genus. We identified 13 novel genomes, some of which were 100% complete, but show low similarity to genomes within databases. CONCLUSIONS: In conclusion, we present a set of biologically relevant parameters for evaluation to select for optimal assembly and binning tools. For the tools we tested, SPAdes assembler and MetaBat binning tools reconstructed quality metagenome-assembled genomes for the four projects. We also conclude that metagenomes from microbial communities that have high coverage of phylogenetically distinct, and low taxonomic diversity results in highest quality metagenome-assembled genomes.
Asunto(s)
Genoma Microbiano , Metagenoma , Análisis de Secuencia de ADN/métodos , Algoritmos , Filogenia , Análisis de Secuencia de ADN/normas , Programas InformáticosRESUMEN
Holobionts are species-specific associations between macro- and microorganisms. On coral reefs, the benthic coverage of coral and algal holobionts varies due to natural and anthropogenic forcings. Different benthic macroorganisms are predicted to have specific microbiomes. In contrast, local environmental factors are predicted to select for specific metabolic pathways in microbes. To reconcile these two predictions, we hypothesized that adaptation of microbiomes to local conditions is facilitated by the horizontal transfer of genes responsible for specific metabolic capabilities. To test this hypothesis, microbial metagenomes were sequenced from 22 coral reefs at 11 Line Islands in the central Pacific that together span a wide range of biogeochemical and anthropogenic influences. Consistent with our hypothesis, the percent cover of major benthic functional groups significantly correlated with particular microbial taxa. Reefs with higher coral cover had a coral microbiome with higher abundances of Alphaproteobacteria (such as Rhodobacterales and Sphingomonadales), whereas microbiomes of algae-dominated reefs had higher abundances of Gammaproteobacteria (such as Alteromonadales, Pseudomonadales, and Vibrionales), Betaproteobacteria, and Bacteriodetes. In contrast to taxa, geography was the strongest predictor of microbial community metabolism. Microbial communities on reefs with higher nutrient availability (e.g., equatorial upwelling zones) were enriched in genes involved in nutrient-related metabolisms (e.g., nitrate and nitrite ammonification, Ton/Tol transport, etc.). On reefs further from the equator, microbes had more genes encoding chlorophyll biosynthesis and photosystems I/II. These results support the hypothesis that core microbiomes are determined by holobiont macroorganisms, and that those core taxa adapt to local conditions by selecting for advantageous metabolic genes.
Asunto(s)
Adaptación Fisiológica , Bacterias , Arrecifes de Coral , Transferencia de Gen Horizontal , Metagenoma , Microbiota , Contaminación del Agua , Bacterias/genética , Bacterias/metabolismo , Océano PacíficoRESUMEN
BACKGROUND: Vibrio cholerae is a globally dispersed pathogen that has evolved with humans for centuries, but also includes non-pathogenic environmental strains. Here, we identify the genomic variability underlying this remarkable persistence across the three major niche dimensions space, time, and habitat. RESULTS: Taking an innovative approach of genome-wide association applicable to microbial genomes (GWAS-M), we classify 274 complete V. cholerae genomes by niche, including 39 newly sequenced for this study with the Ion Torrent DNA-sequencing platform. Niche metadata were collected for each strain and analyzed together with comprehensive annotations of genetic and genomic attributes, including point mutations (single-nucleotide polymorphisms, SNPs), protein families, functions and prophages. CONCLUSIONS: Our analysis revealed that genomic variations, in particular mobile functions including phages, prophages, transposable elements, and plasmids underlie the metadata structuring in each of the three niche dimensions. This underscores the role of phages and mobile elements as the most rapidly evolving elements in bacterial genomes, creating local endemicity (space), leading to temporal divergence (time), and allowing the invasion of new habitats. Together, we take a data-driven approach for comparative functional genomics that exploits high-volume genome sequencing and annotation, in conjunction with novel statistical and machine learning analyses to identify connections between genotype and phenotype on a genome-wide scale.
Asunto(s)
Genoma Bacteriano , Vibrio cholerae/genética , Cólera/epidemiología , Cólera/microbiología , Elementos Transponibles de ADN , Microbiología Ambiental , Evolución Molecular , Variación Genética , Genotipo , Humanos , Anotación de Secuencia Molecular , Filogenia , Filogeografía , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Vibrio cholerae/aislamiento & purificaciónRESUMEN
Microbial activities shape the biogeochemistry of the planet and macroorganism health. Determining the metabolic processes performed by microbes is important both for understanding and for manipulating ecosystems (for example, disruption of key processes that lead to disease, conservation of environmental services, and so on). Describing microbial function is hampered by the inability to culture most microbes and by high levels of genomic plasticity. Metagenomic approaches analyse microbial communities to determine the metabolic processes that are important for growth and survival in any given environment. Here we conduct a metagenomic comparison of almost 15 million sequences from 45 distinct microbiomes and, for the first time, 42 distinct viromes and show that there are strongly discriminatory metabolic profiles across environments. Most of the functional diversity was maintained in all of the communities, but the relative occurrence of metabolisms varied, and the differences between metagenomes predicted the biogeochemical conditions of each environment. The magnitude of the microbial metabolic capabilities encoded by the viromes was extensive, suggesting that they serve as a repository for storing and sharing genes among their microbial hosts and influence global evolutionary and metabolic processes.
Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Ecosistema , Perfilación de la Expresión Génica , Genómica , Virus/genética , Virus/metabolismo , Animales , Antozoos/fisiología , Archaea/genética , Archaea/aislamiento & purificación , Archaea/metabolismo , Bacterias/aislamiento & purificación , Quimiotaxis/genética , Biología Computacional , Culicidae/fisiología , Peces/fisiología , Agua Dulce , Genoma Arqueal , Genoma Bacteriano , Genoma Viral , Microbiología , Agua de Mar , Virus/aislamiento & purificaciónRESUMEN
Coral reef health is tightly connected to the coral holobiont, which is the association between the coral animal and a diverse microbiome functioning as a unit. The coral holobiont depends on key services such as nitrogen and sulfur cycling mediated by the associated bacteria. However, these microbial services may be impaired in response to environmental changes, such as thermal stress. A perturbed microbiome may lead to coral bleaching and disease outbreaks, which have caused an unprecedented loss in coral cover worldwide, particularly correlated to a warming ocean. The response mechanisms of the coral holobiont under high temperatures are not completely understood, but the associated microbial community is a potential source of acquired heat-tolerance. Here we investigate the effects of increased temperature on the taxonomic and functional profiles of coral surface mucous layer (SML) microbiomes in relationship to coral-algal physiology. We used shotgun metagenomics in an experimental setting to understand the dynamics of microbial taxa and genes in the SML microbiome of the coral Pseudodiploria strigosa under heat treatment. The metagenomes of corals exposed to heat showed high similarity at the level of bacterial genera and functional genes related to nitrogen and sulfur metabolism and stress response. The coral SML microbiome responded to heat with an increase in the relative abundance of taxa with probiotic potential, and functional genes for nitrogen and sulfur acquisition. Coral-algal physiology significantly explained the variation in the microbiome at taxonomic and functional levels. These consistent and specific microbial taxa and gene functions that significantly increased in proportional abundance in corals exposed to heat are potentially beneficial to coral health and thermal resistance.
RESUMEN
Species identification following shark-related incidents is critical for effective incident management and for collecting data to inform shark-bite mitigation strategies. Witness statements are not always reliable, and species identification is often ambiguous or missing. Alternative methods for species identification include morphological assessments of bite marks, analysis of collected teeth at the scene of the incident, and genetic approaches. However, access to appropriate collection media and robust genetic assays have limited the use of genetic technologies. Here, we present a case study that facilitated a unique opportunity to compare the effectiveness of medical gauze readily available in first-aid kits, and forensic-grade swabs in collecting genetic material for shark-species identification. Sterile medical gauze and forensic-grade swabs were used to collect transfer DNA from the bite margins on a bitten surf ski which were compared to a piece of shark tissue embedded along the bite margin. Witness accounts and the characteristics of the bite mark impressions inferred the involvement of a Carcharodon carcharias (white shark). The morphology of a tooth found on the boat that picked up the surf ski, however, suggested it belonged to an Orectolobus spp. (wobbegong). Genetic analysis of DNA transferred from the shark to the surf ski included the application of a broad-target nested PCR assay followed by Sanger sequencing, with white shark contribution to the 'total sample DNA' determined with a species-specific qPCR assay. The results of the genetic analyses were congruent between sampling methods with respect to species identification and the level of activity inferred by the donor-specific DNA contribution. These data also supported the inferences drawn from the bite mark morphology. DNA from the recovered tooth was PCR amplified with a wobbegong-specific primer pair designed for this study to corroborate the tooth's morphological identification. Following the confirmation of gauze used for sampling in the case study event, two additional isolated incidents occurred and were sampled in situ using gauze, as typically found in a first-aid kit, by external personnel. DNA extracted from these gauze samples resulted in the identification of a white shark as the donor of the DNA collected from the bite marks in both instances. This study, involving three incidents separated by time and location, represents the seminal application of gauze as a sampling media after critical human-shark interactions and strongly supports the practical implementation of these methods in the field.
Asunto(s)
Mordeduras y Picaduras , ADN , Tiburones , Tiburones/genética , Animales , ADN/genética , Humanos , Especificidad de la Especie , Manejo de Especímenes , Reacción en Cadena de la Polimerasa , Dermatoglifia del ADN , Diente/químicaRESUMEN
BACKGROUND: Modern sequencing technologies offer extraordinary opportunities for virus discovery and virome analysis. Annotation of viral sequences from metagenomic data requires a complex series of steps to ensure accurate annotation of individual reads and assembled contigs. In addition, varying study designs will require project-specific statistical analyses. FINDINGS: Here we introduce Hecatomb, a bioinformatic platform coordinating commonly used tasks required for virome analysis. Hecatomb means "a great sacrifice." In this setting, Hecatomb is "sacrificing" false-positive viral annotations using extensive quality control and tiered-database searches. Hecatomb processes metagenomic data obtained from both short- and long-read sequencing technologies, providing annotations to individual sequences and assembled contigs. Results are provided in commonly used data formats useful for downstream analysis. Here we demonstrate the functionality of Hecatomb through the reanalysis of a primate enteric and a novel coral reef virome. CONCLUSION: Hecatomb provides an integrated platform to manage many commonly used steps for virome characterization, including rigorous quality control, host removal, and both read- and contig-based analysis. Each step is managed using the Snakemake workflow manager with dependency management using Conda. Hecatomb outputs several tables properly formatted for immediate use within popular data analysis and visualization tools, enabling effective data interpretation for a variety of study designs. Hecatomb is hosted on GitHub (github.com/shandley/hecatomb) and is available for installation from Bioconda and PyPI.
Asunto(s)
Metagenómica , Programas Informáticos , Metagenómica/métodos , Viroma/genética , Virus/genética , Virus/clasificación , Animales , Biología Computacional/métodos , Genoma Viral , MetagenomaRESUMEN
Twelve Bifidobacterium strains were isolated from fecal samples of inflammatory bowel disease patients and matched "household control" individuals. These include the species Bifidobacterium adolescentis, Bifidobacterium animalis, Bifidobacterium breve, Bifidobacterium catenulatum, Bifidobacterium longum, and Bifidobacterium pseudocatenulatum.
RESUMEN
Despite mounting evidence of their importance in human health and ecosystem functioning, the definition and measurement of 'healthy microbiomes' remain unclear. More advanced knowledge exists on health associations for compounds used or produced by microbes. Environmental microbiome exposures (especially via soils) also help shape, and may supplement, the functional capacity of human microbiomes. Given the synchronous interaction between microbes, their feedstocks, and micro-environments, with functional genes facilitating chemical transformations, our objective was to examine microbiomes in terms of their capacity to process compounds relevant to human health. Here we integrate functional genomics and biochemistry frameworks to derive new quantitative measures of in silico potential for human gut and environmental soil metagenomes to process a panel of major compound classes (e.g., lipids, carbohydrates) and selected biomolecules (e.g., vitamins, short-chain fatty acids) linked to human health. Metagenome functional potential profile data were translated into a universal compound mapping 'landscape' based on bioenergetic van Krevelen mapping of function-level meta-compounds and corresponding functional relative abundances, reflecting imprinted genetic capacity of microbiomes to metabolize an array of different compounds. We show that measures of 'compound processing potential' associated with human health and disease (examining atherosclerotic cardiovascular disease, colorectal cancer, type 2 diabetes and anxious-depressive behavior case studies), and displayed seemingly predictable shifts along gradients of ecological disturbance in plant-soil ecosystems (three case studies). Ecosystem quality explained 60-92 % of variation in soil metagenome compound processing potential measures in a post-mining restoration case study dataset. With growing knowledge of the varying proficiency of environmental microbiota to process human health associated compounds, we might design environmental interventions or nature prescriptions to modulate our exposures, thereby advancing microbiota-oriented approaches to human health. Compound processing potential offers a simplified, integrative approach for applying metagenomics in ongoing efforts to understand and quantify the role of microbiota in environmental- and human-health.
Asunto(s)
Microbioma Gastrointestinal , Metagenoma , Microbiología del Suelo , Humanos , Microbiota , Metabolismo Energético , Suelo/químicaRESUMEN
Phages dominate every ecosystem on the planet. While virulent phages sculpt the microbiome by killing their bacterial hosts, temperate phages provide unique growth advantages to their hosts through lysogenic conversion. Many prophages benefit their host, and prophages are responsible for genotypic and phenotypic differences that separate individual microbial strains. However, the microbes also endure a cost to maintain those phages: additional DNA to replicate and proteins to transcribe and translate. We have never quantified those benefits and costs. Here, we analysed over two and a half million prophages from over half a million bacterial genome assemblies. Analysis of the whole dataset and a representative subset of taxonomically diverse bacterial genomes demonstrated that the normalised prophage density was uniform across all bacterial genomes above 2 Mbp. We identified a constant carrying capacity of phage DNA per bacterial DNA. We estimated that each prophage provides cellular services equivalent to approximately 2.4 % of the cell's energy or 0.9 ATP per bp per hour. We demonstrate analytical, taxonomic, geographic, and temporal disparities in identifying prophages in bacterial genomes that provide novel targets for identifying new phages. We anticipate that the benefits bacteria accrue from the presence of prophages balance the energetics involved in supporting prophages. Furthermore, our data will provide a new framework for identifying phages in environmental datasets, diverse bacterial phyla, and from different locations.
RESUMEN
Marine host-associated microbiomes are affected by a combination of species-specific (e.g., host ancestry, genotype) and habitat-specific features (e.g., environmental physiochemistry and microbial biogeography). The stingray epidermis provides a gradient of characteristics from high dermal denticles coverage with low mucus to reduce dermal denticles and high levels of mucus. Here we investigate the effects of host phylogeny and habitat by comparing the epidermal microbiomes of Myliobatis californica (bat rays) with a mucus rich epidermis, and Urobatis halleri (round rays) with a mucus reduced epidermis from two locations, Los Angeles and San Diego, California (a 150 km distance). We found that host microbiomes are species-specific and distinct from the water column, however composition of M. californica microbiomes showed more variability between individuals compared to U. halleri. The variability in the microbiome of M. californica caused the microbial taxa to be similar across locations, while U. halleri microbiomes were distinct across locations. Despite taxonomic differences, Shannon diversity is the same across the two locations in U. halleri microbiomes suggesting the taxonomic composition are locally adapted, but diversity is maintained by the host. Myliobatis californica and U. halleri microbiomes maintain functional similarity across Los Angeles and San Diego and each ray showed several unique functional genes. Myliobatis californica has a greater relative abundance of RNA Polymerase III-like genes in the microbiome than U. halleri, suggesting specific adaptations to a heavy mucus environment. Construction of Metagenome Assembled Genomes (MAGs) identified novel microbial species within Rhodobacteraceae, Moraxellaceae, Caulobacteraceae, Alcanivoracaceae and Gammaproteobacteria. All MAGs had a high abundance of active RNA processing genes, heavy metal, and antibiotic resistant genes, suggesting the stingray mucus supports high microbial growth rates, which may drive high levels of competition within the microbiomes increasing the antimicrobial properties of the microbes.
RESUMEN
Microbial communities influence both human health and different environments. Viruses infecting bacteria, known as bacteriophages or phages, play a key role in modulating bacterial communities within environments. High-quality phage genome sequences are essential for advancing our understanding of phage biology, enabling comparative genomics studies, and developing phage-based diagnostic tools. Most available viral identification tools consider individual sequences to determine whether they are of viral origin. As a result of the challenges in viral assembly, fragmentation of genomes can occur, leading to the need for new approaches in viral identification. Therefore, the identification and characterisation of novel phages remain a challenge. We introduce Phables, a new computational method to resolve phage genomes from fragmented viral metagenome assemblies. Phables identifies phage-like components in the assembly graph, models each component as a flow network, and uses graph algorithms and flow decomposition techniques to identify genomic paths. Experimental results of viral metagenomic samples obtained from different environments show that Phables recovers on average over 49% more high-quality phage genomes compared to existing viral identification tools. Furthermore, Phables can resolve variant phage genomes with over 99% average nucleotide identity, a distinction that existing tools are unable to make. Phables is available on GitHub at https://github.com/Vini2/phables.
RESUMEN
Bacteroides, the prominent bacteria in the human gut, play a crucial role in degrading complex polysaccharides. Their abundance is influenced by phages belonging to the Crassvirales order. Despite identifying over 600 Crassvirales genomes computationally, only few have been successfully isolated. Continued efforts in isolation of more Crassvirales genomes can provide insights into phage-host-evolution and infection mechanisms. We focused on wastewater samples, as potential sources of phages infecting various Bacteroides hosts. Sequencing, assembly, and characterization of isolated phages revealed 14 complete genomes belonging to three novel Crassvirales species infecting Bacteroides cellulosilyticus WH2. These species, Kehishuvirus sp. 'tikkala' strain Bc01, Kolpuevirus sp. 'frurule' strain Bc03, and 'Rudgehvirus jaberico' strain Bc11, spanned two families, and three genera, displaying a broad range of virion productions. Upon testing all successfully cultured Crassvirales species and their respective bacterial hosts, we discovered that they do not exhibit co-evolutionary patterns with their bacterial hosts. Furthermore, we observed variations in gene similarity, with greater shared similarity observed within genera. However, despite belonging to different genera, the three novel species shared a unique structural gene that encodes the tail spike protein. When investigating the relationship between this gene and host interaction, we discovered evidence of purifying selection, indicating its functional importance. Moreover, our analysis demonstrated that this tail spike protein binds to the TonB-dependent receptors present on the bacterial host surface. Combining these observations, our findings provide insights into phage-host interactions and present three Crassvirales species as an ideal system for controlled infectivity experiments on one of the most dominant members of the human enteric virome. Impact statement: Bacteriophages play a crucial role in shaping microbial communities within the human gut. Among the most dominant bacteriophages in the human gut microbiome are Crassvirales phages, which infect Bacteroides. Despite being widely distributed, only a few Crassvirales genomes have been isolated, leading to a limited understanding of their biology, ecology, and evolution. This study isolated and characterized three novel Crassvirales genomes belonging to two different families, and three genera, but infecting one bacterial host, Bacteroides cellulosilyticus WH2. Notably, the observation confirmed the phages are not co-evolving with their bacterial hosts, rather have a shared ability to exploit similar features in their bacterial host. Additionally, the identification of a critical viral protein undergoing purifying selection and interacting with the bacterial receptors opens doors to targeted therapies against bacterial infections. Given Bacteroides role in polysaccharide degradation in the human gut, our findings advance our understanding of the phage-host interactions and could have important implications for the development of phage-based therapies. These discoveries may hold implications for improving gut health and metabolism to support overall well-being. Data summary: The genomes used in this research are available on Sequence Read Archive (SRA) within the project, PRJNA737576. Bacteroides cellulosilyticus WH2, Kehishuvirus sp. 'tikkala' strain Bc01, Kolpuevirus sp. ' frurule' strain Bc03, and 'Rudgehvirus jaberico' strain Bc11 are all available on GenBank with accessions NZ_CP072251.1 ( B. cellulosilyticus WH2), QQ198717 (Bc01), QQ198718 (Bc03), and QQ198719 (Bc11), and we are working on making the strains available through ATCC. The 3D protein structures for the three Crassvirales genomes are available to download at doi.org/10.25451/flinders.21946034.