RESUMEN
BACKGROUND AND PURPOSE: Cerebral microbleeds (CMBs), markers of small vessel disease are frequent in ischemic stroke, yet the association with acute symptomatic seizures (ASS) has not been well characterized. METHODS: A retrospective cohort of hospitalized patients with anterior circulation ischemic stroke. The association of CMBs with acute symptomatic seizures was assessed using a logistic regression model and causal mediation analysis. RESULTS: Of 381 patients, 17 developed seizures. Compared with patients without CMBs, those with CMBs had a three-fold higher unadjusted odds of seizures (unadjusted OR: 3.84, 95% 1.16-12.71, pâ¯=â¯0.027). After adjusting for confounders such as stroke severity, cortical infarct location, and hemorrhagic transformation, the association between CMBs and ASS was attenuated (adjusted OR: 3.11, 95%CI: 0.74-11.03, pâ¯=â¯0.09). The association was not mediated by stroke severity. CONCLUSION: In this cohort of hospitalized patients with anterior circulation ischemic stroke, CMBs were more likely to be found in patients with ASS than those without ASS, an association that was attenuated when accounting for stroke severity, cortical infarct location, and hemorrhagic transformation. Evaluation of the long-term risk of seizures associated with CMBs and other markers of small vessel disease is warranted.
Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Isquemia Encefálica/complicaciones , Hemorragia Cerebral/complicaciones , Infarto/complicaciones , Imagen por Resonancia Magnética , Estudios Retrospectivos , Convulsiones/complicaciones , Accidente Cerebrovascular/complicacionesRESUMEN
Amyloid ß oligomers (AßOs) accumulate early in Alzheimer's disease (AD) and experimentally cause memory dysfunction and the major pathologies associated with AD, for example, tau abnormalities, synapse loss, oxidative damage, and cognitive dysfunction. In order to develop the most effective AßO-targeting diagnostics and therapeutics, the AßO structures contributing to AD-associated toxicity must be elucidated. Here, we investigate the structural properties and pathogenic relevance of AßOs stabilized by the bifunctional crosslinker 1,5-difluoro-2,4-dinitrobenzene (DFDNB). We find that DFDNB stabilizes synthetic Aß in a soluble oligomeric conformation. With DFDNB, solutions of Aß that would otherwise convert to large aggregates instead yield solutions of stable AßOs, predominantly in the 50-300 kDa range, that are maintained for at least 12 days at 37°C. Structures were determined by biochemical and native top-down mass spectrometry analyses. Assayed in neuronal cultures and i.c.v.-injected mice, the DFDNB-stabilized AßOs were found to induce tau hyperphosphorylation, inhibit choline acetyltransferase, and provoke neuroinflammation. Most interestingly, DFDNB crosslinking was found to stabilize an AßO conformation particularly potent in inducing memory dysfunction in mice. Taken together, these data support the utility of DFDNB crosslinking as a tool for stabilizing pathogenic AßOs in structure-function studies.
Asunto(s)
Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/química , Reactivos de Enlaces Cruzados/farmacología , Neuronas/patología , Animales , Humanos , Ratones , RatasRESUMEN
Brain accumulation of soluble oligomers of the amyloid-ß peptide (AßOs) is increasingly considered a key early event in the pathogenesis of Alzheimer's disease (AD). A variety of AßO species have been identified, both in vitro and in vivo, ranging from dimers to 24mers and higher order oligomers. However, there is no consensus in the literature regarding which AßO species are most germane to AD pathogenesis. Antibodies capable of specifically recognizing defined subpopulations of AßOs would be a valuable asset in the identification, isolation, and characterization of AD-relevant AßO species. Here, we report the characterization of a human single chain antibody fragment (scFv) denoted NUsc1, one of a number of scFvs we have identified that stringently distinguish AßOs from both monomeric and fibrillar Aß. NUsc1 readily detected AßOs previously bound to dendrites in cultured hippocampal neurons. In addition, NUsc1 blocked AßO binding and reduced AßO-induced neuronal oxidative stress and tau hyperphosphorylation in cultured neurons. NUsc1 further distinguished brain extracts from AD-transgenic mice from wild type (WT) mice, and detected endogenous AßOs in fixed AD brain tissue and AD brain extracts. Biochemical analyses indicated that NUsc1 targets a subpopulation of AßOs with apparent molecular mass greater than 50 kDa. Results indicate that NUsc1 targets a particular AßO species relevant to AD pathogenesis, and suggest that NUsc1 may constitute an effective tool for AD diagnostics and therapeutics.
RESUMEN
Toxic amyloid beta oligomers (AßOs) are known to accumulate in Alzheimer's disease (AD) and in animal models of AD. Their structure is heterogeneous, and they are found in both intracellular and extracellular milieu. When given to CNS cultures or injected ICV into non-human primates and other non-transgenic animals, AßOs have been found to cause impaired synaptic plasticity, loss of memory function, tau hyperphosphorylation and tangle formation, synapse elimination, oxidative and ER stress, inflammatory microglial activation, and selective nerve cell death. Memory loss and pathology in transgenic models are prevented by AßO antibodies, while Aducanumab, an antibody that targets AßOs as well as fibrillar Aß, has provided cognitive benefit to humans in early clinical trials. AßOs have now been investigated in more than 3000 studies and are widely thought to be the major toxic form of Aß. Although much has been learned about the downstream mechanisms of AßO action, a major gap concerns the earliest steps: How do AßOs initially interact with surface membranes to generate neuron-damaging transmembrane events? Findings from Ohnishi et al (PNAS 2005) combined with new results presented here are consistent with the hypothesis that AßOs act as neurotoxins because they attach to particular membrane protein docks containing Na/K ATPase-α3, where they inhibit ATPase activity and pathologically restructure dock composition and topology in a manner leading to excessive Ca++ build-up. Better understanding of the mechanism that makes attachment of AßOs to vulnerable neurons a neurotoxic phenomenon should open the door to therapeutics and diagnostics targeting the first step of a complex pathway that leads to neural damage and dementia.
Asunto(s)
Enfermedad de Alzheimer/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Péptidos beta-Amiloides , Animales , Humanos , Sinapsis/metabolismoRESUMEN
Inflammatory activation precedes and correlates with accumulating τ lesions in Alzheimer's disease and tauopathies. However, the relationship between neuroinflammation and etiology of pathologic τ remains elusive. To evaluate whether inflammatory signaling may promote or accelerate neurofibrillary tangle pathology, we explored the effect of recombinant adeno-associated virus (rAAV)-mediated overexpression of a master inflammatory cytokine, IFN-γ, on τ phosphorylation. In initial studies in primary neuroglial cultures, rAAV-mediated expression of IFN-γ did not alter endogenous τ production or paired helical filament τ phosphorylation. Next, we tested the effect of rAAV-mediated expression of IFN-γ in the brains of 2 mouse models of tauopathy: JNPL3 and rTg4510. In both models, IFN-γ increased 1) signal transducer and activator of transcription 1 levels and gliosis, and 2) hyperphosphorylation and conformational alterations of soluble τ compared with control cohorts. However, sarkosyl-insoluble phosphorylated τ levels and ubiquitin staining were unaltered in the IFN-γ cohorts. Notably, IFN-γ-induced τ hyperphosphorylation was associated with release of the inhibitory effect of glycogen synthase kinase 3ß function by decreasing Ser9 phosphorylation. Our data suggest that type II IFN signaling can promote τ phosphorylation by modulating cellular kinase activity, though this is insufficient in accelerating neuritic tangle pathology.
Asunto(s)
Interferón gamma/metabolismo , Ovillos Neurofibrilares/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Dependovirus/genética , Activación Enzimática , Femenino , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Immunoblotting , Inmunohistoquímica , Interferón gamma/genética , Masculino , Ratones Endogámicos C3H , Ratones Transgénicos , Ovillos Neurofibrilares/genética , Neuroglía/metabolismo , Fosforilación , Factor de Transcripción STAT1/metabolismo , Transducción de Señal/genética , Tauopatías/genéticaRESUMEN
The architecture of the spinal cord makes efficient delivery of recombinant adeno-associated virus (rAAV) vectors throughout the neuraxis challenging. We describe a paradigm in which small amounts of virus delivered intraspinally to newborn mice result in robust rAAV-mediated transgene expression in the spinal cord. We compared the efficacy of rAAV2/1, 2/5, 2/8, and 2/9 encoding EGFP delivered to the hindlimb muscle (IM), cisterna magna (ICM), or lumbar spinal cord (IS) of neonatal pups. IS injection of all four capsids resulted in robust transduction of the spinal cord with rAAV2/5, 2/8, and 2/9 vectors appearing to be transported to brain. ICM injection resulted in widespread expression of EGFP in the brain, and upper spinal cord. IM injection resulted in robust muscle expression, with only rAAV2/8 and 2/9 transducing spinal motor and sensory neurons. As proof of concept, we use the IS paradigm to express murine Interleukin (IL)-10 in the spinal cord of the SOD1-G93A transgenic mouse model of amyotrophic lateral sclerosis. We show that expression of IL-10 in the spinal axis of SOD1-G93A mice altered the immune milieu and significantly prolonged survival. These data establish an efficient paradigm for somatic transgene delivery of therapeutic biologics to the spinal cord of mice.
Asunto(s)
Esclerosis Amiotrófica Lateral/terapia , Encéfalo/metabolismo , Dependovirus/genética , Terapia Genética/métodos , Médula Espinal/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Animales Recién Nacidos , Encéfalo/patología , Cápside/metabolismo , Cisterna Magna/metabolismo , Cisterna Magna/patología , Dependovirus/metabolismo , Expresión Génica , Genes Reporteros , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Inyecciones Espinales , Interleucina-10/genética , Interleucina-10/metabolismo , Ratones , Ratones Transgénicos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Médula Espinal/patología , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Transducción GenéticaRESUMEN
Hepatitis B virus (HBV) infection is a global public health concern. During chronic infection, the HBV small-surface antigen is expressed in large excess as non-infectious spherical subviral particles (SVPs), which possess strong immunogenicity. To date, attempts at understanding the structure of HBV spherical SVP have been restricted to 12-30 Å with contradictory conclusions regarding its architecture. We have used cryo-electron microscopy (cryo-EM) and 3D image reconstruction to solve the HBV spherical SVP to 6.3 Å. Here, we present an extended protocol on combining AlphaFold2 prediction with a moderate-resolution cryo-EM density map to build a reliable 3D model. This protocol utilizes multiple software packages that are routinely used in the cryo-EM community. The workflow includes 3D model prediction, model evaluation, rigid-body fitting, flexible fitting, real-space refinement, model validation, and model adjustment. Finally, the described protocol can also be applied to high-resolution cryo-EM datasets (2-4 Å).
RESUMEN
Canine parvovirus (CPV) is an important pathogen that emerged by cross-species transmission to cause severe disease in dogs. To understand the host immune response to vaccination, sera from dogs immunized with parvovirus are obtained, the polyclonal antibodies are purified and used to solve the high resolution cryo EM structures of the polyclonal Fab-virus complexes. We use a custom software, Icosahedral Subparticle Extraction and Correlated Classification (ISECC) to perform subparticle analysis and reconstruct polyclonal Fab-virus complexes from two different dogs eight and twelve weeks post vaccination. In the resulting polyclonal Fab-virus complexes there are a total of five distinct Fabs identified. In both cases, any of the five antibodies identified would interfere with receptor binding. This polyclonal mapping approach identifies a specific, limited immune response to the live vaccine virus and allows us to investigate the binding of multiple different antibodies or ligands to virus capsids.
Asunto(s)
Parvovirus Canino , Animales , Perros , Formación de Anticuerpos , Microscopía por Crioelectrón , Anticuerpos , Vacunación/veterinariaRESUMEN
Global eradication of poliovirus remains elusive, and it is critical to develop next generation vaccines and antivirals. In support of this goal, we map the epitope of human monoclonal antibody 9H2 which is able to neutralize the three serotypes of poliovirus. Using cryo-EM we solve the near-atomic structures of 9H2 fragments (Fab) bound to capsids of poliovirus serotypes 1, 2, and 3. The Fab-virus complexes show that Fab interacts with the same binding mode for each serotype and at the same angle of interaction relative to the capsid surface. For each of the Fab-virus complexes, we find that the binding site overlaps with the poliovirus receptor (PVR) binding site and maps across and into a depression in the capsid called the canyon. No conformational changes to the capsid are induced by Fab binding for any complex. Competition binding experiments between 9H2 and PVR reveal that 9H2 impedes receptor binding. Thus, 9H2 outcompetes the receptor to neutralize poliovirus. The ability to neutralize all three serotypes, coupled with the critical importance of the conserved receptor binding site make 9H2 an attractive antiviral candidate for future development.
Asunto(s)
Anticuerpos Monoclonales , Poliovirus , Humanos , Serogrupo , Proteínas de la Cápside/metabolismo , Sitios de Unión , Anticuerpos AntiviralesRESUMEN
Zika virus (ZIKV) is an emerging mosquito borne flavivirus and a major public health concern causing severe disease. Due to the presence of a lipid membrane and structural heterogeneity, attaining an atomic resolution structure is challenging, but important to understand virus assembly and life cycle mechanisms that offer distinct targets for therapeutic intervention. We here use subvolume refinement to achieve a 3.4 Å resolution structure and identify two distinct lipid moieties. The first arises from the inner leaflet and is coordinated by hydrophobic residues of the M and E transmembrane helices that form a binding pocket not previously characterized. The second lipid arises from the outer leaflet coordinate between two E protein helices. Structure-based mutagenesis identifies critical hydrophobic interactions and their effect on the virus life cycle. Results show that lipids play an essential role in the ZIKV assembly pathway revealing a potential target of lipid based antiviral drug development.
Asunto(s)
Ensamble de Virus/fisiología , Virus Zika/fisiología , Animales , Chlorocebus aethiops , Células HEK293 , Humanos , Células Vero , Virión/ultraestructura , Virus Zika/aislamiento & purificación , Virus Zika/ultraestructuraRESUMEN
Synaptopathy underlying memory deficits in Alzheimer's disease (AD) is increasingly thought to be instigated by toxic oligomers of the amyloid beta peptide (AßOs). Given the long latency and incomplete penetrance of AD dementia with respect to Aß pathology, we hypothesized that factors present in the CNS may physiologically protect neurons from the deleterious impact of AßOs. Here we employed physically separated neuron-astrocyte cocultures to investigate potential non-cell autonomous neuroprotective factors influencing AßO toxicity. Neurons cultivated in the absence of an astrocyte feeder layer showed abundant AßO binding to dendritic processes and associated synapse deterioration. In contrast, neurons in the presence of astrocytes showed markedly reduced AßO binding and synaptopathy. Results identified the protective factors released by astrocytes as insulin and insulin-like growth factor-1 (IGF1). The protective mechanism involved release of newly bound AßOs into the extracellular medium dependent upon trafficking that was sensitive to exosome pathway inhibitors. Delaying insulin treatment led to AßO binding that was no longer releasable. The neuroprotective potential of astrocytes was itself sensitive to chronic AßO exposure, which reduced insulin/IGF1 expression. Our findings support the idea that physiological protection against synaptotoxic AßOs can be mediated by astrocyte-derived insulin/IGF1, but that this protection itself is vulnerable to AßO buildup.
Asunto(s)
Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Astrocitos/fisiología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Enfermedad de Alzheimer/metabolismo , Animales , Astrocitos/metabolismo , Encéfalo/metabolismo , Células Cultivadas , Estimulantes del Sistema Nervioso Central , Humanos , Insulina/metabolismo , Neuronas/metabolismo , Fármacos Neuroprotectores/metabolismo , Ratas/embriología , Sinapsis/metabolismoRESUMEN
Anti-inflammatory strategies are proposed to have beneficial effects in Alzheimer's disease. To explore how anti-inflammatory cytokine signaling affects Aß pathology, we investigated the effects of adeno-associated virus (AAV2/1)-mediated expression of Interleukin (IL)-10 in the brains of APP transgenic mouse models. IL-10 expression resulted in increased Aß accumulation and impaired memory in APP mice. A focused transcriptome analysis revealed changes consistent with enhanced IL-10 signaling and increased ApoE expression in IL-10-expressing APP mice. ApoE protein was selectively increased in the plaque-associated insoluble cellular fraction, likely because of direct interaction with aggregated Aß in the IL-10-expressing APP mice. Ex vivo studies also show that IL-10 and ApoE can individually impair glial Aß phagocytosis. Our observations that IL-10 has an unexpected negative effect on Aß proteostasis and cognition in APP mouse models demonstrate the complex interplay between innate immunity and proteostasis in neurodegenerative diseases, an interaction we call immunoproteostasis.