Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 181(2): 219-222, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32302564

RESUMEN

Mounting evidence indicates that the nervous system plays a central role in cancer pathogenesis. In turn, cancers and cancer therapies can alter nervous system form and function. This Commentary seeks to describe the burgeoning field of "cancer neuroscience" and encourage multidisciplinary collaboration for the study of cancer-nervous system interactions.


Asunto(s)
Neoplasias/metabolismo , Sistema Nervioso/metabolismo , Humanos , Neurociencias
2.
Cell ; 179(6): 1330-1341.e13, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31761532

RESUMEN

Non-coding regions amplified beyond oncogene borders have largely been ignored. Using a computational approach, we find signatures of significant co-amplification of non-coding DNA beyond the boundaries of amplified oncogenes across five cancer types. In glioblastoma, EGFR is preferentially co-amplified with its two endogenous enhancer elements active in the cell type of origin. These regulatory elements, their contacts, and their contribution to cell fitness are preserved on high-level circular extrachromosomal DNA amplifications. Interrogating the locus with a CRISPR interference screening approach reveals a diversity of additional elements that impact cell fitness. The pattern of fitness dependencies mirrors the rearrangement of regulatory elements and accompanying rewiring of the chromatin topology on the extrachromosomal amplicon. Our studies indicate that oncogene amplifications are shaped by regulatory dependencies in the non-coding genome.


Asunto(s)
Cromosomas Humanos/genética , Elementos de Facilitación Genéticos , Amplificación de Genes , Oncogenes , Acetilación , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Supervivencia Celular/genética , Cromatina/metabolismo , ADN de Neoplasias/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Genes Relacionados con las Neoplasias , Sitios Genéticos , Glioblastoma/genética , Glioblastoma/patología , Histonas/metabolismo , Humanos , Neuroglía/metabolismo
3.
Cell ; 172(5): 1050-1062.e14, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29474906

RESUMEN

While the preponderance of morbidity and mortality in medulloblastoma patients are due to metastatic disease, most research focuses on the primary tumor due to a dearth of metastatic tissue samples and model systems. Medulloblastoma metastases are found almost exclusively on the leptomeningeal surface of the brain and spinal cord; dissemination is therefore thought to occur through shedding of primary tumor cells into the cerebrospinal fluid followed by distal re-implantation on the leptomeninges. We present evidence for medulloblastoma circulating tumor cells (CTCs) in therapy-naive patients and demonstrate in vivo, through flank xenografting and parabiosis, that medulloblastoma CTCs can spread through the blood to the leptomeningeal space to form leptomeningeal metastases. Medulloblastoma leptomeningeal metastases express high levels of the chemokine CCL2, and expression of CCL2 in medulloblastoma in vivo is sufficient to drive leptomeningeal dissemination. Hematogenous dissemination of medulloblastoma offers a new opportunity to diagnose and treat lethal disseminated medulloblastoma.


Asunto(s)
Meduloblastoma/irrigación sanguínea , Meduloblastoma/patología , Neoplasias Meníngeas/irrigación sanguínea , Neoplasias Meníngeas/secundario , Aloinjertos , Animales , Línea Celular Tumoral , Quimiocina CCL2/metabolismo , Cromosomas Humanos Par 10/genética , Femenino , Humanos , Masculino , Meduloblastoma/genética , Ratones SCID , Células Neoplásicas Circulantes , Parabiosis
4.
Cell ; 171(5): 1042-1056.e10, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29056344

RESUMEN

We present an extensive assessment of mutation burden through sequencing analysis of >81,000 tumors from pediatric and adult patients, including tumors with hypermutation caused by chemotherapy, carcinogens, or germline alterations. Hypermutation was detected in tumor types not previously associated with high mutation burden. Replication repair deficiency was a major contributing factor. We uncovered new driver mutations in the replication-repair-associated DNA polymerases and a distinct impact of microsatellite instability and replication repair deficiency on the scale of mutation load. Unbiased clustering, based on mutational context, revealed clinically relevant subgroups regardless of the tumors' tissue of origin, highlighting similarities in evolutionary dynamics leading to hypermutation. Mutagens, such as UV light, were implicated in unexpected cancers, including sarcomas and lung tumors. The order of mutational signatures identified previous treatment and germline replication repair deficiency, which improved management of patients and families. These data will inform tumor classification, genetic testing, and clinical trial design.


Asunto(s)
Neoplasias/genética , Adulto , Niño , Análisis por Conglomerados , ADN Polimerasa II/genética , ADN Polimerasa III/genética , Replicación del ADN , Humanos , Mutación , Neoplasias/clasificación , Neoplasias/patología , Neoplasias/terapia , Proteínas de Unión a Poli-ADP-Ribosa/genética
5.
Cell ; 163(6): 1515-26, 2015 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-26627737

RESUMEN

The ability to perturb genes in human cells is crucial for elucidating gene function and holds great potential for finding therapeutic targets for diseases such as cancer. To extend the catalog of human core and context-dependent fitness genes, we have developed a high-complexity second-generation genome-scale CRISPR-Cas9 gRNA library and applied it to fitness screens in five human cell lines. Using an improved Bayesian analytical approach, we consistently discover 5-fold more fitness genes than were previously observed. We present a list of 1,580 human core fitness genes and describe their general properties. Moreover, we demonstrate that context-dependent fitness genes accurately recapitulate pathway-specific genetic vulnerabilities induced by known oncogenes and reveal cell-type-specific dependencies for specific receptor tyrosine kinases, even in oncogenic KRAS backgrounds. Thus, rigorous identification of human cell line fitness genes using a high-complexity CRISPR-Cas9 library affords a high-resolution view of the genetic vulnerabilities of a cell.


Asunto(s)
Genes Esenciales , Teorema de Bayes , Sistemas CRISPR-Cas , Línea Celular Tumoral , Técnicas de Inactivación de Genes , Biblioteca de Genes , Humanos , Mutación
6.
Nature ; 632(8025): 603-613, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38987604

RESUMEN

A broad range of brain pathologies critically relies on the vasculature, and cerebrovascular disease is a leading cause of death worldwide. However, the cellular and molecular architecture of the human brain vasculature remains incompletely understood1. Here we performed single-cell RNA sequencing analysis of 606,380 freshly isolated endothelial cells, perivascular cells and other tissue-derived cells from 117 samples, from 68 human fetuses and adult patients to construct a molecular atlas of the developing fetal, adult control and diseased human brain vasculature. We identify extensive molecular heterogeneity of the vasculature of healthy fetal and adult human brains and across five vascular-dependent central nervous system (CNS) pathologies, including brain tumours and brain vascular malformations. We identify alteration of arteriovenous differentiation and reactivated fetal as well as conserved dysregulated genes and pathways in the diseased vasculature. Pathological endothelial cells display a loss of CNS-specific properties and reveal an upregulation of MHC class II molecules, indicating atypical features of CNS endothelial cells. Cell-cell interaction analyses predict substantial endothelial-to-perivascular cell ligand-receptor cross-talk, including immune-related and angiogenic pathways, thereby revealing a central role for the endothelium within brain neurovascular unit signalling networks. Our single-cell brain atlas provides insights into the molecular architecture and heterogeneity of the developing, adult/control and diseased human brain vasculature and serves as a powerful reference for future studies.


Asunto(s)
Neoplasias Encefálicas , Encéfalo , Malformaciones Vasculares del Sistema Nervioso Central , Células Endoteliales , Feto , RNA-Seq , Análisis de Expresión Génica de una Sola Célula , Femenino , Humanos , Masculino , Encéfalo/irrigación sanguínea , Encéfalo/patología , Encéfalo/embriología , Encéfalo/metabolismo , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/patología , Comunicación Celular , Células Endoteliales/metabolismo , Células Endoteliales/patología , Células Endoteliales/citología , Feto/irrigación sanguínea , Feto/citología , Feto/embriología , Malformaciones Vasculares del Sistema Nervioso Central/patología , Antígenos HLA-D/metabolismo , Adulto , Salud
7.
EMBO J ; 43(2): 196-224, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177502

RESUMEN

Ion channels, transporters, and other ion-flux controlling proteins, collectively comprising the "ion permeome", are common drug targets, however, their roles in cancer remain understudied. Our integrative pan-cancer transcriptome analysis shows that genes encoding the ion permeome are significantly more often highly expressed in specific subsets of cancer samples, compared to pan-transcriptome expectations. To enable target selection, we identified 410 survival-associated IP genes in 33 cancer types using a machine-learning approach. Notably, GJB2 and SCN9A show prominent expression in neoplastic cells and are associated with poor prognosis in glioblastoma, the most common and aggressive brain cancer. GJB2 or SCN9A knockdown in patient-derived glioblastoma cells induces transcriptome-wide changes involving neuron projection and proliferation pathways, impairs cell viability and tumor sphere formation in vitro, perturbs tunneling nanotube dynamics, and extends the survival of glioblastoma-bearing mice. Thus, aberrant activation of genes encoding ion transport proteins appears as a pan-cancer feature defining tumor heterogeneity, which can be exploited for mechanistic insights and therapy development.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Animales , Ratones , Glioblastoma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Transcriptoma , Transporte Iónico/genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Canal de Sodio Activado por Voltaje NAV1.7/genética
9.
Nature ; 609(7929): 1021-1028, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36131014

RESUMEN

Medulloblastoma (MB) comprises a group of heterogeneous paediatric embryonal neoplasms of the hindbrain with strong links to early development of the hindbrain1-4. Mutations that activate Sonic hedgehog signalling lead to Sonic hedgehog MB in the upper rhombic lip (RL) granule cell lineage5-8. By contrast, mutations that activate WNT signalling lead to WNT MB in the lower RL9,10. However, little is known about the more commonly occurring group 4 (G4) MB, which is thought to arise in the unipolar brush cell lineage3,4. Here we demonstrate that somatic mutations that cause G4 MB converge on the core binding factor alpha (CBFA) complex and mutually exclusive alterations that affect CBFA2T2, CBFA2T3, PRDM6, UTX and OTX2. CBFA2T2 is expressed early in the progenitor cells of the cerebellar RL subventricular zone in Homo sapiens, and G4 MB transcriptionally resembles these progenitors but are stalled in developmental time. Knockdown of OTX2 in model systems relieves this differentiation blockade, which allows MB cells to spontaneously proceed along normal developmental differentiation trajectories. The specific nature of the split human RL, which is destined to generate most of the neurons in the human brain, and its high level of susceptible EOMES+KI67+ unipolar brush cell progenitor cells probably predisposes our species to the development of G4 MB.


Asunto(s)
Diferenciación Celular , Neoplasias Cerebelosas , Meduloblastoma , Metencéfalo , Diferenciación Celular/genética , Linaje de la Célula , Neoplasias Cerebelosas/clasificación , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Cerebelo/embriología , Cerebelo/patología , Subunidades alfa del Factor de Unión al Sitio Principal/genética , Proteínas Hedgehog/metabolismo , Histona Demetilasas , Humanos , Antígeno Ki-67/metabolismo , Meduloblastoma/clasificación , Meduloblastoma/genética , Meduloblastoma/patología , Metencéfalo/embriología , Metencéfalo/patología , Proteínas Musculares , Mutación , Factores de Transcripción Otx/deficiencia , Factores de Transcripción Otx/genética , Proteínas Represoras , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción
10.
Genes Dev ; 33(9-10): 498-510, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30842215

RESUMEN

Developmental signal transduction pathways act diversely, with context-dependent roles across systems and disease types. Glioblastomas (GBMs), which are the poorest prognosis primary brain cancers, strongly resemble developmental systems, but these growth processes have not been exploited therapeutically, likely in part due to the extreme cellular and genetic heterogeneity observed in these tumors. The role of Wnt/ßcatenin signaling in GBM stem cell (GSC) renewal and fate decisions remains controversial. Here, we report context-specific actions of Wnt/ßcatenin signaling in directing cellular fate specification and renewal. A subset of primary GBM-derived stem cells requires Wnt proteins for self-renewal, and this subset specifically relies on Wnt/ßcatenin signaling for enhanced tumor burden in xenograft models. In an orthotopic Wnt reporter model, Wnthi GBM cells (which exhibit high levels of ßcatenin signaling) are a faster-cycling, highly self-renewing stem cell pool. In contrast, Wntlo cells (with low levels of signaling) are slower cycling and have decreased self-renewing potential. Dual inhibition of Wnt/ßcatenin and Notch signaling in GSCs that express high levels of the proneural transcription factor ASCL1 leads to robust neuronal differentiation and inhibits clonogenic potential. Our work identifies new contexts for Wnt modulation for targeting stem cell differentiation and self-renewal in GBM heterogeneity, which deserve further exploration therapeutically.


Asunto(s)
Diferenciación Celular/genética , Células Madre Neoplásicas/citología , Transducción de Señal , Línea Celular Tumoral , Autorrenovación de las Células/genética , Regulación Neoplásica de la Expresión Génica/genética , Glioblastoma/fisiopatología , Humanos , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
11.
Development ; 150(13)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37381820

RESUMEN

Cerebellar granule neurons (CGNs) are the most abundant neurons in the human brain. Dysregulation of their development underlies movement disorders and medulloblastomas. It is suspected that these disorders arise in progenitor states of the CGN lineage, for which human models are lacking. Here, we have differentiated human hindbrain neuroepithelial stem (hbNES) cells to CGNs in vitro using soluble growth factors, recapitulating key progenitor states in the lineage. We show that hbNES cells are not lineage committed and retain rhombomere 1 regional identity. Upon differentiation, hbNES cells transit through a rhombic lip (RL) progenitor state at day 7, demonstrating human specific sub-ventricular cell identities. This RL state is followed by an ATOH1+ CGN progenitor state at day 14. By the end of a 56-day differentiation procedure, we obtain functional neurons expressing CGN markers GABAARα6 and vGLUT2. We show that sonic hedgehog promotes GABAergic lineage specification and CGN progenitor proliferation. Our work presents a new model with which to study development and diseases of the CGN lineage in a human context.


Asunto(s)
Cerebelo , Proteínas Hedgehog , Humanos , Proteínas Hedgehog/metabolismo , Rombencéfalo/metabolismo , Diferenciación Celular/fisiología , Neurogénesis , Células Madre
12.
Nature ; 572(7767): 67-73, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31043743

RESUMEN

Study of the origin and development of cerebellar tumours has been hampered by the complexity and heterogeneity of cerebellar cells that change over the course of development. Here we use single-cell transcriptomics to study more than 60,000 cells from the developing mouse cerebellum and show that different molecular subgroups of childhood cerebellar tumours mirror the transcription of cells from distinct, temporally restricted cerebellar lineages. The Sonic Hedgehog medulloblastoma subgroup transcriptionally mirrors the granule cell hierarchy as expected, while group 3 medulloblastoma resembles Nestin+ stem cells, group 4 medulloblastoma resembles unipolar brush cells, and PFA/PFB ependymoma and cerebellar pilocytic astrocytoma resemble the prenatal gliogenic progenitor cells. Furthermore, single-cell transcriptomics of human childhood cerebellar tumours demonstrates that many bulk tumours contain a mixed population of cells with divergent differentiation. Our data highlight cerebellar tumours as a disorder of early brain development and provide a proximate explanation for the peak incidence of cerebellar tumours in early childhood.


Asunto(s)
Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Evolución Molecular , Feto/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Transcripción Genética , Animales , Neoplasias Cerebelosas/clasificación , Cerebelo/citología , Cerebelo/embriología , Cerebelo/metabolismo , Niño , Femenino , Feto/citología , Glioma/clasificación , Glioma/genética , Glioma/patología , Humanos , Meduloblastoma/clasificación , Meduloblastoma/genética , Meduloblastoma/patología , Ratones , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Factores de Tiempo , Transcriptoma/genética
13.
Radiology ; 310(2): e230777, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38349246

RESUMEN

Published in 2021, the fifth edition of the World Health Organization (WHO) classification of tumors of the central nervous system (CNS) introduced new molecular criteria for tumor types that commonly occur in either pediatric or adult age groups. Adolescents and young adults (AYAs) are at the intersection of adult and pediatric care, and both pediatric-type and adult-type CNS tumors occur at that age. Mortality rates for AYAs with CNS tumors have increased by 0.6% per year for males and 1% per year for females from 2007 to 2016. To best serve patients, it is crucial that both pediatric and adult radiologists who interpret neuroimages are familiar with the various pediatric- and adult-type brain tumors and their typical imaging morphologic characteristics. Gliomas account for approximately 80% of all malignant CNS tumors in the AYA age group, with the most common types observed being diffuse astrocytic and glioneuronal tumors. Ependymomas and medulloblastomas also occur in the AYA population but are seen less frequently. Importantly, biologic behavior and progression of distinct molecular subgroups of brain tumors differ across ages. This review discusses newly added or revised gliomas in the fifth edition of the CNS WHO classification, as well as other CNS tumor types common in the AYA population.


Asunto(s)
Neoplasias Encefálicas , Neoplasias Cerebelosas , Glioma , Meduloblastoma , Femenino , Masculino , Humanos , Adolescente , Adulto Joven , Niño , Neoplasias Encefálicas/diagnóstico por imagen , Glioma/diagnóstico por imagen , Organización Mundial de la Salud
14.
Cell ; 138(3): 423-4, 2009 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-19665962

RESUMEN

A new study by Shimono et al. (2009) demonstrates that certain microRNAs that regulate the self-renewal factor BMI1 are downregulated in purified populations of normal mammary epithelial stem cells and breast tumor-initiating cells. These findings have important implications for the regulation of self-renewal and differentiation by microRNAs and suggest new ways of targeting cancer stem cells.


Asunto(s)
MicroARNs/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre/metabolismo , Mama/citología , Neoplasias de la Mama/genética , Regulación hacia Abajo , Humanos , Células Madre Neoplásicas/citología , Proteínas Nucleares/genética , Complejo Represivo Polycomb 1 , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/genética , Células Madre/citología
15.
Pediatr Radiol ; 54(8): 1325-1336, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38777883

RESUMEN

BACKGROUND: Moyamoya is a progressive, non-atherosclerotic cerebral arteriopathy that may present in childhood and currently has no cure. Early diagnosis is critical to prevent a lifelong risk of neurological morbidity. Blood-oxygen-level-dependent (BOLD) MRI cerebrovascular reactivity (CVR) imaging provides a non-invasive, in vivo measure of autoregulatory capacity and cerebrovascular reserve. However, non-compliant or younger children require general anesthesia to achieve BOLD-CVR imaging. OBJECTIVE: To determine the same-day repeatability of BOLD-CVR imaging under general anesthesia in children with moyamoya. MATERIALS AND METHODS: Twenty-eight examination pairs were included (mean patient age = 7.3 ± 4.0 years). Positive and negatively reacting voxels were averaged over signals and counted over brain tissue and vascular territory. The intraclass correlation coefficient (ICC), Wilcoxon signed-rank test, and Bland-Altman plots were used to assess the variability between the scans. RESULTS: There was excellent-to-good (≥ 0.59) within-day repeatability in 18 out of 28 paired studies (64.3%). Wilcoxon signed-rank tests demonstrated no significant difference in the grey and white matter CVR estimates, between repeat scans (all p-values > 0.05). Bland-Altman plots of differences in mean magnitude of positive and negative and fractional positive and negative CVR estimates illustrated a reasonable degree of agreement between repeat scans and no systematic bias. CONCLUSION: BOLD-CVR imaging provides repeatable assessment of cerebrovascular reserve in children with moyamoya imaged under general anesthesia.


Asunto(s)
Anestesia General , Circulación Cerebrovascular , Imagen por Resonancia Magnética , Enfermedad de Moyamoya , Humanos , Enfermedad de Moyamoya/diagnóstico por imagen , Enfermedad de Moyamoya/fisiopatología , Femenino , Niño , Masculino , Circulación Cerebrovascular/fisiología , Imagen por Resonancia Magnética/métodos , Preescolar , Reproducibilidad de los Resultados , Oxígeno/sangre , Adolescente
16.
Neurocrit Care ; 40(2): 587-602, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37470933

RESUMEN

BACKGROUND: Surgical revascularization decreases the long-term risk of stroke in children with moyamoya arteriopathy but can be associated with an increased risk of stroke during the perioperative period. Evidence-based approaches to optimize perioperative management are limited and practice varies widely. Using a modified Delphi process, we sought to establish expert consensus on key components of the perioperative care of children with moyamoya undergoing indirect revascularization surgery and identify areas of equipoise to define future research priorities. METHODS: Thirty neurologists, neurosurgeons, and intensivists practicing in North America with expertise in the management of pediatric moyamoya were invited to participate in a three-round, modified Delphi process consisting of a 138-item practice patterns survey, anonymous electronic evaluation of 88 consensus statements on a 5-point Likert scale, and a virtual group meeting during which statements were discussed, revised, and reassessed. Consensus was defined as ≥ 80% agreement or disagreement. RESULTS: Thirty-nine statements regarding perioperative pediatric moyamoya care for indirect revascularization surgery reached consensus. Salient areas of consensus included the following: (1) children at a high risk for stroke and those with sickle cell disease should be preadmitted prior to indirect revascularization; (2) intravenous isotonic fluids should be administered in all patients for at least 4 h before and 24 h after surgery; (3) aspirin should not be discontinued in the immediate preoperative and postoperative periods; (4) arterial lines for blood pressure monitoring should be continued for at least 24 h after surgery and until active interventions to achieve blood pressure goals are not needed; (5) postoperative care should include hourly vital signs for at least 24 h, hourly neurologic assessments for at least 12 h, adequate pain control, maintaining normoxia and normothermia, and avoiding hypotension; and (6) intravenous fluid bolus administration should be considered the first-line intervention for new focal neurologic deficits following indirect revascularization surgery. CONCLUSIONS: In the absence of data supporting specific care practices before and after indirect revascularization surgery in children with moyamoya, this Delphi process defined areas of consensus among neurosurgeons, neurologists, and intensivists with moyamoya expertise. Research priorities identified include determining the role of continuous electroencephalography in postoperative moyamoya care, optimal perioperative blood pressure and hemoglobin targets, and the role of supplemental oxygen for treatment of suspected postoperative ischemia.


Asunto(s)
Revascularización Cerebral , Enfermedad de Moyamoya , Accidente Cerebrovascular , Niño , Humanos , Técnica Delphi , Enfermedad de Moyamoya/cirugía , Accidente Cerebrovascular/etiología , Atención Perioperativa , Cuidados Posoperatorios , Revascularización Cerebral/efectos adversos , Resultado del Tratamiento , Estudios Retrospectivos
17.
J Neurooncol ; 161(3): 573-582, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36757527

RESUMEN

PURPOSE: The overall survival and prognostic factors for children with multiply recurrent posterior fossa ependymoma are not well understood. We aimed to assess prognostic factors associated with survival for relapsed pediatric posterior fossa ependymoma. METHODS: An institutional database was queried for children with a primary diagnosis of posterior fossa ependymoma from 2000 to 2019. Kaplan-Meier survival analysis and Cox-proportional hazard regression were used to assess the relationship between treatment factors and overall survival. RESULTS: There were 60 patients identified; molecular subtype was available for 56, of which 49 (87.5%) were PF-A and 7 (12.5%) were PF-B. Relapse occurred in 29 patients (48%) at a mean time of 24 months following primary resection. Median 50% survival was 12.3 years for all patients and 3.3 years following diagnosis of first relapsed disease. GTR was associated with significantly improved survival following primary resection (HR 0.373, 95% CI 0.14-0.96). Presence of recurrent disease was significantly associated with worse survival (p < 0.0001). At recurrent disease diagnosis, disseminated disease was a negative prognostic factor (HR 11.0 95% CI 2.7-44) while GTR at first relapse was associated with improved survival HR 0.215 (95% CI: 0.048-0.96, p = 0.044). Beyond first relapse, the impact of GTR was not significant on survival, though surgery compared to no surgery was favorable with HR 0.155 (95% CI: 0.04-0.59). CONCLUSIONS: Disseminated disease at recurrence and extent of resection for first relapsed disease were important prognostic factors. Surgery compared to no surgery was associated with improved survival for the multiply recurrent ependymoma cohort.


Asunto(s)
Neoplasias Encefálicas , Ependimoma , Niño , Humanos , Recurrencia Local de Neoplasia , Estimación de Kaplan-Meier , Ependimoma/cirugía , Ependimoma/diagnóstico , Pronóstico
18.
J Neurooncol ; 162(2): 443-448, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37039951

RESUMEN

PURPOSE: To determine long-term outcomes of a cohort of children with germinoma treated with chemotherapy and radiation therapy without primary tumor boost even in the absence of complete response to chemotherapy METHODS: This retrospective study analyzed the outcome of patients with germinoma consecutively diagnosed and treated at a tertiary care center from January 2000 to December 2021. MRIs were reviewed by two radiologists, blinded to patient data. Tumor location at diagnosis, tumor response to chemotherapy and at completion of radiation therapy and site of relapse were assessed. Tumor response was assessed radiologically by determining the tumor size and response on diffusion-weighted imaging, in addition to biochemical, cytological parameters and neurological status. RESULTS: Of 46 pediatric germinoma patients, 29 children (14 male; median age 12.8 years) received no primary tumor boost. Median follow-up was 63 months (range 9-187 months). Twenty-five children had localized disease and tumor location was suprasellar (n = 11), pineal (n = 10), bifocal (n = 3) and basal ganglia (n = 1) while 4 children had metastatic disease at presentation. All patients completed multi-agent chemotherapy followed by either ventricular irradiation (VI) (23.4 Gy) (n = 23), whole brain (WBI) (23.4 Gy) (n = 5) or craniospinal radiation (CSI) (23.4 Gy) (n = 1). Two children, who had localized disease at presentation and received VI after chemotherapy, relapsed 9 months and 32 months after completion of treatment respectively. No patient had a local relapse. Location of relapse was distant, outside (n = 1) and out- and inside (n = 1) the irradiation field. Five-year progression free survival (PFS) was 91% and overall survival (OS) was 100%. CONCLUSIONS: In this case series, excellent 5-year PFS and OS rates were achieved with chemotherapy followed by radiation therapy of 23.4 Gy delivered without primary tumor boost. No local relapse was observed despite omitting primary tumor boost in patients with localized and metastatic germinoma.


Asunto(s)
Neoplasias Encefálicas , Germinoma , Niño , Humanos , Masculino , Estudios Retrospectivos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamiento farmacológico , Recurrencia Local de Neoplasia/patología , Germinoma/terapia , Germinoma/tratamiento farmacológico , Encéfalo/patología , Dosificación Radioterapéutica , Estudios de Seguimiento
19.
Nature ; 549(7671): 227-232, 2017 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-28854171

RESUMEN

Human glioblastomas harbour a subpopulation of glioblastoma stem cells that drive tumorigenesis. However, the origin of intratumoural functional heterogeneity between glioblastoma cells remains poorly understood. Here we study the clonal evolution of barcoded glioblastoma cells in an unbiased way following serial xenotransplantation to define their individual fate behaviours. Independent of an evolving mutational signature, we show that the growth of glioblastoma clones in vivo is consistent with a remarkably neutral process involving a conserved proliferative hierarchy rooted in glioblastoma stem cells. In this model, slow-cycling stem-like cells give rise to a more rapidly cycling progenitor population with extensive self-maintenance capacity, which in turn generates non-proliferative cells. We also identify rare 'outlier' clones that deviate from these dynamics, and further show that chemotherapy facilitates the expansion of pre-existing drug-resistant glioblastoma stem cells. Finally, we show that functionally distinct glioblastoma stem cells can be separately targeted using epigenetic compounds, suggesting new avenues for glioblastoma-targeted therapy.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Rastreo Celular , Glioblastoma/patología , Células Madre Neoplásicas/patología , Animales , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Proliferación Celular , Células Clonales/efectos de los fármacos , Células Clonales/patología , Epigénesis Genética , Femenino , Glioblastoma/tratamiento farmacológico , Xenoinjertos , Humanos , Ratones , Invasividad Neoplásica , Trasplante de Neoplasias , Células Madre Neoplásicas/efectos de los fármacos , Fenotipo , Procesos Estocásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA