Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genet Med ; 26(6): 101119, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38465576

RESUMEN

PURPOSE: Fem1 homolog B (FEM1B) acts as a substrate recognition subunit for ubiquitin ligase complexes belonging to the CULLIN 2-based E3 family. Several biological functions have been proposed for FEM1B, including a structurally resolved function as a sensor for redox cell status by controlling mitochondrial activity, but its implication in human disease remains elusive. METHODS: To understand the involvement of FEM1B in human disease, we made use of Matchmaker exchange platforms to identify individuals with de novo variants in FEM1B and performed their clinical evaluation. We performed functional validation using primary neuronal cultures and in utero electroporation assays, as well as experiments on patient's cells. RESULTS: Five individuals with a recurrent de novo missense variant in FEM1B were identified: NM_015322.5:c.377G>A NP_056137.1:p.(Arg126Gln) (FEM1BR126Q). Affected individuals shared a severe neurodevelopmental disorder with behavioral phenotypes and a variable set of malformations, including brain anomalies, clubfeet, skeletal abnormalities, and facial dysmorphism. Overexpression of the FEM1BR126Q variant but not FEM1B wild-type protein, during mouse brain development, resulted in delayed neuronal migration of the target cells. In addition, the individuals' cells exhibited signs of oxidative stress and induction of type I interferon signaling. CONCLUSION: Overall, our data indicate that p.(Arg126Gln) induces aberrant FEM1B activation, resulting in a gain-of-function mechanism associated with a severe syndromic developmental disorder in humans.


Asunto(s)
Mutación Missense , Trastornos del Neurodesarrollo , Ubiquitina-Proteína Ligasas , Humanos , Mutación Missense/genética , Femenino , Ratones , Masculino , Animales , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Ubiquitina-Proteína Ligasas/genética , Niño , Preescolar , Fenotipo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Neuronas/metabolismo , Neuronas/patología , Lactante
2.
Hum Mol Genet ; 30(6): 430-442, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33607653

RESUMEN

Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by deletion (~75%) or mutation (~10%) of the ubiquitin E3 ligase A (UBE3A) gene, which encodes a HECT type E3 ubiquitin protein ligase. Although the critical substrates of UBE3A are unknown, previous studies have suggested a critical role of nuclear UBE3A in AS pathophysiology. Here, we investigated to what extent UBE3A missense mutations disrupt UBE3A subcellular localization as well as catalytic activity, stability and protein folding. Our functional screen of 31 UBE3A missense mutants revealed that UBE3A mislocalization is the predominant cause of UBE3A dysfunction, accounting for 55% of the UBE3A mutations tested. The second major cause (29%) is a loss of E3-ubiquitin ligase activity, as assessed in an Escherichia coli in vivo ubiquitination assay. Mutations affecting catalytic activity are found not only in the catalytic HECT domain, but also in the N-terminal half of UBE3A, suggesting an important contribution of this N-terminal region to its catalytic potential. Together, our results show that loss of nuclear UBE3A E3 ligase activity is the predominant cause of UBE3A-linked AS. Moreover, our functional analysis screen allows rapid assessment of the pathogenicity of novel UBE3A missense variants which will be of particular importance when treatments for AS become available.


Asunto(s)
Síndrome de Angelman/patología , Núcleo Celular/metabolismo , Mutación Missense , Neuronas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Síndrome de Angelman/genética , Animales , Escherichia coli/metabolismo , Células HEK293 , Humanos , Ratones , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/química
3.
Mol Psychiatry ; 27(5): 2590-2601, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35264729

RESUMEN

Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by the loss of neuronal E3 ligase UBE3A. Restoring UBE3A levels is a potential disease-modifying therapy for AS and has recently entered clinical trials. There is paucity of data regarding the molecular changes downstream of UBE3A hampering elucidation of disease therapeutics and biomarkers. Notably, UBE3A plays an important role in the nucleus but its targets have yet to be elucidated. Using proteomics, we assessed changes during postnatal cortical development in an AS mouse model. Pathway analysis revealed dysregulation of proteasomal and tRNA synthetase pathways at all postnatal brain developmental stages, while synaptic proteins were altered in adults. We confirmed pathway alterations in an adult AS rat model across multiple brain regions and highlighted region-specific differences. UBE3A reinstatement in AS model mice resulted in near complete and partial rescue of the proteome alterations in adolescence and adults, respectively, supporting the notion that restoration of UBE3A expression provides a promising therapeutic option. We show that the nuclear enriched transketolase (TKT), one of the most abundantly altered proteins, is a novel direct UBE3A substrate and is elevated in the neuronal nucleus of rat brains and human iPSC-derived neurons. Taken together, our study provides a comprehensive map of UBE3A-driven proteome remodeling in AS across development and species, and corroborates an early UBE3A reinstatement as a viable therapeutic option. To support future disease and biomarker research, we present an accessible large-scale multi-species proteomic resource for the AS community ( https://www.angelman-proteome-project.org/ ).


Asunto(s)
Síndrome de Angelman , Proteómica , Síndrome de Angelman/tratamiento farmacológico , Síndrome de Angelman/genética , Síndrome de Angelman/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Proteoma , Ratas , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética
4.
Hum Mol Genet ; 29(18): 3032-3043, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-32879944

RESUMEN

The human UBE3A gene, which is essential for normal neurodevelopment, encodes three Ubiquitin E3 ligase A (UBE3A) protein isoforms. However, the subcellular localization and relative abundance of these human UBE3A isoforms are unknown. We found, as previously reported in mice, that UBE3A is predominantly nuclear in human neurons. However, this conserved subcellular distribution is achieved by strikingly distinct cis-acting mechanisms. A single amino-acid deletion in the N-terminus of human hUBE3A-Iso3, which is homologous to cytosolic mouse mUBE3A-Iso2, results in its translocation to the nucleus. This singe amino-acid deletion is shared with apes and Old World monkeys and was preceded by the appearance of the cytosolic hUBE3A-Iso2 isoform. This hUBE3A-Iso2 isoform arose after the lineage of New World monkeys and Old World monkeys separated from the Tarsiers (Tarsiidae). Due to the loss of a single nucleotide in a non-coding exon, this exon became in frame with the remainder of the UBE3A protein. RNA-seq analysis of human brain samples showed that the human UBE3A isoforms arise by alternative splicing. Consistent with the predominant nuclear enrichment of UBE3A in human neurons, the two nuclear-localized isoforms, hUBE3A-Iso1 and -Iso3, are the most abundantly expressed isoforms of UBE3A, while hUBE3A-Iso2 maintains a small pool of cytosolic UBE3A. Our findings provide new insight into UBE3A localization and evolution and may have important implications for gene therapy approaches in Angelman syndrome.


Asunto(s)
Síndrome de Angelman/genética , Neuronas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Empalme Alternativo/genética , Síndrome de Angelman/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Impresión Genómica/genética , Humanos , Ratones , Neuronas/patología , Isoformas de Proteínas/genética
5.
Hum Genet ; 141(12): 1837-1848, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35637341

RESUMEN

Angelman syndrome is a rare neurodevelopmental disorder caused by mutations affecting the chromosomal 15q11-13 region, either by contiguous gene deletions, imprinting defects, uniparental disomy, or mutations in the UBE3A gene itself. Phenotypic abnormalities are driven primarily, but not exclusively (especially in 15q11-13 deletion cases) by loss of expression of the maternally inherited UBE3A gene expression. The disorder was first described in 1965 by the English pediatrician Harry Angelman. Since that first description of three children with Angelman syndrome, there has been extensive research into the genetic, molecular and phenotypic aspects of the disorder. In the last decade, this has resulted in over 100 publications per year. Collectively, this research has led the field to a pivotal point in which restoring UBE3A function by genetic therapies is currently explored in several clinical trials. In this study, we employed a bibliometric approach to review and visualize the development of Angelman syndrome research over the last 50 years. We look into different parameters shaping the progress of the Angelman syndrome research field, including source of funding, publishing journals and international collaborations between research groups. Using a network approach, we map the focus of the research field and how that shifted over time. This overview helps understand the shift of research focus in the field and can provide a comprehensive handbook of Angelman syndrome research development.


Asunto(s)
Síndrome de Angelman , Niño , Humanos , Síndrome de Angelman/genética , Síndrome de Angelman/terapia , Ubiquitina-Proteína Ligasas/genética , Mutación , Bibliometría , Cromosomas Humanos Par 15
6.
Int J Mol Sci ; 24(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36613751

RESUMEN

Angelman Syndrome (AS) is a severe neurodevelopmental disorder, caused by the neuronal absence of the ubiquitin protein ligase E3A (UBE3A). UBE3A promotes ubiquitin-mediated protein degradation and functions as a transcriptional coregulator of nuclear hormone receptors, including the glucocorticoid receptor (GR). Previous studies showed anxiety-like behavior and hippocampal-dependent memory disturbances in AS mouse models. Hippocampal GR is an important regulator of the stress response and memory formation, and we therefore investigated whether the absence of UBE3A in AS mice disrupted GR signaling in the hippocampus. We first established a strong cortisol-dependent interaction between the GR ligand binding domain and a UBE3A nuclear receptor box in a high-throughput interaction screen. In vivo, we found that UBE3A-deficient AS mice displayed significantly more variation in circulating corticosterone levels throughout the day compared to wildtypes (WT), with low to undetectable levels of corticosterone at the trough of the circadian cycle. Additionally, we observed an enhanced transcriptomic response in the AS hippocampus following acute corticosterone treatment. Surprisingly, chronic corticosterone treatment showed less contrast between AS and WT mice in the hippocampus and liver transcriptomic responses. This suggests that UBE3A limits the acute stimulation of GR signaling, likely as a member of the GR transcriptional complex. Altogether, these data indicate that AS mice are more sensitive to acute glucocorticoid exposure in the brain compared to WT mice. This suggests that stress responsiveness is altered in AS which could lead to anxiety symptoms.


Asunto(s)
Síndrome de Angelman , Ratones , Animales , Síndrome de Angelman/genética , Síndrome de Angelman/metabolismo , Corticosterona/metabolismo , Hipocampo/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Modelos Animales de Enfermedad
7.
Hum Mutat ; 42(4): 445-459, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33565190

RESUMEN

Thousand and one amino-acid kinase 1 (TAOK1) is a MAP3K protein kinase, regulating different mitogen-activated protein kinase pathways, thereby modulating a multitude of processes in the cell. Given the recent finding of TAOK1 involvement in neurodevelopmental disorders (NDDs), we investigated the role of TAOK1 in neuronal function and collected a cohort of 23 individuals with mostly de novo variants in TAOK1 to further define the associated NDD. Here, we provide evidence for an important role for TAOK1 in neuronal function, showing that altered TAOK1 expression levels in the embryonic mouse brain affect neural migration in vivo, as well as neuronal maturation in vitro. The molecular spectrum of the identified TAOK1 variants comprises largely truncating and nonsense variants, but also missense variants, for which we provide evidence that they can have a loss of function or dominant-negative effect on TAOK1, expanding the potential underlying causative mechanisms resulting in NDD. Taken together, our data indicate that TAOK1 activity needs to be properly controlled for normal neuronal function and that TAOK1 dysregulation leads to a neurodevelopmental disorder mainly comprising similar facial features, developmental delay/intellectual disability and/or variable learning or behavioral problems, muscular hypotonia, infant feeding difficulties, and growth problems.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Aminoácidos , Animales , Humanos , Discapacidad Intelectual/genética , Sistema de Señalización de MAP Quinasas , Ratones , Hipotonía Muscular , Trastornos del Neurodesarrollo/genética
8.
Am J Hum Genet ; 101(5): 768-788, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29100089

RESUMEN

Calcium/calmodulin-dependent protein kinase II (CAMK2) is one of the first proteins shown to be essential for normal learning and synaptic plasticity in mice, but its requirement for human brain development has not yet been established. Through a multi-center collaborative study based on a whole-exome sequencing approach, we identified 19 exceedingly rare de novo CAMK2A or CAMK2B variants in 24 unrelated individuals with intellectual disability. Variants were assessed for their effect on CAMK2 function and on neuronal migration. For both CAMK2A and CAMK2B, we identified mutations that decreased or increased CAMK2 auto-phosphorylation at Thr286/Thr287. We further found that all mutations affecting auto-phosphorylation also affected neuronal migration, highlighting the importance of tightly regulated CAMK2 auto-phosphorylation in neuronal function and neurodevelopment. Our data establish the importance of CAMK2A and CAMK2B and their auto-phosphorylation in human brain function and expand the phenotypic spectrum of the disorders caused by variants in key players of the glutamatergic signaling pathway.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Discapacidad Intelectual/genética , Mutación/genética , Animales , Encéfalo/patología , Línea Celular , Exoma/genética , Femenino , Ácido Glutámico/genética , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/patología , Fosforilación/genética , Transducción de Señal/genética
9.
Mol Psychiatry ; 24(5): 757-771, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-29302076

RESUMEN

Schizophrenia is highly heritable, yet its underlying pathophysiology remains largely unknown. Among the most well-replicated findings in neurobiological studies of schizophrenia are deficits in myelination and white matter integrity; however, direct etiological genetic and cellular evidence has thus far been lacking. Here, we implement a family-based approach for genetic discovery in schizophrenia combined with functional analysis using induced pluripotent stem cells (iPSCs). We observed familial segregation of two rare missense mutations in Chondroitin Sulfate Proteoglycan 4 (CSPG4) (c.391G > A [p.A131T], MAF 7.79 × 10-5 and c.2702T > G [p.V901G], MAF 2.51 × 10-3). The CSPG4A131T mutation was absent from the Swedish Schizophrenia Exome Sequencing Study (2536 cases, 2543 controls), while the CSPG4V901G mutation was nominally enriched in cases (11 cases vs. 3 controls, P = 0.026, OR 3.77, 95% CI 1.05-13.52). CSPG4/NG2 is a hallmark protein of oligodendrocyte progenitor cells (OPCs). iPSC-derived OPCs from CSPG4A131T mutation carriers exhibited abnormal post-translational processing (P = 0.029), subcellular localization of mutant NG2 (P = 0.007), as well as aberrant cellular morphology (P = 3.0 × 10-8), viability (P = 8.9 × 10-7), and myelination potential (P = 0.038). Moreover, transfection of healthy non-carrier sibling OPCs confirmed a pathogenic effect on cell survival of both the CSPG4A131T (P = 0.006) and CSPG4V901G (P = 3.4 × 10-4) mutations. Finally, in vivo diffusion tensor imaging of CSPG4A131T mutation carriers demonstrated a reduction of brain white matter integrity compared to unaffected sibling and matched general population controls (P = 2.2 × 10-5). Together, our findings provide a convergence of genetic and functional evidence to implicate OPC dysfunction as a candidate pathophysiological mechanism of familial schizophrenia.


Asunto(s)
Proteoglicanos Tipo Condroitín Sulfato/genética , Proteínas de la Membrana/genética , Células Precursoras de Oligodendrocitos/metabolismo , Esquizofrenia/genética , Adulto , Antígenos/genética , Diferenciación Celular/fisiología , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Imagen de Difusión Tensora , Familia , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Mutación/genética , Células Precursoras de Oligodendrocitos/fisiología , Oligodendroglía/metabolismo , Linaje , Proteoglicanos/genética , Esquizofrenia/metabolismo , Sustancia Blanca/metabolismo
10.
Hum Mol Genet ; 26(11): 2034-2041, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28335037

RESUMEN

Charcot-Marie-Tooth (CMT) disease type 2 is a genetically heterogeneous group of inherited neuropathies characterized by motor and sensory deficits as a result of peripheral axonal degeneration. We recently reported a frameshift (FS) mutation in the Really Interesting New Gene finger (RING) domain of LRSAM1 (c.2121_2122dup, p.Leu708Argfs) that encodes an E3 ubiquitin ligase, as the cause of axonal-type CMT (CMT2P). However, the frequency of LRSAM1 mutations in CMT2 and the functional basis for their association with disease remains unknown. In this study, we evaluated LRSAM1 mutations in two large Dutch cohorts. In the first cohort (n = 107), we sequenced the full LRSAM1 coding exons in an unbiased fashion, and, in the second cohort (n = 468), we specifically sequenced the last, RING-encoding exon in individuals where other CMT-associated genes had been ruled out. We identified a novel LRSAM1 missense mutation (c.2120C > T, p.Pro707Leu) mapping to the RING domain. Based on our genetic analysis, the occurrence of pathogenic LRSAM1 mutations is estimated to be rare. Functional characterization of the FS, the identified missense mutation, as well as of another recently reported pathogenic missense mutation (c.2081G > A, p.Cys694Tyr), revealed that in vitro ubiquitylation activity was largely abrogated. We demonstrate that loss of the E2-E3 interaction that is an essential prerequisite for supporting ubiquitylation of target substrates, underlies this reduced ubiquitylation capacity. In contrast, LRSAM1 dimerization and interaction with the bona fide target TSG101 were not disrupted. In conclusion, our study provides further support for the role of LRSAM1 in CMT and identifies LRSAM1-mediated ubiquitylation as a common determinant of disease-associated LRSAM1 mutations.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Ubiquitina-Proteína Ligasas/genética , Axones/metabolismo , Axones/fisiología , Secuencia de Bases , Enfermedad de Charcot-Marie-Tooth/metabolismo , Exones , Femenino , Mutación del Sistema de Lectura , Pruebas Genéticas , Humanos , Masculino , Mutación , Mutación Missense/genética , Países Bajos , Dominios Proteicos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
11.
Cell Mol Life Sci ; 75(17): 3121-3141, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29858610

RESUMEN

Ubiquitination, the covalent attachment of ubiquitin to proteins, by E3 ligases of the HECT (homologous to E6AP C terminus) family is critical in controlling diverse physiological pathways. Stringent control of HECT E3 ligase activity and substrate specificity is essential for cellular health, whereas deregulation of HECT E3s plays a prominent role in disease. The cell employs a wide variety of regulatory mechanisms to control HECT E3 activity and substrate specificity. Here, we summarize the current understanding of these regulatory mechanisms that control HECT E3 function. Substrate specificity is generally determined by interactions of adaptor proteins with domains in the N-terminal extensions of HECT E3 ligases. These N-terminal domains have also been found to interact with the HECT domain, resulting in the formation of inhibitory conformations. In addition, catalytic activity of the HECT domain is commonly regulated at the level of E2 recruitment and through HECT E3 oligomerization. The previously mentioned regulatory mechanisms can be controlled through protein-protein interactions, post-translational modifications, the binding of calcium ions, and more. Functional activity is determined not only by substrate recruitment and catalytic activity, but also by the type of ubiquitin polymers catalyzed to the substrate. While this is often determined by the specific HECT member, recent studies demonstrate that HECT E3s can be modulated to alter the type of ubiquitin polymers they catalyze. Insight into these diverse regulatory mechanisms that control HECT E3 activity may open up new avenues for therapeutic strategies aimed at inhibition or enhancement of HECT E3 function in disease-related pathways.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Calcio/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Biocatálisis , Humanos , Unión Proteica , Multimerización de Proteína , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/química
12.
Circ Res ; 118(3): 410-9, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26666640

RESUMEN

RATIONALE: The low-density lipoprotein (LDL) receptor (LDLR) is a central determinant of circulating LDL-cholesterol and as such subject to tight regulation. Recent studies and genetic evidence implicate the inducible degrader of the LDLR (IDOL) as a regulator of LDLR abundance and of circulating levels of LDL-cholesterol in humans. Acting as an E3-ubiquitin ligase, IDOL promotes ubiquitylation and subsequent lysosomal degradation of the LDLR. Consequently, inhibition of IDOL-mediated degradation of the LDLR represents a potential strategy to increase hepatic LDL-cholesterol clearance. OBJECTIVE: To establish whether deubiquitylases counteract IDOL-mediated ubiquitylation and degradation of the LDLR. METHODS AND RESULTS: Using a genetic screening approach, we identify the ubiquitin-specific protease 2 (USP2) as a post-transcriptional regulator of IDOL-mediated LDLR degradation. We demonstrate that both USP2 isoforms, USP2-69 and USP2-45, interact with IDOL and promote its deubiquitylation. IDOL deubiquitylation requires USP2 enzymatic activity and leads to a marked stabilization of IDOL protein. Paradoxically, this also markedly attenuates IDOL-mediated degradation of the LDLR and the ability of IDOL to limit LDL uptake into cells. Conversely, loss of USP2 reduces LDLR protein in an IDOL-dependent manner and limits LDL uptake. We identify a tri-partite complex encompassing IDOL, USP2, and LDLR and demonstrate that in this context USP2 promotes deubiquitylation of the LDLR and prevents its degradation. CONCLUSIONS: Our findings identify USP2 as a novel regulator of lipoprotein clearance owing to its ability to control ubiquitylation-dependent degradation of the LDLR by IDOL.


Asunto(s)
LDL-Colesterol/metabolismo , Endopeptidasas/metabolismo , Receptores de LDL/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Endopeptidasas/genética , Estabilidad de Enzimas , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Ratones Noqueados , Complejos Multienzimáticos , Unión Proteica , Proteolisis , Interferencia de ARN , Receptores de LDL/genética , Transfección , Ubiquitina Tiolesterasa , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
13.
EMBO J ; 31(2): 391-402, 2012 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-22085930

RESUMEN

Ubiquitin-conjugating enzymes (E2s) coordinate distinct types of ubiquitination via specific E3 ligases, to a large number of protein substrates. While many E2 enzymes need only the presence of an E3 ligase for substrate ubiquitination, a number of E2s require additional, non-canonical binding partners to specify their function. Here, we have determined the crystal structure and function of an E2/co-activator assembly, the Pex4p:Pex22p complex. The peroxisome-associated E2 enzyme Pex4p binds the peroxisomal membrane protein Pex22p through a binding site that does not overlap with any other known interaction interface in E2 enzymes. Pex22p association enhances Pex4p's ability to transfer ubiquitin to a substrate in vitro, and Pex22p binding-deficient forms of Pex4p are unable to ubiquitinate the peroxisomal import receptor Pex5p in vivo. Our data demonstrate that the Pex4p:Pex22p assembly, and not Pex4p alone, functions as the E2 enzyme required for Pex5p ubiquitination, establishing a novel mechanism of E2 enzyme regulation.


Asunto(s)
Proteínas de la Membrana/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multienzimáticos , Fragmentos de Péptidos/metabolismo , Peroxinas , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Ubiquitina/metabolismo , Ubiquitinación
14.
Eukaryot Cell ; 14(2): 182-93, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25548150

RESUMEN

Membrane reshaping resides at the core of many important cellular processes, and among its mediators are the BAR (Bin, Amphiphysin, Rvs) domain-containing proteins. We have explored the diversity and function of the Rvs BAR proteins in Candida albicans and identified a novel family member, Rvs167-3 (orf19.1861). We show that Rvs167-3 specifically interacts with Rvs162 to form a stable BAR heterodimer able to bind liposomes in vitro. A second, distinct heterodimer is formed by the canonical BAR proteins Rvs161 and Rvs167. Purified Rvs161/Rvs167 complex also binds liposomes, indicating that C. albicans expresses two functional BAR heterodimers. We used live-cell imaging to localize green fluorescent protein (GFP)-tagged Rvs167-3 and Rvs167 and show that both proteins concentrate in small cortical spots. However, while Rvs167 strictly colocalizes with the endocytic marker protein Abp1, we do not observe any colocalization of Rvs167-3 with sites of endocytosis marked by Abp1. Furthermore, the rvs167-3Δ/Δ mutant is not defective in endocytosis and strains lacking Rvs167-3 or its partner Rvs162 do not display increased sensitivity to high salt concentrations or decreased cell wall integrity, phenotypes which have been observed for rvs167Δ/Δ and rvs161Δ/Δ strains and which are linked to endocytosis defects. Taken together, our results indicate different roles for the two BAR heterodimers in C. albicans: the canonical Rvs161/Rvs167 heterodimer functions in endocytosis, whereas the novel Rvs162/Rvs167-3 heterodimer seems not to be involved in this process. Nevertheless, despite their different roles, our phenotypic analysis revealed a genetic interaction between the two BAR heterodimers, suggesting that they may have related but distinct membrane-associated functions.


Asunto(s)
Candida albicans/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas Fúngicas/metabolismo , Candida albicans/metabolismo , Membrana Celular/metabolismo , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Endocitosis , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerización de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas
15.
FEMS Yeast Res ; 12(1): 61-8, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22094058

RESUMEN

The pentose phosphate pathway (PPP) is the main source of NADPH in the cell and therefore essential for the maintenance of the redox balance and anabolic reactions. NADPH is produced by the two dehydrogenases in the oxidative branch of the PPP: glucose-6-phosphate dehydrogenase (Zwf1) and 6-phosphogluconate dehydrogenase (Gnd1). We observed that in the commensal fungus Candida albicans these two enzymes contain putative peroxisomal targeting signals (PTSs): Zwf1 has a putative PTS1, while the annotated intron of GND1 encodes a PTS2. By subcellular fractionation and fluorescence microscopy, we show that both enzymes have a dual localization in which the majority is cytosolic, but a small fraction is peroxisome associated. Analysis of GND1 transcripts revealed that dual targeting of Gnd1 is directed by alternative splicing resulting in two Gnd1 isoforms, one without targeting signals localized to the cytosol and one with an N-terminal PTS2 targeted to peroxisomes. To our knowledge, Gnd1 is the first example of dual targeting of a protein by alternative splicing in C. albicans. In silico analysis suggests that PTS-mediated peroxisomal targeting of Zwf1 and Gnd1 is conserved across closely related Candida species. We discuss putative functions of the peroxisomal oxidative PPP in these organisms.


Asunto(s)
Empalme Alternativo , Candida albicans/enzimología , Candida albicans/genética , Citosol/enzimología , Peroxisomas/enzimología , Fosfogluconato Deshidrogenasa/genética , Fosfogluconato Deshidrogenasa/metabolismo , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , Microscopía Fluorescente , Señales de Clasificación de Proteína
16.
J Biol Chem ; 285(32): 24335-46, 2010 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-20522553

RESUMEN

Transport of acetyl-CoA between intracellular compartments is mediated by carnitine acetyltransferases (Cats) that reversibly link acetyl units to the carrier molecule carnitine. The genome of the opportunistic pathogenic yeast Candida albicans encodes several (putative) Cats: the peroxisomal and mitochondrial Cat2 isoenzymes encoded by a single gene and the carnitine acetyltransferase homologs Yat1 and Yat2. To determine the contributions of the individual Cats, various carnitine acetyltransferase mutant strains were constructed and subjected to phenotypic and biochemical analyses on different carbon sources. We show that mitochondrial Cat2 is required for the intramitochondrial conversion of acetylcarnitine to acetyl-CoA, which is essential for a functional tricarboxylic acid cycle during growth on oleate, acetate, ethanol, and citrate. Yat1 is cytosolic and contributes to acetyl-CoA transport from the cytosol during growth on ethanol or acetate, but its activity is not required for growth on oleate. Yat2 is also cytosolic, but we were unable to attribute any function to this enzyme. Surprisingly, peroxisomal Cat2 is essential neither for export of acetyl units during growth on oleate nor for the import of acetyl units during growth on acetate or ethanol. Oxidation of fatty acids still takes place in the absence of peroxisomal Cat2, but biomass formation is absent, and the strain displays a growth delay on acetate and ethanol that can be partially rescued by the addition of carnitine. Based on our results, we present a model for the intracellular flow of acetyl units under various growth conditions and the roles of each of the Cats in this process.


Asunto(s)
Candida albicans/enzimología , Carnitina O-Acetiltransferasa/metabolismo , Transporte Biológico , Carbono/química , Carnitina O-Acetiltransferasa/química , Membrana Celular/metabolismo , Ácidos Grasos/química , Espectrometría de Masas/métodos , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Modelos Biológicos , Mutación , Oxígeno/química , Peroxisomas/química , Peroxisomas/metabolismo , Fenotipo , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnicas del Sistema de Dos Híbridos
17.
BMC Biochem ; 12: 12, 2011 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-21375735

RESUMEN

BACKGROUND: The majority of peroxisomal matrix proteins destined for translocation into the peroxisomal lumen are recognised via a C-terminal Peroxisomal Target Signal type 1 by the cycling receptor Pex5p. The only structure to date of Pex5p in complex with a cargo protein is that of the C-terminal cargo-binding domain of the receptor with sterol carrier protein 2, a small, model peroxisomal protein. In this study, we have tested the contribution of a second, ancillary receptor-cargo binding site, which was found in addition to the characterised Peroxisomal Target Signal type 1. RESULTS: To investigate the function of this secondary interface we have mutated two key residues from the ancillary binding site and analyzed the level of binding first by a yeast-two-hybrid assay, followed by quantitative measurement of the binding affinity and kinetics of purified protein components and finally, by in vivo measurements, to determine translocation capability. While a moderate but significant reduction of the interaction was found in binding assays, we were not able to measure any significant defects in vivo. CONCLUSIONS: Our data therefore suggest that at least in the case of sterol carrier protein 2 the contribution of the second binding site is not essential for peroxisomal import. At this stage, however, we cannot rule out that other cargo proteins may require this ancillary binding site.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Peroxisomas/metabolismo , Señales de Clasificación de Proteína , Receptores Citoplasmáticos y Nucleares/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Proteínas Portadoras/genética , Humanos , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Peroxisomas/química , Peroxisomas/genética , Unión Proteica , Transporte de Proteínas , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética , Alineación de Secuencia , Técnicas del Sistema de Dos Híbridos
18.
Eukaryot Cell ; 9(12): 1809-15, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20889721

RESUMEN

Acetyl coenzyme A (acetyl-CoA) is a central metabolite in carbon and energy metabolism. Because of its amphiphilic nature and bulkiness, acetyl-CoA cannot readily traverse biological membranes. In fungi, two systems for acetyl unit transport have been identified: a shuttle dependent on the carrier carnitine and a (peroxisomal) citrate synthase-dependent pathway. In the carnitine-dependent pathway, carnitine acetyltransferases exchange the CoA group of acetyl-CoA for carnitine, thereby forming acetyl-carnitine, which can be transported between subcellular compartments. Citrate synthase catalyzes the condensation of oxaloacetate and acetyl-CoA to form citrate that can be transported over the membrane. Since essential metabolic pathways such as fatty acid ß-oxidation, the tricarboxylic acid (TCA) cycle, and the glyoxylate cycle are physically separated into different organelles, shuttling of acetyl units is essential for growth of fungal species on various carbon sources such as fatty acids, ethanol, acetate, or citrate. In this review we summarize the current knowledge on the different systems of acetyl transport that are operational during alternative carbon metabolism, with special focus on two fungal species: Saccharomyces cerevisiae and Candida albicans.


Asunto(s)
Acetiltransferasas/metabolismo , Candida albicans/enzimología , Carbono/metabolismo , Proteínas Fúngicas/metabolismo , Saccharomyces cerevisiae/enzimología , Acetilcoenzima A/metabolismo , Acetiltransferasas/genética , Candida albicans/genética , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
19.
Sci Rep ; 11(1): 3007, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33542309

RESUMEN

Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by brain-specific loss of UBE3A, an E3 ubiquitin protein ligase. A substantial number of possible ubiquitination targets of UBE3A have been identified, although evidence of being direct UBE3A substrates is often lacking. Here we identified the synaptic protein Rabphilin-3a (RPH3A), an effector of the RAB3A small GTPase involved in axonal vesicle priming and docking, as a ubiquitination target of UBE3A. We found that the UBE3A and RAB3A binding sites on RPH3A partially overlap, and that RAB3A binding to RPH3A interferes with UBE3A binding. We confirmed previous observations that RPH3A levels are critically dependent on RAB3A binding but, rather surprisingly, we found that the reduced RPH3A levels in the absence of RAB3A are not mediated by UBE3A. Indeed, while we found that RPH3A is ubiquitinated in a UBE3A-dependent manner in mouse brain, UBE3A mono-ubiquitinates RPH3A and does not facilitate RPH3A degradation. Moreover, we found that an AS-linked UBE3A missense mutation in the UBE3A region that interacts with RPH3A, abrogates the interaction with RPH3A. In conclusion, our results identify RPH3A as a novel target of UBE3A and suggest that UBE3A-dependent ubiquitination of RPH3A serves a non-degradative function.

20.
Cell Rep Med ; 2(8): 100360, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34467244

RESUMEN

Angelman syndrome (AS) is a neurodevelopmental disorder caused by the loss of maternal UBE3A, a ubiquitin protein ligase E3A. Here, we study neurons derived from patients with AS and neurotypical individuals, and reciprocally modulate UBE3A using antisense oligonucleotides. Unbiased proteomics reveal proteins that are regulated by UBE3A in a disease-specific manner, including PEG10, a retrotransposon-derived GAG protein. PEG10 protein increase, but not RNA, is dependent on UBE3A and proteasome function. PEG10 binds to both RNA and ataxia-associated proteins (ATXN2 and ATXN10), localizes to stress granules, and is secreted in extracellular vesicles, modulating vesicle content. Rescue of AS patient-derived neurons by UBE3A reinstatement or PEG10 reduction reveals similarity in transcriptome changes. Overexpression of PEG10 during mouse brain development alters neuronal migration, suggesting that it can affect brain development. These findings imply that PEG10 is a secreted human UBE3A target involved in AS pathophysiology.


Asunto(s)
Síndrome de Angelman/metabolismo , Síndrome de Angelman/fisiopatología , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Unión al ADN/metabolismo , Productos del Gen gag/química , Proteínas de Unión al ARN/metabolismo , Retroviridae/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Movimiento Celular , Preescolar , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestructura , Femenino , Humanos , Células Madre Pluripotentes Inducidas/patología , Masculino , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Dominios Proteicos , Retroelementos/genética , Gránulos de Estrés/metabolismo , Gránulos de Estrés/ultraestructura , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA