Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Neuroeng Rehabil ; 20(1): 162, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38041135

RESUMEN

BACKGROUND: Robotic hand orthoses (RHO) aim to provide grasp assistance for people with sensorimotor hand impairment during daily tasks. Many of such devices have been shown to bring a functional benefit to the user. However, assessing functional benefit is not sufficient to evaluate the usability of such technologies for daily life application. A comprehensive and structured evaluation of device usability not only focusing on effectiveness but also efficiency and satisfaction is required, yet often falls short in existing literature. Mixed methods evaluations, i.e., assessing a combination of quantitative and qualitative measures, allow to obtain a more holistic picture of all relevant aspects of device usability. Considering these aspects already in early development stages allows to identify design issues and generate generalizable benchmarks for future developments. METHODS: We evaluated the short-term usability of the RELab tenoexo, a RHO for hand function assistance, in 15 users with tetraplegia after a spinal cord injury through a comprehensive mixed methods approach. We collected quantitative data using the Action Research Arm Test (ARAT), the System Usability Scale (SUS), and timed tasks such as the donning process. In addition, qualitative data were collected through semi-structured interviews and user observations, and analyzed with a thematic analysis to enhance the usability evaluation. All insights were attributed and discussed in relation to specifically defined usability attributes such as comfort, ease of use, functional benefit, and safety. RESULTS: The RELab tenoexo provided an immediate functional benefit to the users, resulting in a mean improvement of the ARAT score by 5.8 points and peaking at 15 points improvement for one user (clinically important difference: 5.7 points). The mean SUS rating of 60.6 represents an adequate usability, however, indicating that especially the RHO donning (average task time = 295 s) was perceived as too long and cumbersome. The participants were generally very satisfied with the ergonomics (size, dimensions, fit) of the RHO. Enhancing the ease of use, specifically in donning, increasing the provided grasping force, as well as the availability of tailoring options and customization were identified as main improvement areas to promote RHO usability. CONCLUSION: The short-term usability of the RELab tenoexo was thoroughly evaluated with a mixed methods approach, which generated valuable data to improve the RHO in future iterations. In addition, learnings that might be transferable to the evaluation and design of other RHO were generated, which have the potential to increase the daily life applicability and acceptance of similar technologies.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Robótica , Traumatismos de la Médula Espinal , Dispositivos Electrónicos Vestibles , Humanos , Aparatos Ortopédicos
2.
J Neuroeng Rehabil ; 19(1): 17, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35148786

RESUMEN

BACKGROUND: Children and adolescents with upper limb impairments can experience limited bimanual performance reducing daily-life independence. We have developed a fully wearable pediatric hand exoskeleton (PEXO) to train or compensate for impaired hand function. In this study, we investigated its appropriateness, practicability, and acceptability. METHODS: Children and adolescents aged 6-18 years with functional limitations in at least one hand due to a neurological cause were selected for this cross-sectional evaluation. We characterized participants by various clinical tests and quantified bimanual performance with the Assisting Hand Assessment (AHA). We identified children whose AHA scaled score increased by ≥ 7 points when using the hand exoskeleton and determined clinical predictors to investigate appropriateness. The time needed to don each component and the number of technical issues were recorded to evaluate practicability. For acceptability, the experiences of the patients and the therapist with PEXO were evaluated. We further noted any adverse events. RESULTS: Eleven children (median age 11.4 years) agreed to participate, but data was available for nine participants. The median AHA scaled score was higher with PEXO (68; IQR: 59.5-83) than without (55; IQR: 37.5-80.5; p = 0.035). The Box and Block test, the Selective Control of the Upper Extremity Scale, and finger extensor muscle strength could differentiate well between those participants who improved in AHA scaled scores by ≥ 7 points and those who did not (sensitivity and specificity varied between 0.75 and 1.00). The median times needed to don the back module, the glove, and the hand module were 62, 150, and 160 s, respectively, but all participants needed assistance. The most critical failures were the robustness of the transmission system, the electronics, and the attachment system. Acceptance was generally high, particularly in participants who improved bimanual performance with PEXO. Five participants experienced some pressure points. No adverse events occurred. CONCLUSIONS: PEXO is a safe exoskeleton that can improve bimanual hand performance in young patients with minimal hand function. PEXO receives high acceptance. We formulated recommendations to improve technical issues and the donning before such exoskeletons can be used under daily-life conditions for therapy or as an assistive device. Trial registration Not appropriate.


Asunto(s)
Parálisis Cerebral , Dispositivo Exoesqueleto , Dispositivos de Autoayuda , Adolescente , Parálisis Cerebral/diagnóstico , Niño , Estudios Transversales , Mano , Humanos , Extremidad Superior
3.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37941220

RESUMEN

Neurological disorders such as traumatic brain injuries (TBI) can lead to hand impairments in children, negatively impacting their quality of life. Fully wearable robotic hand orthoses (RHO) have been proposed to actively support children and promote the use of the impaired limb in daily life. Here we report a case study on the feasibility of using the pediatric RHO PEXO for assistance at home in a 13- year-old child with hand impairment after TBI. The size and functionalities of the RHO were first fully tailored to the child's needs. We trained the child and their parent on independently using the RHO before taking it home for a period of two weeks. The use of the RHO improved hand ability. Additionally, the tailoring and training benefited the unimanual capacity (Box and Block Test score +2 after tailoring) and bimanual performance (Assisting Hand Assessment score +4) of the child with PEXO. Further, it increased device acceptance by the child and the parent. The child used PEXO at home for 76 minutes distributed over three days during eating and drinking tasks. Personal and environmental factors caused the moderate use. No adverse events or safety-related issues occurred. This study highlights the value of tailoring an assistive RHO and, for the first time, demonstrates the feasibility of home use of a pediatric RHO by children with neurological hand impairments.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Robótica , Niño , Humanos , Adolescente , Calidad de Vida , Mano , Aparatos Ortopédicos
4.
Front Neurorobot ; 16: 815693, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35264940

RESUMEN

Wearable robotic upper limb orthoses (ULO) are promising tools to assist or enhance the upper-limb function of their users. While the functionality of these devices has continuously increased, the robust and reliable detection of the user's intention to control the available degrees of freedom remains a major challenge and a barrier for acceptance. As the information interface between device and user, the intention detection strategy (IDS) has a crucial impact on the usability of the overall device. Yet, this aspect and the impact it has on the device usability is only rarely evaluated with respect to the context of use of ULO. A scoping literature review was conducted to identify non-invasive IDS applied to ULO that have been evaluated with human participants, with a specific focus on evaluation methods and findings related to functionality and usability and their appropriateness for specific contexts of use in daily life. A total of 93 studies were identified, describing 29 different IDS that are summarized and classified according to a four-level classification scheme. The predominant user input signal associated with the described IDS was electromyography (35.6%), followed by manual triggers such as buttons, touchscreens or joysticks (16.7%), as well as isometric force generated by residual movement in upper-limb segments (15.1%). We identify and discuss the strengths and weaknesses of IDS with respect to specific contexts of use and highlight a trade-off between performance and complexity in selecting an optimal IDS. Investigating evaluation practices to study the usability of IDS, the included studies revealed that, primarily, objective and quantitative usability attributes related to effectiveness or efficiency were assessed. Further, it underlined the lack of a systematic way to determine whether the usability of an IDS is sufficiently high to be appropriate for use in daily life applications. This work highlights the importance of a user- and application-specific selection and evaluation of non-invasive IDS for ULO. For technology developers in the field, it further provides recommendations on the selection process of IDS as well as to the design of corresponding evaluation protocols.

5.
IEEE Int Conf Rehabil Robot ; 2022: 1-6, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36176168

RESUMEN

Children affected by hand impairment due to cerebral palsy or stroke experience serious difficulties when performing activities of daily life (ADL), which reduces their quality of life and development. Wearable robots such as hand exoskeletons have been proposed to support people with hand impairment in therapy as well as daily tasks. While numerous actuated wearable robots have been developed, few designs support both fingers and wrist function, despite being mutually relevant for reach-to-grasp tasks. A recent feasibility study investigating the use of PEXO, a lightweight and fully wearable pediatric hand exoskeleton, showed that a wrist fixed in a slightly extended position may limit the user's ability to reach and grasp during ADL and restrict the user group. These insights and further interactions with clinicians inspired a novel design of PEXO that features an additional degree of freedom in the wrist. In this paper, we present a compliant wrist mechanism extending the existing leaf spring finger mechanism of the device. The novel design provides both wrist motion capability of 60° in flexion and extension and wrist stabilization at the same time while actively supporting finger motion. Preliminary results suggest that the adjustability in the wrist enables a larger variety of grasping gestures. The implemented wrist support has the potential to allow for a more versatile use of PEXO and increase the potential target user group.


Asunto(s)
Dispositivo Exoesqueleto , Niño , Diseño de Equipo , Mano , Fuerza de la Mano , Humanos , Calidad de Vida , Muñeca
6.
Front Robot AI ; 7: 596185, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33585573

RESUMEN

Wearable robots assist individuals with sensorimotor impairment in daily life, or support industrial workers in physically demanding tasks. In such scenarios, low mass and compact design are crucial factors for device acceptance. Remote actuation systems (RAS) have emerged as a popular approach in wearable robots to reduce perceived weight and increase usability. Different RAS have been presented in the literature to accommodate for a wide range of applications and related design requirements. The push toward use of wearable robotics in out-of-the-lab applications in clinics, home environments, or industry created a shift in requirements for RAS. In this context, high durability, ergonomics, and simple maintenance gain in importance. However, these are only rarely considered and evaluated in research publications, despite being drivers for device abandonment by end-users. In this paper, we summarize existing approaches of RAS for wearable assistive technology in a literature review and compare advantages and disadvantages, focusing on specific evaluation criteria for out-of-the-lab applications to provide guidelines for the selection of RAS. Based on the gained insights, we present the development, optimization, and evaluation of a cable-based RAS for out-of-the-lab applications in a wearable assistive soft hand exoskeleton. The presented RAS features full wearability, high durability, high efficiency, and appealing design while fulfilling ergonomic criteria such as low mass and high wearing comfort. This work aims to support the transfer of RAS for wearable robotics from controlled lab environments to out-of-the-lab applications.

7.
IEEE Int Conf Rehabil Robot ; 2019: 108-114, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31374615

RESUMEN

Children with hand motor impairment due to cerebral palsy, traumatic brain injury, or pediatric stroke are considerably affected in their independence, development, and quality of life. Treatment conventionally includes task-oriented training in occupational therapy. While dose and intensity of hand therapy can be promoted through technology, these approaches are mostly limited to large stationary robotic devices for non-task-oriented training, or passive wearable devices for children with mild impairments. Here we present PEXO, a fully wearable actuated pediatric hand exoskeleton to cover the special needs of children (6 to 12 years of age) with strong impairments in hand function. Through three degrees of freedom, PEXO provides assistance in various grasp types needed for the execution of functional tasks. It is lightweight, water proof, and inherently interacts safely with the user. It meets mechanical requirements such as force, fast closing movement, and battery lifetime derived from literature and discussions with clinicians. Appealing appearance, user-friendly design, and intuitive control with visual feedback of forearm muscle activity should keep the user motivated during training in the clinic or at home. A pilot test with a 6-years old child with stroke showed that PEXO can provide assistance in grasping various objects weighing up to 0.5 kg. These are promising first results on the way to make hand exoskeletons accessible for children with neuromotor disorders.


Asunto(s)
Parálisis Cerebral/rehabilitación , Mano/fisiopatología , Terapia Ocupacional/instrumentación , Parálisis Cerebral/fisiopatología , Niño , Diseño de Equipo , Dispositivo Exoesqueleto , Femenino , Humanos , Masculino , Proyectos Piloto , Calidad de Vida , Dispositivos Electrónicos Vestibles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA