Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
Angew Chem Int Ed Engl ; 63(5): e202315401, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38055190

RESUMEN

The organocatalytic enolization of 2-arylacetamides, followed by an enantioselective intramolecular conjugate addition to tethered 2,5-cyclohexadienones, yielding 3D fused N-heterocycles, is described. The transformation represents the first strong activating group-free activation of carboxamides via α-C-H deprotonation in a metal-free, catalytic, and enantioselective reaction, and is achieved by employing a bifunctional iminophosphorane (BIMP) superbase.

2.
Angew Chem Int Ed Engl ; 63(2): e202314308, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37955594

RESUMEN

Herein we report the first enantioselective total synthesis of (+)-incargranine A, in nine steps. The total synthesis was enabled by an enantioselective intramolecular organocatalysed desymmetrising Michael addition of a malonamate ester to a linked dienone substrate that established pivotal stereocentres with excellent enantio- and complete diastereoselectivity. Furthermore, a key hemiaminal intermediate was accessed by developing an iridium-catalysed reductive cyclisation, and the scope of this transformation was explored to produce a range of bicyclic hemiaminal motifs. Once installed, the hemiaminal motif was used to initiate a biomimetic cascade to access the natural product directly in a single step.

3.
Angew Chem Int Ed Engl ; 63(18): e202400673, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38381534

RESUMEN

A broadly improved second generation catalytic two-phase strategy for the enantioselective synthesis of stereogenic at phosphorus (V) compounds is described. This protocol, consisting of a bifunctional iminophosphorane (BIMP) catalyzed nucleophilic desymmetrization of prochiral, bench stable P(V) precursors and subsequent enantiospecific substitution allows for divergent access to a wide range of C-, N-, O- and S- substituted P(V) containing compounds from a handful of enantioenriched intermediates. A new ureidopeptide BIMP catalyst/thiaziolidinone leaving group combination allowed for a far wider substrate scope and increased reaction efficiency and practicality over previously established protocols. The resulting enantioenriched intermediates could then be transformed into an even greater range of distinct classes of P(V) compounds by displacement of the remaining leaving group as well as allowing for even further diversification downstream. Density functional theory (DFT) calculations were performed to pinpoint the origin of enantioselectivity for the BIMP-catalyzed desymmetrization, to rationalize how a superior catalyst/leaving group combination leads to increased generality in our second-generation catalytic system, as well as shed light onto observed stereochemical retention and inversion pathways when performing late-stage enantiospecific SN2@P reactions with Grignard reagents.

4.
Angew Chem Int Ed Engl ; 63(13): e202316021, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38143241

RESUMEN

An enantioselective cobalt-catalyzed C(sp3 )-H alkenylation of thioamides with but-2-ynoate ester coupling partners employing thioamide directing groups is presented. The method is operationally simple and requires only mild reaction conditions, while providing alkenylated products as single regioisomers in excellent yields (up to 85 %) and high enantiomeric excess [up to 91 : 9 enantiomeric ratio (er), or up to >99 : 1 er after a single recrystallization]. Diverse downstream derivatizations of the products are demonstrated, delivering a range of enantioenriched constructs. Extensive computational studies using density functional theory provide insight into the detailed reaction mechanism, origin of enantiocontrol, and the unusual regioselectivity of the alkenylation reaction.

5.
J Am Chem Soc ; 145(23): 12771-12782, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37253087

RESUMEN

A bifunctional iminophosphorane (BIMP)-catalyzed, enantioselective intramolecular oxa-Michael reaction of alcohols to tethered, low electrophilicity Michael acceptors is described. Improved reactivity over previous reports (1 day vs 7 days), excellent yields (up to 99%), and enantiomeric ratios (up to 99.5:0.5 er) are demonstrated. The broad reaction scope, enabled by catalyst modularity and tunability, includes substituted tetrahydrofurans (THFs) and tetrahydropyrans (THPs), oxaspirocycles, sugar and natural product derivatives, dihydro-(iso)-benzofurans, and iso-chromans. A state-of-the-art computational study revealed that the enantioselectivity originates from the presence of several favorable intermolecular hydrogen bonds between the BIMP catalyst and the substrate that induce stabilizing electrostatic and orbital interactions. The newly developed catalytic enantioselective approach was carried out on multigram scale, and multiple Michael adducts were further derivatized to an array of useful building blocks, providing access to enantioenriched biologically active molecules and natural products.

6.
J Am Chem Soc ; 145(40): 21745-21751, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37756523

RESUMEN

Reactions capable of transposing the oxidation levels of adjacent carbon atoms enable rapid and fundamental alteration of a molecule's reactivity. Herein, we report the 1,2-transposition of the carbon atom oxidation level in cyclic and acyclic tertiary amides, resulting in the one-pot synthesis of 1,2- and 1,3-oxygenated tertiary amines. This oxidation level transfer was facilitated by the careful orchestration of an iridium-catalyzed reduction with the functionalization of transiently formed enamine intermediates. A novel 1,2-carbonyl transposition is described, and the breadth of this redox transposition strategy has been further explored by the development of aminoalcohol and enaminone syntheses. The diverse ß-functionalized amine products were shown to be multifaceted and valuable synthetic intermediates, accessing challenging biologically relevant motifs.

7.
J Am Chem Soc ; 145(9): 5422-5430, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36820616

RESUMEN

Herein, we describe the convergent enantioselective total synthesis of himalensine A in 18 steps, enabled by a highly enantio- and diastereoselective construction of the morphan core via a palladium/hydroxy proline co-catalyzed desymmetrization of vinyl-bromide-tethered cyclohexanones. The reaction pathway was illuminated by density functional theory calculations, which support an intramolecular Heck reaction of an in situ-generated enamine intermediate, where exquisite enantioselectivity arises from intramolecular carboxylate coordination to the vinyl palladium species in the rate- and enantio-determining carbopalladation steps. The reaction tolerates diverse N-derivatives, all-carbon quaternary centers, and trisubstituted olefins, providing access to molecular scaffolds found in a range of complex natural products. Following large-scale preparation of a key substrate and installation of a ß-substituted enone moiety, the rapid construction of himalensine A was achieved using a highly convergent strategy based on an amide coupling/Michael addition/allylation/ring-closing metathesis sequence which allowed the introduction of three of the five rings in only three synthetic steps (after telescoping). Moreover, our strategy provides a new enantioselective access to a known tetracyclic late-stage intermediate that has been used previously in the synthesis of many Daphniphyllum alkaloids.

8.
Chem Soc Rev ; 51(14): 5878-5929, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35770619

RESUMEN

Acyclic α-tertiary ethers represent a highly prevalent functionality, common to high-value bioactive molecules, such as pharmaceuticals and natural products, and feature as crucial synthetic handles in their construction. As such their synthesis has become an ever-more important goal in synthetic chemistry as the drawbacks of traditional strong base- and acid-mediated etherifications have become more limiting. In recent years, the generation of highly reactive intermediates via redox approaches has facilitated the synthesis of highly sterically-encumbered ethers and accordingly these strategies have been widely applied in α-tertiary ether synthesis. This review summarises and appraises the state-of-the-art in the application of redox strategies enabling acyclic α-tertiary ether synthesis.


Asunto(s)
Productos Biológicos , Éteres , Productos Biológicos/química , Éter , Éteres/química , Oxidación-Reducción
9.
Angew Chem Int Ed Engl ; 62(21): e202303391, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36929179

RESUMEN

Herein we describe the enantioselective intermolecular conjugate addition of nitroalkanes to unactivated α,ß-unsaturated esters, catalyzed by a bifunctional iminophosphorane (BIMP) superbase. The transformation provides the most direct access to pharmaceutically relevant enantioenriched γ-nitroesters, utilizing feedstock chemicals, with unprecedented selectivity. The methodology exhibits a broad substrate scope, including ß-(fluoro)alkyl, aryl and heteroaryl substituted electrophiles, and was successfully applied on a gram scale with reduced catalyst loading, and, additionally, catalyst recovery was carried out. The formal synthesis of a range of drug molecules, and an enantioselective synthesis of (S)-rolipram were achieved. Additionally, computational studies revealed key reaction intermediates and transition state structures, and provided rationale for high enantioselectivities, in good agreement with experimental results.

10.
J Am Chem Soc ; 144(2): 1006-1015, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34990142

RESUMEN

The first metal-free catalytic intermolecular enantioselective Michael addition to unactivated α,ß-unsaturated amides is described. Consistently high enantiomeric excesses and yields were obtained over a wide range of alkyl thiol pronucleophiles and electrophiles under mild reaction conditions, enabled by a novel squaramide-based bifunctional iminophosphorane catalyst. Low catalyst loadings (2.0 mol %) were achieved on a decagram scale, demonstrating the scalability of the reaction. Computational analysis revealed the origin of the high enantiofacial selectivity via analysis of relevant transition structures and provided substantial support for specific noncovalent activation of the carbonyl group of the α,ß-unsaturated amide by the catalyst.

11.
J Am Chem Soc ; 144(3): 1407-1415, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35037758

RESUMEN

The enantioselective total synthesis of madangamine E has been completed in 30 steps, enabled by a new catalytic and highly enantioselective desymmetrizing intramolecular Michael addition reaction of a prochiral ketone to a tethered ß,ß'-disubstituted nitroolefin. This key carbon-carbon bond forming reaction efficiently constructed a chiral bicyclic core in near-perfect enantio- and diastereo-selectivity, concurrently established three stereogenic centers, including a quaternary carbon, and proved highly scalable. Furthermore, the pathway and origins of enantioselectivity in this catalytic cyclization were probed using density functional theory (DFT) calculations, which revealed the crucial substrate/catalyst interactions in the enantio-determining step. Following construction of the bicyclic core, the total synthesis of madangamine E could be completed, with key steps including a mild one-pot oxidative lactamization of an amino alcohol, a two-step Z-selective olefination of a sterically hindered ketone, and ring-closing metatheses to install the two macrocyclic rings.

12.
J Org Chem ; 87(18): 12498-12505, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36054913

RESUMEN

A one-pot 1,3,4-oxadiazole synthesis-arylation strategy for accessing 2,5-disubstituted 1,3,4-oxadiazoles, from carboxylic acids, N-isocyaniminotriphenylphosphorane (NIITP), and aryl iodides, is reported. The reaction sequence, featuring a second stage copper-catalyzed 1,3,4-oxadiazole arylation, was found to tolerate (hetero)aryl, alkyl, and alkenyl carboxylic acids, and (hetero)aryl iodide coupling partners. The effectiveness of the two-stage strategy was exemplified by the late-stage functionalization of five carboxylic acid-containing APIs, and an extension to the synthesis of aminated 1,3,4-oxadiazoles using N-benzoyloxy amine coupling partners was also demonstrated.


Asunto(s)
Ácidos Carboxílicos , Oxadiazoles , Aminas , Cobre , Yoduros
13.
Chem Soc Rev ; 50(9): 5517-5563, 2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-33690769

RESUMEN

The selective and efficient C-H methylation of sp2 and sp3 carbon centres has become a powerful transformation in the synthetic toolbox. Due to the potential for profound changes to physicochemical properties attributed to the installation of a "Magic Methyl" group at a strategic site in a lead compound, such techniques have become highly desirable in modern drug discovery and synthesis programmes. This review will cover the diverse techniques that have been employed to enable the selective installation of the C-Me bond in a wide range of chemical structures, from simple building blocks to complex drug-like architectures.


Asunto(s)
Técnicas de Química Sintética , Compuestos Orgánicos/síntesis química , Metilación , Estructura Molecular , Compuestos Orgánicos/química
14.
J Am Chem Soc ; 143(29): 10828-10835, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34254792

RESUMEN

A new reductive strategy for the stereo- and regioselective synthesis of functionalized isoquinuclidines has been developed. Pivoting on the chemoselective iridium(I)-catalyzed reductive activation of ß,γ-unsaturated δ-lactams, the efficiently produced reactive dienamine intermediates readily undergo [4 + 2] cycloaddition reactions with a wide range of dienophiles, resulting in the formation of bridged bicyclic amine products. This new synthetic approach was extended to aliphatic starting materials, resulting in the efficient formation of cyclohexenamine products, and readily applied as the key step in the shortest (five-step) total synthesis of vinca alkaloid catharanthine to date, proceeding via its elusive biosynthetic precursor, dehydrosecodine.

15.
Acc Chem Res ; 53(10): 2235-2247, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32886474

RESUMEN

To improve the field of catalysis, there is a substantial and growing need for novel high-performance catalysts providing new reactivity. To date, however, the set of reactions that can be reliably performed to prepare chiral compounds in largely one enantiomeric form using chiral catalysts still represents a small fraction of the toolkit of known transformations. In this context, chiral Brønsted bases have played an expanding role in catalyzing enantioselective reactions between various carbon- and heteroatom-centered acids and a host of electrophilic reagents. This Account describes our recent efforts developing and applying a new family of chiral Brønsted bases incorporating an H-bond donor moiety and a strongly basic iminophosphorane, which we have named BIMPs (Bifunctional IMinoPhosphoranes), as efficient catalysts for reactions currently out of reach of more widespread tertiary amine centered bifunctional catalysts. The iminophosphorane Brønsted base is easily generated by the Staudinger reaction of a chiral organoazide and commercially available phosphine, which allows easy modification of the catalyst structure and fine-tuning of the iminophosphorane pKBH+. We have demonstrated that BIMP catalysts can efficiently promote the enantioselective addition of nitromethane to low reactivity N-diphenylphosphinoyl (DPP)-protected imines of ketones (ketimines) to access valuable chiral diamine and α-quaternary amino acid building blocks, and later extended this methodology to phosphite nucleophiles. Subsequently, the reaction scope was expanded to include the Michael addition of high pKa alkyl thiols to α-substituted acrylate esters, ß-substituted α,ß-unsaturated esters, and alkenyl benzimidazoles as well as the challenging direct aldol addition of aryl ketones to α-fluorinated ketones. Finally, BIMP catalysts were shown to be used in key steps in the synthesis of complex alkaloid natural products (-)-nakadomarin A and (-)-himalensine A, as well as in polymer synthesis. In most cases, the predictable nature of the BIMP promoted reactions was demonstrated by multigram scale-up while employing low catalyst loadings (down to 0.05 mol%). Furthermore, it was shown that BIMP catalysts can be easily immobilized onto a solid support in one-step for increased catalyst recycling and flow chemistry applications. Alongside our own work, this Account also includes elegant work by Johnson and co-workers utilizing the BIMP catalyst system, when alternative catalysts proved suboptimal.

16.
Angew Chem Int Ed Engl ; 60(36): 19725-19729, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34191400

RESUMEN

An iridium-catalyzed reductive three-component coupling reaction for the synthesis of medicinally relevant α-amino 1,3,4-oxadiazoles from abundant tertiary amides or lactams, carboxylic acids, and (N-isocyanimino) triphenylphosphorane, is described. Proceeding under mild conditions using (<1 mol %) Vaska's complex (IrCl(CO)(PPh3 )2 ) and tetramethyldisiloxane to access the key reactive iminium ion intermediates, a broad range of α-amino 1,3,4-oxadiazole architectures were accessed from carboxylic acid feedstock coupling partners. Extension to α-amino heterodiazole synthesis was readily achieved by exchanging the carboxylic acid coupling partner for C-, S-, or N-centered Brønsted acids, and provided rapid and modular access to these desirable, yet difficult-to-access, heterocycles. The high chemoselectivity of the catalytic reductive activation step allowed late-stage functionalization of 10 drug molecules, including the synthesis of heterodiazole-fused drug-drug conjugates.

17.
Angew Chem Int Ed Engl ; 60(45): 24116-24123, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34449968

RESUMEN

A reagent-controlled stereodivergent carbocyclisation of aryl aldimine-derived, photocatalytically generated, α-amino radicals possessing adjacent conjugated alkenes, affording either bicyclic or tetracyclic products, is described. Under net reductive conditions using commercial Hantzsch ester, the α-amino radical species underwent a single stereoselective cyclisation to give trans-configured amino-indane structures in good yield, whereas using a substituted Hantzsch ester as a milder reductant afforded cis-fused tetracyclic tetrahydroquinoline frameworks, resulting from two consecutive radical cyclisations. Judicious choice of the reaction conditions allowed libraries of both single and dual cyclisation products to be synthesised with high selectivity, notable predictability, and good-to-excellent yields. Computational analysis employing DFT revealed the reaction pathway and mechanistic rationale behind this finely balanced yet readily controlled photocatalytic system.

18.
J Org Chem ; 85(4): 2785-2792, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-31870157

RESUMEN

The highly enantioselective Mannich reaction of diazoacetate esters with N-Boc aldimines catalyzed by silver(I) triflate in the presence of (R)-DM-SEGPHOS is reported. The reaction is broad in scope with respect to the (hetero)aromatic aldehyde-derived aldimine and tolerates significant variability of the diazoacetate ester component. Yields and enantioselectivities are good to excellent, and the reaction can be performed on a gram scale with catalyst loadings as low as 1 mol %.

19.
Angew Chem Int Ed Engl ; 59(29): 11903-11907, 2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32329555

RESUMEN

A new method for the synthesis of α-branched amines by reductive functionalization of tertiary carboxamides and lactams is described. The process relies on the efficient and controlled reduction of tertiary amides by a sodium hydride/sodium iodide composite, in situ treatment of the resulting anionic hemiaminal with trimethylsilyl chloride and subsequent coupling with nucleophilic reagents including Grignard reagents and tetrabutylammonium cyanide. The new method exhibits broad functional-group compatibility, operates under transition-metal-free reaction conditions, and is suitable for various synthetic applications on both sub-millimole and on multigram scales.

20.
Angew Chem Int Ed Engl ; 59(13): 5359-5364, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-31961990

RESUMEN

The catalytic enantioselective synthesis of α-fluorinated chiral tertiary alcohols from (hetero)aryl methyl ketones is described. The use of a bifunctional iminophosphorane (BIMP) superbase was found to facilitate direct aldol addition by providing the strong Brønsted basicity required for rapid aryl enolate formation. The new synthetic protocol is easy to perform and tolerates a broad range of functionalities and heterocycles with high enantioselectivity (up to >99:1 e.r.). Multi-gram scalability has been demonstrated along with catalyst recovery and recycling. 1 H NMR studies identified a 1400-fold rate enhancement under BIMP catalysis, compared to the prior state-of-the-art catalytic system. The utility of the aldol products has been highlighted with the synthesis of various enantioenriched building blocks and heterocycles, including 1,3-aminoalcohol, 1,3-diol, oxetane, and isoxazoline derivatives.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA