Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
BMC Cancer ; 22(1): 1015, 2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36153517

RESUMEN

BACKGROUND: Oncogenic Human Papillomaviruses (HPVs) base their transforming potential on the action of both E6 and E7 viral oncoproteins, which perform cooperative or antagonistic actions and thus interfere with a variety of relevant cellular targets. Among them, the expression of some PDZ-containing polarity proteins, as DLG1 and hScrib, is altered during the HPV life cycle and the consequent malignant transformation. Together with the well-established interference of E6 with PDZ proteins, we have recently shown that E7 viral oncoprotein is also responsible for the changes in abundance and localization of DLG1 observed in HPV-associated lesions. Given that the mechanisms involved remained only partially understood, we here thoroughly analyse the contribution of a crucial E7 post-translational modification: its CKII-dependent phosphorylation. Moreover, we extended our studies to hScrib, in order to investigate possible conserved regulatory events among diverse PDZ targets of HPV. METHODS: We have acutely analysed the expression of DLG1 and hScrib in restrictive conditions for E7 phosphorylation by CKII in epithelial culture cells by western blot and confocal fluorescence microscopy. We made use of genome-edited HPV-positive cells, specific inhibitors of CKII activity and transient expression of the viral oncoproteins, including a mutant version of E7. RESULTS: We here demonstrate that the functional phosphorylation of E7 oncoprotein by the CKII cellular kinase, a key regulatory event for its activities, is also crucial to counteract the E6-mediated degradation of the PDZ-polarity protein DLG1 and to promote its subcellular redistribution. Moreover, we show that the CKII-dependent phosphorylation of E7 is able to control the expression of another PDZ target of HPV: hScrib. Remarkably, we found this is a shared feature among different oncogenic HPV types, suggesting a common path towards viral pathogenesis. CONCLUSIONS: The present study sheds light into the mechanisms behind the misexpression of PDZ-polarity proteins during HPV infections. Our findings stress the relevance of the CKII-mediated regulation of E7 activities, providing novel insights into the joint action of HPV oncoproteins and further indicating a conserved and most likely crucial mechanism during the viral life cycle and the associated transformation.


Asunto(s)
Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Transformación Celular Neoplásica , Humanos , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo , Papillomaviridae/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Procesamiento Proteico-Postraduccional
2.
BMC Cancer ; 20(1): 293, 2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32264889

RESUMEN

BACKGROUND: Persistent infection with high-risk Human Papillomavirus (HPVs) is associated with the development of cervical cancer. The transforming capacity of these viruses relies on the cooperative action of the E6 and E7 viral oncoproteins. Among the oncogenic activities of E6, the interaction and interference with cell polarity PDZ proteins have been well established. One of the most characterized PDZ targets of HPV E6 is human Disc large 1 (DLG1), a scaffolding protein involved in the control of cell polarity and proliferation. Interestingly, in cervical squamous intraepithelial lesions, alterations in DLG1 expression were observed in association to tumour progression. Moreover, the expression of both HPV E6 and E7 proteins may be responsible for the changes in DLG1 abundance and cell localization observed in the HPV-associated lesions. METHODS: Due to the relevance of DLG1 deregulation in tumour development, we have performed an in-depth investigation of the expression of DLG1 in the presence of the HPV oncoproteins in epithelial cultured cells. The effects of HPV E6 and E7 proteins on DLG1 abundance and subcellular localization were assessed by western blot and confocal fluorescence microscopy, respectively. RESULTS: We demonstrated that the relative abundance of HPV-18 E6 and DLG1 is a key factor that contributes to defining the expression abundance of both proteins. We also show here that a high expression level of DLG1 may negatively affect HPV-18 E6 nuclear expression. Moreover, the co-expression of HPV-18 E6 and E7 produces a striking effect on DLG1 subcellular localization and a co-distribution in the cytoplasmic region. Interestingly, HPV-18 E7 is also able to increase DLG1 levels, likely by rescuing it from the E6-mediated proteasomal degradation. CONCLUSIONS: In general, the data suggest that HPV-18 E6 and E7 may have opposing activities in regards to the regulation of DLG1 levels and may cooperatively contribute to its subcellular redistribution in the HPV context. These findings constitute a step forward in understanding the differential expression of DLG1 during tumour progression in an HPV-associated model.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Homólogo 1 de la Proteína Discs Large/genética , Células Epiteliales/virología , Proteínas Oncogénicas Virales/metabolismo , Infecciones por Papillomavirus/genética , Células A549 , Polaridad Celular , Proliferación Celular , Proteínas de Unión al ADN/genética , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Regulación de la Expresión Génica , Células HEK293 , Humanos , Proteínas Oncogénicas Virales/genética , Infecciones por Papillomavirus/metabolismo
3.
Biol Chem ; 400(6): 699-710, 2019 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-30517074

RESUMEN

Human disc large (DLG1) is a scaffolding protein that through the interaction with diverse cell partners participates in the control of key cellular processes such as polarity, proliferation and migration. Experimental data have mainly identified DLG1 as a tumor suppressor. An outstanding point for DLG1 protein is that altered DLG1 expression and DLG1 gene mutations were observed in different pathologies, including cancer and neurological and immunological disorders. Evident changes in DLG1 abundance and/or cell localization were identified in a number of studies suggesting its participation in molecular mechanisms responsible for the development of such illnesses. In this review, we focus on some of the latest findings regarding DLG1 alterations in different diseases as well as its potential use as a biomarker for pathological progression. We further address the current knowledge on the molecular mechanisms regulating DLG1 expression and the posttranslational modifications that may affect DLG1 cell localization and functions. Despite the advances in this field, there are still open questions about the precise molecular link between alterations in DLG1 expression and the development of each specific pathology. The complete understanding of this concern will give us new scenarios for the design of promising diagnosis and therapeutic tools.


Asunto(s)
Homólogo 1 de la Proteína Discs Large/genética , Enfermedad , Humanos , Mutación
4.
J Mol Cell Biol ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38305139

RESUMEN

The high mutation rate of SARS-CoV-2 leads to the emergence of multiple variants, some of which are resistant to vaccines and drugs targeting viral elements. Targeting host dependency factors, e.g. cellular proteins required for viral replication, would help prevent resistance. However, it remains unclear whether different SARS-CoV-2 variants induce conserved cellular responses and exploit the same core host factors. To this end, we compared three variants of concern and found that the host transcriptional response was conserved, differing only in kinetics and magnitude. Through CRISPR screening, we identified host genes required for infection by each variant. Most of the genes were shared by multiple variants. We validated our hits with small molecules and repurposed Food and Drug Administration-approved drugs. All the drugs were highly active against all the variants tested, including new variants that emerged during the study (Delta and Omicron). Mechanistically, we identified reactive oxygen species production as a key step in early virus replication. Antioxidants such as N-acetyl cysteine (NAC) were effective against all the variants in both human lung cells and a humanised mouse model. Our study supports the use of available antioxidant drugs, such as NAC, as a general and effective anti-COVID-19 approach.

5.
Virus Res ; 304: 198544, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34400226

RESUMEN

Zika Virus (ZIKV) is an RNA virus that belongs to the Flavivirus (FV) genus. In the last years, several unique characteristics of ZIKV among FV have been revealed, as the multiple routes of transmission and its ability to reach different human tissues, including the central nervous system. Thus, one of the most intriguing features of ZIKV biology is its ability to cross diverse complex biological barriers. The main aim of this study is to contribute to the understanding of the still unclear mechanisms behind this viral activity. We investigated an African strain and two South American ZIKV isolates belonging to the Asian lineage, in order to characterize possible differences regarding their ability to disturb intercellular junctions. The Asian isolates correspond to an imported (Venezuelan) and an autochthonous (Argentinian) ZIKV strain for which there is still no data available. We focused on occludin and DLG1 expression as markers of tight and adherent junctions, respectively. For this, we applied a quantitative immunofluorescence assay that can ascertain alterations in the cell junction proteins expression in the infected cells. Our findings indicated that the different ZIKV strains were able to reduce the levels of both polarity proteins without altering their overall cell distribution. Moreover, the grade of this effect was strain-dependent, being the DLG1 reduction higher for the African and Asian Venezuelan isolates and, on the contrary, occludin down-regulation was more noticeable for the Argentinian strain. Interestingly, among both junction proteins the viral infection caused a relative larger reduction in DLG1 expression for all viruses, suggesting DLG1 may be of particular relevance for ZIKV infections. Taken together, this study contributes to the knowledge of the biological mechanisms involved in ZIKV cytopathogenesis, with a special focus on regional isolates.


Asunto(s)
Homólogo 1 de la Proteína Discs Large , Ocludina , Infección por el Virus Zika , Homólogo 1 de la Proteína Discs Large/genética , Humanos , Ocludina/genética , Virus Zika
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA