Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Allergy Clin Immunol ; 149(1): 369-378, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33991581

RESUMEN

BACKGROUND: Accurate, detailed, and standardized phenotypic descriptions are essential to support diagnostic interpretation of genetic variants and to discover new diseases. The Human Phenotype Ontology (HPO), extensively used in rare disease research, provides a rich collection of vocabulary with standardized phenotypic descriptions in a hierarchical structure. However, to date, the use of HPO has not yet been widely implemented in the field of inborn errors of immunity (IEIs), mainly due to a lack of comprehensive IEI-related terms. OBJECTIVES: We sought to systematically review available terms in HPO for the depiction of IEIs, to expand HPO, yielding more comprehensive sets of terms, and to reannotate IEIs with HPO terms to provide accurate, standardized phenotypic descriptions. METHODS: We initiated a collaboration involving expert clinicians, geneticists, researchers working on IEIs, and bioinformaticians. Multiple branches of the HPO tree were restructured and extended on the basis of expert review. Our ontology-guided machine learning coupled with a 2-tier expert review was applied to reannotate defined subgroups of IEIs. RESULTS: We revised and expanded 4 main branches of the HPO tree. Here, we reannotated 73 diseases from 4 International Union of Immunological Societies-defined IEI disease subgroups with HPO terms. We achieved a 4.7-fold increase in the number of phenotypic terms per disease. Given the new HPO annotations, we demonstrated improved ability to computationally match selected IEI cases to their known diagnosis, and improved phenotype-driven disease classification. CONCLUSIONS: Our targeted expansion and reannotation presents enhanced precision of disease annotation, will enable superior HPO-based IEI characterization, and hence benefit both IEI diagnostic and research activities.


Asunto(s)
Enfermedades Genéticas Congénitas/clasificación , Enfermedades del Sistema Inmune/clasificación , Enfermedades Raras/clasificación , Ontologías Biológicas , Humanos , Fenotipo
2.
J Clin Immunol ; 41(6): 1272-1290, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33929673

RESUMEN

Biallelic inactivating mutations in IL21R causes a combined immunodeficiency that is often complicated by cryptosporidium infections. While eight IL-21R-deficient patients have been reported previously, the natural course, immune characteristics of disease, and response to hematopoietic stem cell transplantation (HSCT) remain to be comprehensively examined. In our study, we have collected clinical histories of 13 patients with IL-21R deficiency from eight families across seven centers worldwide, including five novel patients identified by exome or NGS panel sequencing. Eight unique mutations in IL21R were identified in these patients, including two novel mutations. Median age at disease onset was 2.5 years (0.5-7 years). The main clinical manifestations were recurrent bacterial (84.6%), fungal (46.2%), and viral (38.5%) infections; cryptosporidiosis-associated cholangitis (46.2%); and asthma (23.1%). Inflammatory skin diseases (15.3%) and recurrent anaphylaxis (7.9%) constitute novel phenotypes of this combined immunodeficiency. Most patients exhibited hypogammaglobulinemia and reduced proportions of memory B cells, circulating T follicular helper cells, MAIT cells and terminally differentiated NK cells. However, IgE levels were elevated in 50% of IL-21R-deficient patients. Overall survival following HSCT (6 patients, mean follow-up 1.8 year) was 33.3%, with pre-existing organ damage constituting a negative prognostic factor. Mortality of non-transplanted patients (n = 7) was 57.1%. Our detailed analysis of the largest cohort of IL-21R-deficient patients to date provides in-depth clinical, immunological and immunophenotypic features of these patients, thereby establishing critical non-redundant functions of IL-21/IL-21R signaling in lymphocyte differentiation, humoral immunity and host defense against infection, and mechanisms of disease pathogenesis due to IL-21R deficiency. Outcome following HSCT depends on prior chronic infections and organ damage, which should thus be considered as early as possible following molecular diagnosis.


Asunto(s)
Subunidad alfa del Receptor de Interleucina-21/deficiencia , Subunidad alfa del Receptor de Interleucina-21/genética , Adolescente , Linfocitos B/inmunología , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Niño , Preescolar , Criptosporidiosis/genética , Criptosporidiosis/inmunología , Cryptosporidium/inmunología , Femenino , Genómica/métodos , Humanos , Inmunidad Humoral/genética , Inmunidad Humoral/inmunología , Lactante , Subunidad alfa del Receptor de Interleucina-21/inmunología , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Masculino , Células B de Memoria/inmunología , Infección Persistente/genética , Infección Persistente/inmunología , Fenotipo , Transducción de Señal/genética , Transducción de Señal/inmunología , Adulto Joven
3.
Blood ; 134(18): 1510-1516, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31501153

RESUMEN

Dysregulated immune responses are essential underlying causes of a plethora of pathologies including cancer, autoimmunity, and immunodeficiency. We here investigated 4 patients from unrelated families presenting with immunodeficiency, autoimmunity, and malignancy. We identified 4 distinct homozygous mutations in TNFRSF9 encoding the tumor necrosis factor receptor superfamily member CD137/4-1BB, leading to reduced, or loss of, protein expression. Lymphocytic responses crucial for immune surveillance, including activation, proliferation, and differentiation, were impaired. Genetic reconstitution of CD137 reversed these defects. CD137 deficiency is a novel inborn error of human immunity characterized by lymphocytic defects with early-onset Epstein-Barr virus (EBV)-associated lymphoma. Our findings elucidate a functional role and relevance of CD137 in human immune homeostasis and antitumor responses.


Asunto(s)
Enfermedades Autoinmunes/genética , Síndromes de Inmunodeficiencia/genética , Linfoma/genética , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/genética , Enfermedades Autoinmunes/inmunología , Femenino , Predisposición Genética a la Enfermedad , Humanos , Síndromes de Inmunodeficiencia/inmunología , Linfoma/inmunología , Masculino , Linaje , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/deficiencia
4.
Hum Mol Genet ; 27(6): 954-968, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29325092

RESUMEN

Sandhoff disease (SD) is a rare inherited disorder caused by a deficiency of ß-hexosaminidase activity which is fatal because no effective treatment is available. A mouse model of Hexb deficiency reproduces the key pathognomonic features of SD patients with severe ubiquitous lysosomal dysfunction, GM2 accumulation, neuroinflammation and neurodegeneration, culminating in death at 4 months. Here, we show that a single intravenous neonatal administration of a self-complementary adeno-associated virus 9 vector (scAAV9) expressing the Hexb cDNA in SD mice is safe and sufficient to prevent disease development. Importantly, we demonstrate for the first time that this treatment results in a normal lifespan (over 700 days) and normalizes motor function assessed by a battery of behavioral tests, with scAAV9-treated SD mice being indistinguishable from wild-type littermates. Biochemical analyses in multiple tissues showed a significant increase in hexosaminidase A activity, which reached 10-15% of normal levels. AAV9 treatment was sufficient to prevent GM2 and GA2 storage almost completely in the cerebrum (less so in the cerebellum), as well as thalamic reactive gliosis and thalamocortical neuron loss in treated Hexb-/- mice. In summary, this study demonstrated a widespread protective effect throughout the entire CNS after a single intravenous administration of the scAAV9-Hexb vector to neonatal SD mice.


Asunto(s)
Hexosaminidasa B/farmacología , Enfermedad de Sandhoff/tratamiento farmacológico , Enfermedad de Sandhoff/patología , Administración Intravenosa , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Femenino , Gangliósido G(M2)/metabolismo , Gangliósidos/metabolismo , Hexosaminidasa B/genética , Hexosaminidasa B/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad de Sandhoff/metabolismo
5.
Nucleic Acids Res ; 45(W1): W567-W572, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28520890

RESUMEN

Next generation sequencing is widely used to link genetic variants to diseases, and it has massively accelerated the diagnosis and characterization of rare genetic diseases. After initial bioinformatic data processing, the interactive analysis of genome, exome, and panel sequencing data typically starts from lists of genetic variants in VCF format. Medical geneticists filter and annotate these lists to identify variants that may be relevant for the disease under investigation, or to select variants that are reported in a clinical diagnostics setting. We developed VCF.Filter to facilitate the search for disease-linked variants, providing a standalone Java program with a user-friendly interface for interactive variant filtering and annotation. VCF.Filter allows the user to define a broad range of filtering criteria through a graphical interface. Common workflows such as trio analysis and cohort-based filtering are pre-configured, and more complex analyses can be performed using VCF.Filter's support for custom annotations and filtering criteria. All filtering is documented in the results file, thus providing traceability of the interactive variant prioritization. VCF.Filter is an open source tool that is freely and openly available at http://vcffilter.rarediseases.at.


Asunto(s)
Enfermedad/genética , Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Programas Informáticos , Humanos , Internet , Interfaz Usuario-Computador
6.
Br J Haematol ; 182(2): 251-258, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29797310

RESUMEN

Establishing a precise diagnosis is essential in inborn haematological cytopenias to enable appropriate treatment decisions and avoid secondary organ damage. However, both diversity and phenotypic overlap of distinct disease entities may make the identification of underlying genetic aetiologies by classical Sanger sequencing challenging. Instead of exome sequencing, we established a systematic next generation sequencing-based panel targeting 292 candidate genes and screened 38 consecutive patients for disease-associated mutations. Efficient identification of the underlying genetic cause in 17 patients (44·7%), including 13 novel mutations, demonstrates that this approach is time- and cost-efficient, enabling optimal management and genetic counselling.


Asunto(s)
Genes/genética , Enfermedades Hematológicas/genética , Mutación/genética , Adolescente , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Pruebas Genéticas/métodos , Humanos , Lactante , Masculino , Linaje , Adulto Joven
9.
Nat Commun ; 15(1): 1640, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388531

RESUMEN

THOC6 variants are the genetic basis of autosomal recessive THOC6 Intellectual Disability Syndrome (TIDS). THOC6 is critical for mammalian Transcription Export complex (TREX) tetramer formation, which is composed of four six-subunit THO monomers. The TREX tetramer facilitates mammalian RNA processing, in addition to the nuclear mRNA export functions of the TREX dimer conserved through yeast. Human and mouse TIDS model systems revealed novel THOC6-dependent, species-specific TREX tetramer functions. Germline biallelic Thoc6 loss-of-function (LOF) variants result in mouse embryonic lethality. Biallelic THOC6 LOF variants reduce the binding affinity of ALYREF to THOC5 without affecting the protein expression of TREX members, implicating impaired TREX tetramer formation. Defects in RNA nuclear export functions were not detected in biallelic THOC6 LOF human neural cells. Instead, mis-splicing was detected in human and mouse neural tissue, revealing novel THOC6-mediated TREX coordination of mRNA processing. We demonstrate that THOC6 is required for key signaling pathways known to regulate the transition from proliferative to neurogenic divisions during human corticogenesis. Together, these findings implicate altered RNA processing in the developmental biology of TIDS neuropathology.


Asunto(s)
Discapacidad Intelectual , ARN , Estilbenos , Ácidos Sulfónicos , Humanos , Animales , Ratones , ARN/metabolismo , Discapacidad Intelectual/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Procesamiento Postranscripcional del ARN , Transporte de ARN , Mamíferos/genética , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
10.
Res Sq ; 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37720017

RESUMEN

THOC6 is the genetic basis of autosomal recessive THOC6 Intellectual Disability Syndrome (TIDS). THOC6 facilitates the formation of the Transcription Export complex (TREX) tetramer, composed of four THO monomers. The TREX tetramer supports mammalian mRNA processing that is distinct from yeast TREX dimer functions. Human and mouse TIDS model systems allow novel THOC6-dependent TREX tetramer functions to be investigated. Biallelic loss-of-functon(LOF) THOC6 variants do not influence the expression and localization of TREX members in human cells, but our data suggests reduced binding affinity of ALYREF. Impairment of TREX nuclear export functions were not detected in cells with biallelic THOC6 LOF. Instead, mRNA mis-splicing was observed in human and mouse neural tissue, revealing novel insights into THOC6-mediated TREX coordination of mRNA processing. We demonstrate that THOC6 is required for regulation of key signaling pathways in human corticogenesis that dictate the transition from proliferative to neurogenic divisions that may inform TIDS neuropathology.

11.
Artículo en Inglés | MEDLINE | ID: mdl-33634762

RESUMEN

BACKGROUND: Dedicator of Cytokinesis 8 (DOCK8) deficiency, the most frequent cause of autosomal recessive hyper immunoglobulin (Ig)E syndrome, is a rare combined immunodeficiency. OBJECTIVE: In this study, we report seven patients, with consanguineous parents, with five novel variants within the DOCK8 gene. METHODS: For genetic analysis, we performed Whole Exome Sequencing (WES) or targeted sequencing by means of Next-generation sequencing (NGS) for some of the patients. For others, Sanger sequencing, Fluorescence-activated cell sorting (FACS), or polymerase chain reaction (PCR) were used. RESULTS: We report five novel variants within the DOCK8 gene: three deletions (deletion of exons 4-12, 24-30, and 22-27), one frameshift (LRG_196:g.189315dup;p.(Leu1052Profs*7)), and a splice region variant (LRG_196t1:c.741+5G>T). Patients presented with skin lesions, food allergy, candidiasis, otitis, recurrent respiratory infections, short stature, aortic aneurism, gynecomastia, and coarse facial features. Patients had leukocytosis, eosinophilia, lymphopenia, and monocytosis, elevated IgE, IgG, IgA, reduced IgM and IgA levels. Patients had a low percentage of CD3+ and CD4+ cells and a high percentage of CD19+, CD27+CD19+, and recent thymic emigrants T cells. The percentage of natural killer cells was increased in one of the patients while it was decreased in another patient. One patient died due to disseminated intravascular coagulation after hematopoietic stem cell transplantation. CONCLUSION: We reported novel variants within the DOCK8 gene and highlighted the risk of aneurysms in these patients, which have been rarely reported in these patients.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/genética , Síndrome de Job/genética , Adolescente , Niño , Preescolar , Consanguinidad , Análisis Mutacional de ADN , Femenino , Factores de Intercambio de Guanina Nucleótido/deficiencia , Humanos , Irán , Síndrome de Job/inmunología , Síndrome de Job/patología , Masculino , Mutación , Linaje , Secuenciación del Exoma
12.
Allergy Asthma Clin Immunol ; 18(1): 111, 2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36566211

RESUMEN

BACKGROUND: Bullous pemphigoid is the most common autoimmune subepidermal blistering disorder with a low incidence in childhood. Combined immunodeficiencies (CIDs) are a group of monogenic inborn errors of immunity (IEIs) characterized by T- and B-cell dysfunction leading to recurrent infections, lymphoproliferation, predisposition to malignancy, and autoimmunity. Here, we report two Afghan siblings with a diagnosis of CID and extremely rare manifestation of diffuse bullous pemphigoid skin lesions. CASE PRESENTATION: The older sibling (patient 1) was a 32-month-old male with facial dysmorphism, protracted diarrhea, failure to thrive, recurrent oral candidiasis, recurrent otitis media with tympanic membrane perforation, who had been previously diagnosed with CID. While he was under treatment with intravenous immunoglobulin (IVIg), he developed extensive blistering lesions, which were diagnosed as childhood bullous pemphigoid. Methylprednisolone and azathioprine were added to the regimen, which resulted in a remarkable improvement of the skin lesions and also the feeding condition. However,2 weeks later, he was re-admitted to the intensive care unit (ICU) and eventually died due to fulminant sepsis. Later, his 12-month-old sister (patient 2) with similar facial dysmorphism and a history of developmental delay, food allergy, recurrent oral candidiasis, and respiratory tract infections also developed blistering skin lesions. She was under treatment for occasional eczematous lesions, and had been receiving IVIg for 3 months due to low levels of immunoglobulins. Further immunologic workup showed an underlying CID and thus treatment with IVIg continued, gradually improving her clinical condition. The genetic study of both siblings revealed a novel homozygous mutation in exon 7 of the PGM3 gene, c.845 T > C (p.Val282Ala). CONCLUSIONS: Dermatologic disorders may be the presenting sign in patients with CID and mutated PGM3. This case report further extends the spectrum of skin manifestations that could be observed in PGM3 deficiency and emphasizes the importance of considering CIDs during the assessment of skin disorders, particularly if they are extensive, recurrent, refractory to treatment, and/or associated with other signs of IEIs.

13.
Sci Immunol ; 6(65): eabe3981, 2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34826259

RESUMEN

Helios, a member of the Ikaros family of transcription factors, is predominantly expressed in developing thymocytes, activated T cells, and regulatory T cells (Tregs). Studies in mice have emphasized its role in maintenance of Treg immunosuppressive functions by stabilizing Foxp3 expression and silencing the Il2 locus. However, its contribution to human immune homeostasis and the precise mechanisms by which Helios regulates other T cell subsets remain unresolved. Here, we investigated a patient with recurrent respiratory infections and hypogammaglobulinemia and identified a germline homozygous missense mutation in IKZF2 encoding Helios (p.Ile325Val). We found that HeliosI325V retains DNA binding and dimerization properties but loses interaction with several partners, including epigenetic remodelers. Whereas patient Tregs showed increased IL-2 production, patient conventional T cells had decreased accessibility of the IL2 locus and consequently reduced IL-2 production. Reduced chromatin accessibility was not exclusive to the IL2 locus but involved a variety of genes associated with T cell activation. Single-cell RNA sequencing of peripheral blood mononuclear cells revealed gene expression signatures indicative of a shift toward a proinflammatory, effector-like status in patient CD8+ T cells. Moreover, patient CD4+ T cells exhibited a pronounced defect in proliferation with delayed expression of surface checkpoint inhibitors, suggesting an impaired onset of the T cell activation program. Collectively, we identified a previously uncharacterized, germline-encoded inborn error of immunity and uncovered a cell-specific defect in Helios-dependent epigenetic regulation. Binding of Helios with specific partners mediates this regulation, which is ultimately necessary for the transcriptional programs that enable T cell homeostasis in health and disease.


Asunto(s)
Células Germinativas/inmunología , Factor de Transcripción Ikaros/inmunología , Adolescente , Epigénesis Genética/genética , Epigénesis Genética/inmunología , Humanos , Factor de Transcripción Ikaros/genética , Interleucina-2/biosíntesis , Masculino , Mutación Missense , Linfocitos T Reguladores/inmunología
14.
Front Immunol ; 11: 1593, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849540

RESUMEN

Most of the few patients with homozygous CD70 deficiency described to date suffered from EBV-related malignancies in early childhood. We present a woman with CD70 deficiency diagnosed in adulthood. She presented in childhood with recurrent airway infections due to encapsulated bacteria, herpes zoster and a fulminant EBV infection followed by chronic EBV infection with mild lymphoproliferation and severe gingivitis/periodontal disease with high EBV viral load in saliva and gingival plaques as an adult. Up to the age of 24 years she developed no malignancy despite constant EBV viremia since primary EBV infection 15 years previously. Immunologic evaluation in childhood showed hypogammaglobulinemia with impaired polysaccharide responsiveness. She has been stable on immunoglobulin substitution with no further severe viral infections and no bacterial airway infections in adulthood. Targeted panel sequencing at the age of 20 years revealed a homozygous CD70 missense mutation (ENST00000245903.3:c.2T>C). CD70 deficiency was confirmed by absent CD70 expression of B cells and activated T cell blasts. The patient finished high school, persues an academic career and has rarely sick days at college. The clinical course of our patient may help to counsel parents of CD70-deficient patients with regard to prognosis and therapeutic options including haematopoetic stem cell transplantation.


Asunto(s)
Ligando CD27/deficiencia , Susceptibilidad a Enfermedades , Infecciones por Virus de Epstein-Barr/etiología , Gingivitis/etiología , Herpesvirus Humano 4/fisiología , Infecciones del Sistema Genital/etiología , Adolescente , Adulto , Biomarcadores , Niño , Infecciones por Virus de Epstein-Barr/diagnóstico , Femenino , Predisposición Genética a la Enfermedad , Gingivitis/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Linaje , Radiografía , Recurrencia , Reinfección , Infecciones del Sistema Genital/diagnóstico , Índice de Severidad de la Enfermedad , Linfocitos T/inmunología , Linfocitos T/metabolismo , Adulto Joven
15.
PLoS One ; 8(4): e59592, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23630567

RESUMEN

Adenoviral infections are a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT) in pediatric patients. Adoptive transfer of donor-derived human adenovirus (HAdV)-specific T-cells represents a promising treatment option. However, the difficulty in identifying and selecting rare HAdV-specific T-cells, and the short time span between patients at high risk for invasive infection and viremia are major limitations. We therefore developed an IL-15-driven 6 to 12 day short-term protocol for in vitro detection of HAdV-specific T cells, as revealed by known MHC class I multimers and a newly identified adenoviral CD8 T-cell epitope derived from the E1A protein for the frequent HLA-type A*02∶01 and IFN-γ. Using this novel and improved diagnostic approach we observed a correlation between adenoviral load and reconstitution of CD8(+) and CD4(+) HAdV-specific T-cells including central memory cells in HSCT-patients. Adaption of the 12-day protocol to good manufacturing practice conditions resulted in a 2.6-log (mean) expansion of HAdV-specific T-cells displaying high cytolytic activity (4-fold) compared to controls and low or absent alloreactivity. Similar protocols successfully identified and rapidly expanded CMV-, EBV-, and BKV-specific T-cells. Our approach provides a powerful clinical-grade convertible tool for rapid and cost-effective detection and enrichment of multiple virus-specific T-cells that may facilitate broad clinical application.


Asunto(s)
Adenoviridae/inmunología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/virología , Infecciones por Adenoviridae/inmunología , Infecciones por Adenoviridae/virología , Antígenos Virales/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Técnicas de Cultivo de Célula/economía , Proliferación Celular , Células Cultivadas , Niño , Preescolar , Citotoxicidad Inmunológica , Femenino , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Masculino , Fenotipo , Trasplante Homólogo , Cultivo de Virus/economía , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA