RESUMEN
PURPOSE: Cardiac motion is a dominant source of physiological noise (PN) in myocardial arterial spin labeled (ASL) perfusion imaging. This study investigates the sensitivity to heart rate variation (HRV) of double-gated myocardial ASL compared with the more widely used single-gated method. METHODS: Double-gating and single-gating were performed on 10 healthy volunteers (n = 10, 3F/7M; age, 23-34 years) and eight heart transplant recipients (n = 8, 1F/7M; age, 26-76 years) at rest in the randomized order. Myocardial blood flow (MBF), PN, temporal signal-to-noise ratio (SNR), and HRV were measured. RESULTS: HRV ranged from 0.2 to 7.8 bpm. Double-gating PN did not depend on HRV, while single-gating PN increased with HRV. Over all subjects, double-gating provided a significant reduction in global PN (from 0.20 ± 0.15 to 0.11 ± 0.03 mL/g/min; P = 0.01) and per-segment PN (from 0.33 ± 0.23 to 0.21 ± 0.12 mL/g/min; P < 0.001), with significant increases in global temporal SNR (from 11 ± 8 to 18 ± 8; P = 0.02) and per-segment temporal SNR (from 7 ± 4 to 11 ± 12; P < 0.001) without significant difference in measured MBF. CONCLUSION: Single-gated myocardial ASL suffers from reduced temporal SNR, while double-gated myocardial ASL provides consistent temporal SNR independent of HRV. Magn Reson Med 77:1975-1980, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Asunto(s)
Circulación Coronaria , Trasplante de Corazón , Corazón/diagnóstico por imagen , Corazón/fisiología , Imagen de Perfusión Miocárdica/métodos , Miocardio/patología , Adulto , Anciano , Femenino , Frecuencia Cardíaca , Humanos , Masculino , Persona de Mediana Edad , Movimiento (Física) , Relación Señal-Ruido , Marcadores de Spin , Adulto JovenRESUMEN
PURPOSE: To determine the feasibility of measuring increases in myocardial blood flow (MBF) and myocardial perfusion reserve (MPR) on a per-segment basis using arterial spin labeled (ASL) magnetic resonance imaging (MRI) with adenosine vasodilator stress in normal human myocardium. MATERIALS AND METHODS: Myocardial ASL scans at rest and during adenosine infusion were incorporated into a routine 3T MR adenosine-induced vasodilator stress protocol and were performed in 10 healthy human volunteers. Myocardial ASL was performed using single-gated flow-sensitive alternating inversion recovery (FAIR) tagging and balanced steady-state free precession (bSSFP) imaging at 3T. A T2 -prep blood oxygen level-dependent (BOLD) SSFP sequence was used to concurrently assess segmental myocardial oxygenation with BOLD signal intensity (SI) percent change in the same subjects. RESULTS: There was a statistically significant difference between MBF measured by ASL at rest (1.75 ± 0.86 ml/g/min) compared to adenosine stress (4.58 ± 2.14 ml/g/min) for all wall segments (P < 0.0001), yielding a per-segment MPR of 3.02 ± 1.51. When wall segments were divided into specific segmental myocardial perfusion territories (ie, anteroseptal, anterior, anterolateral, inferolateral, inferior, and inferoseptal), the differences between rest and stress regional MBF for each territory remained consistently statistically significant (P < 0.001) after correcting for multiple comparisons. CONCLUSION: This study demonstrates the feasibility of measuring MBF and MPR on a segmental basis by single-gated cardiac ASL in normal volunteers. Second, this study demonstrates the feasibility of performing the ASL sequence and T2 -prepared SSFP BOLD imaging during a single adenosine infusion. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:413-420.
Asunto(s)
Arterias/diagnóstico por imagen , Circulación Coronaria/fisiología , Corazón/diagnóstico por imagen , Imagen por Resonancia Magnética , Imagen de Perfusión Miocárdica , Miocardio/patología , Adenosina/química , Adulto , Presión Sanguínea , Estudios de Factibilidad , Femenino , Voluntarios Sanos , Humanos , Masculino , Oxígeno/análisis , Oxígeno/sangre , Reproducibilidad de los Resultados , Relación Señal-Ruido , Marcadores de Spin , Vasodilatadores/química , Adulto JovenRESUMEN
BACKGROUND: Myocardial arterial spin labeling (ASL) is a noninvasive MRI based technique that is capable of measuring myocardial blood flow (MBF) in humans. It suffers from poor sensitivity to MBF due to high physiological noise (PN). This study aims to determine if the sensitivity of myocardial ASL to MBF can be improved by reducing image acquisition time, via parallel imaging. METHODS: Myocardial ASL scans were performed in 7 healthy subjects at rest using flow-sensitive alternating inversion recovery (FAIR) tagging and balanced steady state free precession (SSFP) imaging. Sensitivity encoding (SENSE) with a reduction factor of 2 was used to shorten each image acquisition from roughly 300 ms per heartbeat to roughly 150 ms per heartbeat. A paired Student's t-test was performed to compare measurements of myocardial blood flow (MBF) and physiological noise (PN) from the reference and accelerated methods. RESULTS: The measured PN (mean ± standard deviation) was 0.20 ± 0.08 ml/g/min for the reference method and 0.08 ± 0.05 ml/g/min for the accelerated method, corresponding to a 60% reduction. PN measured from the accelerated method was found to be significantly lower than that of the reference method (p=0.0059). There was no significant difference between MBF measured from the accelerated and reference ASL methods (p=0.7297). CONCLUSIONS: In this study, significant PN reduction was achieved by shortening the acquisition window using parallel imaging with no significant impact on the measured MBF. This indicates an improvement in sensitivity to MBF and may also enable the imaging of subjects with higher heart rates and imaging during systole.