Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell ; 168(6): 1015-1027.e10, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28283058

RESUMEN

Eukaryotic mRNAs generally possess a 5' end N7 methyl guanosine (m7G) cap that promotes their translation and stability. However, mammalian mRNAs can also carry a 5' end nicotinamide adenine dinucleotide (NAD+) cap that, in contrast to the m7G cap, does not support translation but instead promotes mRNA decay. The mammalian and fungal noncanonical DXO/Rai1 decapping enzymes efficiently remove NAD+ caps, and cocrystal structures of DXO/Rai1 with 3'-NADP+ illuminate the molecular mechanism for how the "deNADding" reaction produces NAD+ and 5' phosphate RNA. Removal of DXO from cells increases NAD+-capped mRNA levels and enables detection of NAD+-capped intronic small nucleolar RNAs (snoRNAs), suggesting NAD+ caps can be added to 5'-processed termini. Our findings establish NAD+ as an alternative mammalian RNA cap and DXO as a deNADding enzyme modulating cellular levels of NAD+-capped RNAs. Collectively, these data reveal that mammalian RNAs can harbor a 5' end modification distinct from the classical m7G cap that promotes rather than inhibits RNA decay.


Asunto(s)
Procesamiento Postranscripcional del ARN , Estabilidad del ARN , Animales , Endorribonucleasas/metabolismo , Células HEK293 , Humanos , Ratones , NAD/metabolismo , Proteínas Nucleares/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , ARN no Traducido/metabolismo
2.
Nucleic Acids Res ; 50(15): 8807-8817, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35904778

RESUMEN

Identification of metabolite caps including FAD on the 5' end of RNA has uncovered a previously unforeseen intersection between cellular metabolism and gene expression. To understand the function of FAD caps in cellular physiology, we characterised the proteins interacting with FAD caps in budding yeast. Here we demonstrate that highly conserved 5'-3' exoribonucleases, Xrn1 and Rat1, physically interact with the RNA 5' FAD cap and both possess FAD cap decapping (deFADding) activity and subsequently degrade the resulting RNA. Xrn1 deFADding activity was also evident in human cells indicating its evolutionary conservation. Furthermore, we report that the recently identified bacterial 5'-3' exoribonuclease RNase AM also possesses deFADding activity that can degrade FAD-capped RNAs in vitro and in Escherichia coli cells. To gain a molecular understanding of the deFADding reaction, an RNase AM crystal structure with three manganese ions coordinated by a sulfate molecule and the active site amino acids was generated that provided details underlying hydrolysis of the FAD cap. Our findings reveal a general propensity for 5'-3' exoribonucleases to hydrolyse and degrade RNAs with 5' end noncanonical caps in addition to their well characterized 5' monophosphate RNA substrates indicating an intrinsic property of 5'-3' exoribonucleases.


Asunto(s)
Exorribonucleasas , Proteínas de Saccharomyces cerevisiae , Exorribonucleasas/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Humanos , Caperuzas de ARN/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
J Biol Chem ; 298(8): 102171, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35750211

RESUMEN

The 5' N7-methylguanosine cap is a critical modification for mRNAs and many other RNAs in eukaryotic cells. Recent studies have uncovered an RNA 5' capping quality surveillance mechanism, with DXO/Rai1 decapping enzymes removing incomplete caps and enabling the degradation of the RNAs, in a process we also refer to as "no-cap decay." It has also been discovered recently that RNAs in eukaryotes, bacteria, and archaea can have noncanonical caps (NCCs), which are mostly derived from metabolites and cofactors such as NAD, FAD, dephospho-CoA, UDP-glucose, UDP-N-acetylglucosamine, and dinucleotide polyphosphates. These NCCs can affect RNA stability, mitochondrial functions, and possibly mRNA translation. The DXO/Rai1 enzymes and selected Nudix (nucleotide diphosphate linked to X) hydrolases have been shown to remove NCCs from RNAs through their deNADding, deFADding, deCoAping, and related activities, permitting the degradation of the RNAs. In this review, we summarize the recent discoveries made in this exciting new area of RNA biology.


Asunto(s)
Caperuzas de ARN , Estabilidad del ARN , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Biosíntesis de Proteínas , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
Nucleic Acids Res ; 48(1): 349-358, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31777937

RESUMEN

Modifications at the 5'-end of RNAs play a pivotal role in determining their fate. In eukaryotes, the DXO/Rai1 family of enzymes removes numerous 5'-end RNA modifications, thereby regulating RNA turnover. Mouse DXO catalyzes the elimination of incomplete 5'-end caps (including pyrophosphate) and the non-canonical NAD+ cap on mRNAs, and possesses distributive 5'-3' exoribonuclease activity toward 5'-monophosphate (5'-PO4) RNA. Here, we demonstrate that DXO also catalyzes the hydrolysis of RNAs bearing a 5'-hydroxyl group (5'-OH RNA). The crystal structure of DXO in complex with a 5'-OH RNA substrate mimic at 2.0 Å resolution provides elegant insight into the molecular mechanism of this activity. More importantly, the structure predicts that DXO first removes a dinucleotide from 5'-OH RNA. Our nuclease assays confirm this prediction and demonstrate that this 5'-hydroxyl dinucleotide hydrolase (HDH) activity for DXO is higher than the subsequent 5'-3' exoribonuclease activity for selected substrates. Fission yeast Rai1 also has HDH activity although it does not have 5'-3' exonuclease activity, and the Rat1-Rai1 complex can completely degrade 5'-OH RNA. An Arabidopsis DXO1 variant is active toward 5'-OH RNA but prefers 5'-PO4 RNA. Collectively, these studies demonstrate the diverse activities of DXO/Rai1 and expands the collection of RNA substrates that can undergo 5'-3' mediated decay.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/metabolismo , Exorribonucleasas/metabolismo , Proteínas Nucleares/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transactivadores/metabolismo , Animales , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sitios de Unión , Proteínas de Cloroplastos/química , Proteínas de Cloroplastos/genética , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Exorribonucleasas/química , Exorribonucleasas/genética , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Ratones , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/genética , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN Mensajero/química , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Especificidad por Sustrato , Transactivadores/química , Transactivadores/genética
5.
Nucleic Acids Res ; 48(11): 6136-6148, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32374864

RESUMEN

In eukaryotes, the DXO/Rai1 enzymes can eliminate most of the incomplete and non-canonical NAD caps through their decapping, deNADding and pyrophosphohydrolase activities. Here, we report that these enzymes can also remove FAD and dephospho-CoA (dpCoA) non-canonical caps from RNA, and we have named these activities deFADding and deCoAping. The crystal structures of mammalian DXO with 3'-FADP or CoA and fission yeast Rai1 with 3'-FADP provide elegant insight to these activities. FAD and CoA are accommodated in the DXO/Rai1 active site by adopting folded conformations. The flavin of FAD and the pantetheine group of CoA contact the same region at the bottom of the active site tunnel, which undergoes conformational changes to accommodate the different cap moieties. We have developed FAD-capQ to detect and quantify FAD-capped RNAs and determined that FAD caps are present on short RNAs (with less than ∼200 nucleotides) in human cells and that these RNAs are stabilized in the absence of DXO.


Asunto(s)
Coenzima A/metabolismo , Exorribonucleasas/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Kluyveromyces/enzimología , Proteínas Nucleares/metabolismo , Caperuzas de ARN/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Animales , Exorribonucleasas/química , Exorribonucleasas/genética , Flavina-Adenina Dinucleótido/análisis , Células HEK293 , Humanos , Técnicas In Vitro , Ratones , Modelos Moleculares , NAD/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/genética , Caperuzas de ARN/análisis , Especificidad por Sustrato , Transcripción Genética
6.
Genes Dev ; 28(12): 1323-36, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24939935

RESUMEN

Interactions between RNA guanylyltransferase (GTase) and the C-terminal domain (CTD) repeats of RNA polymerase II (Pol2) and elongation factor Spt5 are thought to orchestrate cotranscriptional capping of nascent mRNAs. The crystal structure of a fission yeast GTase•Pol2 CTD complex reveals a unique docking site on the nucleotidyl transferase domain for an 8-amino-acid Pol2 CTD segment, S5PPSYSPTS5P, bracketed by two Ser5-PO4 marks. Analysis of GTase mutations that disrupt the Pol2 CTD interface shows that at least one of the two Ser5-PO4-binding sites is required for cell viability and that each site is important for cell growth at 37°C. Fission yeast GTase binds the Spt5 CTD at a separate docking site in the OB-fold domain that captures the Trp4 residue of the Spt5 nonapeptide repeat T(1)PAW(4)NSGSK. A disruptive mutation in the Spt5 CTD-binding site of GTase is synthetically lethal with mutations in the Pol2 CTD-binding site, signifying that the Spt5 and Pol2 CTDs cooperate to recruit capping enzyme in vivo. CTD phosphorylation has opposite effects on the interaction of GTase with Pol2 (Ser5-PO4 is required for binding) versus Spt5 (Thr1-PO4 inhibits binding). We propose that the state of Thr1 phosphorylation comprises a binary "Spt5 CTD code" that is read by capping enzyme independent of and parallel to its response to the state of the Pol2 CTD.


Asunto(s)
Modelos Moleculares , Nucleotidiltransferasas/metabolismo , ARN Polimerasa II , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/enzimología , Factores de Elongación Transcripcional , Código Genético , Nucleotidiltransferasas/química , Fosforilación , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , ARN Polimerasa II/química , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Treonina/metabolismo , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
7.
Proc Natl Acad Sci U S A ; 113(29): E4151-60, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27385828

RESUMEN

The Ltn1 E3 ligase (listerin in mammals) has emerged as a paradigm for understanding ribosome-associated ubiquitylation. Ltn1 binds to 60S ribosomal subunits to ubiquitylate nascent polypeptides that become stalled during synthesis; among Ltn1's substrates are aberrant products of mRNA lacking stop codons [nonstop translation products (NSPs)]. Here, we report the reconstitution of NSP ubiquitylation in Neurospora crassa cell extracts. Upon translation in vitro, ribosome-stalled NSPs were ubiquitylated in an Ltn1-dependent manner, while still ribosome-associated. Furthermore, we provide biochemical evidence that the conserved N-terminal domain (NTD) plays a significant role in the binding of Ltn1 to 60S ribosomal subunits and that NTD mutations causing defective 60S binding also lead to defective NSP ubiquitylation, without affecting Ltn1's intrinsic E3 ligase activity. Finally, we report the crystal structure of the Ltn1 NTD at 2.4-Å resolution. The structure, combined with additional mutational studies, provides insight to NTD's role in binding stalled 60S subunits. Our findings show that Neurospora extracts can be used as a tool to dissect mechanisms underlying ribosome-associated protein quality control and are consistent with a model in which Ltn1 uses 60S subunits as adapters, at least in part via its NTD, to target stalled NSPs for ubiquitylation.


Asunto(s)
Proteínas Fúngicas , Dominios Proteicos , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Ubiquitina-Proteína Ligasas , Mezclas Complejas , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mutación , Neurospora crassa , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ribosomas/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
9.
RNA ; 21(1): 113-23, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25414009

RESUMEN

mRNA capping enzymes are directed to nascent RNA polymerase II (Pol2) transcripts via interactions with the carboxy-terminal domains (CTDs) of Pol2 and transcription elongation factor Spt5. Fission yeast RNA triphosphatase binds to the Spt5 CTD, comprising a tandem repeat of nonapeptide motif TPAWNSGSK. Here we report the crystal structure of a Pct1·Spt5-CTD complex, which revealed two CTD docking sites on the Pct1 homodimer that engage TPAWN segments of the motif. Each Spt5 CTD interface, composed of elements from both subunits of the homodimer, is dominated by van der Waals contacts from Pct1 to the tryptophan of the CTD. The bound CTD adopts a distinctive conformation in which the peptide backbone makes a tight U-turn so that the proline stacks over the tryptophan. We show that Pct1 binding to Spt5 CTD is antagonized by threonine phosphorylation. Our results fortify an emerging concept of an "Spt5 CTD code" in which (i) the Spt5 CTD is structurally plastic and can adopt different conformations that are templated by particular cellular Spt5 CTD receptor proteins; and (ii) threonine phosphorylation of the Spt5 CTD repeat inscribes a binary on-off switch that is read by diverse CTD receptors, each in its own distinctive manner.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/enzimología , Factores de Elongación Transcripcional/química , Secuencia de Aminoácidos , Apoenzimas/química , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Treonina/química
10.
Proc Natl Acad Sci U S A ; 110(5): 1702-7, 2013 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-23319619

RESUMEN

Ltn1 is a 180-kDa E3 ubiquitin ligase that associates with ribosomes and marks certain aberrant, translationally arrested nascent polypeptide chains for proteasomal degradation. In addition to its evolutionarily conserved large size, Ltn1 is characterized by the presence of a conserved N terminus, HEAT/ARM repeats predicted to comprise the majority of the protein, and a C-terminal catalytic RING domain, although the protein's exact structure is unknown. We used numerous single-particle EM strategies to characterize Ltn1's structure based on negative stain and vitreous ice data. Two-dimensional classifications and subsequent 3D reconstructions of electron density maps show that Ltn1 has an elongated form and presents a continuum of conformational states about two flexible hinge regions, whereas its overall architecture is reminiscent of multisubunit cullin-RING ubiquitin ligase complexes. We propose a model of Ltn1 function based on its conformational variability and flexibility that describes how these features may play a role in cotranslational protein quality control.


Asunto(s)
Microscopía Electrónica/métodos , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestructura , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/ultraestructura , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas Portadoras/ultraestructura , Proteínas Cullin/química , Proteínas Cullin/metabolismo , Proteínas Cullin/ultraestructura , Humanos , Imagenología Tridimensional , Modelos Moleculares , Tamaño de la Partícula , Unión Proteica , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/química , Ubiquitina/metabolismo , Ubiquitina/ultraestructura , Ubiquitina-Proteína Ligasas/metabolismo
11.
Acta Crystallogr F Struct Biol Commun ; 79(Pt 4): 95-104, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36995121

RESUMEN

Mutations in the androgen receptor (AR) ligand-binding domain (LBD) can cause resistance to drugs used to treat prostate cancer. Commonly found mutations include L702H, W742C, H875Y, F877L and T878A, while the F877L mutation can convert second-generation antagonists such as enzalutamide and apalutamide into agonists. However, pruxelutamide, another second-generation AR antagonist, has no agonist activity with the F877L and F877L/T878A mutants and instead maintains its inhibitory activity against them. Here, it is shown that the quadruple mutation L702H/H875Y/F877L/T878A increases the soluble expression of AR LBD in complex with pruxelutamide in Escherichia coli. The crystal structure of the quadruple mutant in complex with the agonist dihydrotestosterone (DHT) reveals a partially open conformation of the AR LBD due to conformational changes in the loop connecting helices H11 and H12 (the H11-H12 loop) and Leu881. This partially open conformation creates a larger ligand-binding site for AR. Additional structural studies suggest that both the L702H and F877L mutations are important for conformational changes. This structural variability in the AR LBD could affect ligand binding as well as the resistance to antagonists.


Asunto(s)
Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/genética , Receptores Androgénicos/química , Receptores Androgénicos/metabolismo , Ligandos , Cristalografía por Rayos X , Mutación , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA