Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Glycobiology ; 34(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38271624

RESUMEN

The marine environment, contains plentiful renewable resources, e.g. macroalgae with unique polysaccharides, motivating search for enzymes from marine microorganisms to explore conversion possibilities of the polysaccharides. In this study, the first GH17 glucanosyltransglycosylase, MlGH17B, from a marine bacterium (Muricauda lutaonensis), was characterized. The enzyme was moderately thermostable with Tm at 64.4 °C and 73.2 °C, but an activity optimum at 20 °C, indicating temperature sensitive active site interactions. MlGH17B uses ß-1,3 laminari-oligosaccharides with a degree of polymerization (DP) of 4 or higher as donors. Two glucose moieties (bound in the aglycone +1 and +2 subsites) are cleaved off from the reducing end of the donor while the remaining part (bound in the glycone subsites) is transferred to an incoming ß-1,3 glucan acceptor, making a ß-1,6-linkage, thereby synthesizing branched or kinked oligosaccharides. Synthesized oligosaccharides up to DP26 were detected by mass spectrometry analysis, showing that repeated transfer reactions occurred, resulting in several ß-1,6-linked branches. The modeled structure revealed an active site comprising five subsites: three glycone (-3, -2 and -1) and two aglycone (+1 and +2) subsites, with significant conservation of substrate interactions compared to the only crystallized 1,3-ß-glucanosyltransferase from GH17 (RmBgt17A from the compost thriving fungus Rhizomucor miehei), suggesting a common catalytic mechanism, despite different phylogenetic origin, growth environment, and natural substrate. Both enzymes lacked the subdomain extending the aglycone subsites, found in GH17 endo-ß-glucanases from plants, but this extension was also missing in bacterial endoglucanases (modeled here), showing that this feature does not distinguish transglycosylation from hydrolysis, but may rather relate to phylogeny.


Asunto(s)
Flavobacteriaceae , Oligosacáridos , Filogenia , Oligosacáridos/química , Polisacáridos , Especificidad por Sustrato
2.
Biomacromolecules ; 23(3): 743-759, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-34994549

RESUMEN

Amphipathic copolymers such as poly(styrene-maleic acid) (SMA) are promising tools for the facile extraction of membrane proteins (MPs) into native nanodiscs. Here, we designed and synthesized a library of well-defined alternating copolymers of SMA analogues in order to elucidate polymer properties that are important for MP solubilization and stability. MP extraction efficiency was determined using KcsA from E. coli membranes, and general solubilization efficiency was investigated via turbidimetry experiments on membranes of E. coli, yeast mitochondria, and synthetic lipids. Remarkably, halogenation of SMA copolymers dramatically improved solubilization efficiency in all systems, while substituents on the copolymer backbone improved resistance to Ca2+. Relevant polymer properties were found to include hydrophobic balance, size and positioning of substituents, rigidity, and electronic effects. The library thus contributes to the rational design of copolymers for the study of MPs.


Asunto(s)
Proteínas de la Membrana , Poliestirenos , Escherichia coli , Interacciones Hidrofóbicas e Hidrofílicas , Maleatos/química , Proteínas de la Membrana/química , Polímeros , Poliestirenos/química
3.
J Biol Chem ; 295(28): 9513-9530, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32424044

RESUMEN

Clostridium perfringens is a leading cause of food-poisoning and causes avian necrotic enteritis, posing a significant problem to both the poultry industry and human health. No effective vaccine against C. perfringens is currently available. Using an antiserum screen of mutants generated from a C. perfringens transposon-mutant library, here we identified an immunoreactive antigen that was lost in a putative glycosyltransferase mutant, suggesting that this antigen is likely a glycoconjugate. Following injection of formalin-fixed whole cells of C. perfringens HN13 (a laboratory strain) and JGS4143 (chicken isolate) intramuscularly into chickens, the HN13-derived antiserum was cross-reactive in immunoblots with all tested 32 field isolates, whereas only 5 of 32 isolates were recognized by JGS4143-derived antiserum. The immunoreactive antigens from both HN13 and JGS4143 were isolated, and structural analysis by MALDI-TOF-MS, GC-MS, and 2D NMR revealed that both were atypical lipoteichoic acids (LTAs) with poly-(ß1→4)-ManNAc backbones substituted with phosphoethanolamine. However, although the ManNAc residues in JGS4143 LTA were phosphoethanolamine-modified, a few of these residues were instead modified with phosphoglycerol in the HN13 LTA. The JGS4143 LTA also had a terminal ribose and ManNAc instead of ManN in the core region, suggesting that these differences may contribute to the broadly cross-reactive response elicited by HN13. In a passive-protection chicken experiment, oral challenge with C. perfringens JGS4143 lead to 22% survival, whereas co-gavage with JGS4143 and α-HN13 antiserum resulted in 89% survival. This serum also induced bacterial killing in opsonophagocytosis assays, suggesting that HN13 LTA is an attractive target for future vaccine-development studies.


Asunto(s)
Pollos , Infecciones por Clostridium , Clostridium perfringens , Lipopolisacáridos , Enfermedades de las Aves de Corral , Ácidos Teicoicos , Animales , Pollos/inmunología , Pollos/microbiología , Infecciones por Clostridium/inmunología , Infecciones por Clostridium/prevención & control , Clostridium perfringens/química , Clostridium perfringens/inmunología , Humanos , Lipopolisacáridos/química , Lipopolisacáridos/inmunología , Lipopolisacáridos/farmacología , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/prevención & control , Ácidos Teicoicos/química , Ácidos Teicoicos/inmunología , Ácidos Teicoicos/farmacología
4.
J Biol Chem ; 291(45): 23709-23718, 2016 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-27629413

RESUMEN

By inspection of the predicted proteome of the fungus Myceliophthora thermophila C1 for vanillyl-alcohol oxidase (VAO)-type flavoprotein oxidases, a putative oligosaccharide oxidase was identified. By homologous expression and subsequent purification, the respective protein could be obtained. The protein was found to contain a bicovalently bound FAD cofactor. By screening a large number of carbohydrates, several mono- and oligosaccharides could be identified as substrates. The enzyme exhibits a strong substrate preference toward xylooligosaccharides; hence it is named xylooligosaccharide oxidase (XylO). Chemical analyses of the product formed upon oxidation of xylobiose revealed that the oxidation occurs at C1, yielding xylobionate as product. By elucidation of several XylO crystal structures (in complex with a substrate mimic, xylose, and xylobiose), the residues that tune the unique substrate specificity and regioselectivity could be identified. The discovery of this novel oligosaccharide oxidase reveals that the VAO-type flavoprotein family harbors oxidases tuned for specific oligosaccharides. The unique substrate profile of XylO hints at a role in the degradation of xylan-derived oligosaccharides by the fungus M. thermophila C1.


Asunto(s)
Glucuronatos/metabolismo , Oligosacáridos/metabolismo , Oxidorreductasas/metabolismo , Sordariales/enzimología , Secuencia de Aminoácidos , Cristalografía por Rayos X , Disacáridos/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Modelos Moleculares , Oxidación-Reducción , Oxidorreductasas/química , Conformación Proteica , Alineación de Secuencia , Sordariales/química , Sordariales/metabolismo , Especificidad por Sustrato , Xilanos/metabolismo
5.
J Biol Chem ; 290(50): 30131-41, 2015 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-26507662

RESUMEN

α-Glucans produced by glucansucrase enzymes hold strong potential for industrial applications. The exact determinants of the linkage specificity of glucansucrase enzymes have remained largely unknown, even with the recent elucidation of glucansucrase crystal structures. Guided by the crystal structure of glucansucrase GTF180-ΔN from Lactobacillus reuteri 180 in complex with the acceptor substrate maltose, we identified several residues (Asp-1028 and Asn-1029 from domain A, as well as Leu-938, Ala-978, and Leu-981 from domain B) near subsite +1 that may be critical for linkage specificity determination, and we investigated these by random site-directed mutagenesis. First, mutants of Ala-978 (to Leu, Pro, Phe, or Tyr) and Asp-1028 (to Tyr or Trp) with larger side chains showed reduced degrees of branching, likely due to the steric hindrance by these bulky residues. Second, Leu-938 mutants (except L938F) and Asp-1028 mutants showed altered linkage specificity, mostly with increased (α1 → 6) linkage synthesis. Third, mutation of Leu-981 and Asn-1029 significantly affected the transglycosylation reaction, indicating their essential roles in acceptor substrate binding. In conclusion, glucansucrase product specificity is determined by an interplay of domain A and B residues surrounding the acceptor substrate binding groove. Residues surrounding the +1 subsite thus are critical for activity and specificity of the GTF180 enzyme and play different roles in the enzyme functions. This study provides novel insights into the structure-function relationships of glucansucrase enzymes and clearly shows the potential of enzyme engineering to produce tailor-made α-glucans.


Asunto(s)
Aminoácidos/metabolismo , Glicosiltransferasas/metabolismo , Limosilactobacillus reuteri/enzimología , Secuencia de Aminoácidos , Aminoácidos/química , Dominio Catalítico , Cromatografía de Gases y Espectrometría de Masas , Glicosiltransferasas/química , Glicosiltransferasas/genética , Metilación , Datos de Secuencia Molecular , Mutagénesis , Espectroscopía de Protones por Resonancia Magnética , Homología de Secuencia de Aminoácido
6.
Glycobiology ; 26(11): 1157-1170, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27550196

RESUMEN

Recently, we have shown that glycoside hydrolases enzymes of family GH17 from proteobacteria (genera Pseudomonas, Azotobacter) catalyze elongation transfer reactions with laminari-oligosaccharides generating (ß1→3) linkages preferably and to a lesser extent (ß1→6) or (ß1→4) linkages. In the present study, the cloning and characterization of the gene encoding the structurally very similar GH17 domain of the NdvB enzyme from Bradyrhizobium diazoefficiens, designated Glt20, as well as its catalytic properties are described. The Glt20 enzyme was strikingly different from the previously investigated bacterial GH17 enzymes, both regarding substrate specificity and product formation. The Azotobacter and Pseudomonas enzymes cleaved the donor laminari-oligosaccharide substrates three or four moieties from the non-reducing end, generating linear oligosaccharides. In contrast, the Glt20 enzyme cleaved donor laminari-oligosaccharide substrates two glucose moieties from the reducing end, releasing laminaribiose and transferring the remainder to laminari-oligosaccharide acceptor substrates creating only (ß1→3)(ß1→6) branching points. This enables Glt20 to transfer larger oligosaccharide chains than the other type of bacterial enzymes previously described, and helps explain the biologically significant formation of cyclic ß-glucans in B. diazoefficiens.


Asunto(s)
Bradyrhizobium/enzimología , Oligosacáridos/metabolismo , beta-Glucosidasa/metabolismo , Biocatálisis , Proteínas Recombinantes/metabolismo , beta-Glucosidasa/genética
7.
J Biol Chem ; 289(47): 32773-82, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25288798

RESUMEN

Highly conserved glycoside hydrolase family 70 glucansucrases are able to catalyze the synthesis of α-glucans with different structure from sucrose. The structural determinants of glucansucrase specificity have remained unclear. Residue Leu(940) in domain B of GTF180, the glucansucrase of the probiotic bacterium Lactobacillus reuteri 180, was shown to vary in different glucansucrases and is close to the +1 glucosyl unit in the crystal structure of GTF180-ΔN in complex with maltose. Herein, we show that mutations in Leu(940) of wild-type GTF180-ΔN all caused an increased percentage of (α1→6) linkages and a decreased percentage of (α1→3) linkages in the products. α-Glucans with potential different physicochemical properties (containing 67-100% of (α1→6) linkages) were produced by GTF180 and its Leu(940) mutants. Mutant L940W was unable to form (α1→3) linkages and synthesized a smaller and linear glucan polysaccharide with only (α1→6) linkages. Docking studies revealed that the introduction of the large aromatic amino acid residue tryptophan at position 940 partially blocked the binding groove, preventing the isomalto-oligosaccharide acceptor to bind in an favorable orientation for the formation of (α1→3) linkages. Our data showed that the reaction specificity of GTF180 mutant was shifted either to increased polysaccharide synthesis (L940A, L940S, L940E, and L940F) or increased oligosaccharide synthesis (L940W). The L940W mutant is capable of producing a large amount of isomalto-oligosaccharides using released glucose from sucrose as acceptors. Thus, residue Leu(940) in domain B is crucial for linkage and reaction specificity of GTF180. This study provides clear and novel insights into the structure-function relationships of glucansucrase enzymes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glicosiltransferasas/metabolismo , Leucina/metabolismo , Limosilactobacillus reuteri/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Conformación de Carbohidratos , Cristalografía por Rayos X , Glucanos/química , Glucanos/metabolismo , Glucosa/química , Glucosa/metabolismo , Glicosiltransferasas/química , Glicosiltransferasas/genética , Limosilactobacillus reuteri/genética , Leucina/química , Leucina/genética , Maltosa/química , Maltosa/metabolismo , Simulación del Acoplamiento Molecular , Mutación , Oligosacáridos/química , Oligosacáridos/metabolismo , Probióticos , Unión Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato , Sacarosa/química , Sacarosa/metabolismo , Triptófano/química , Triptófano/genética , Triptófano/metabolismo
8.
Appl Microbiol Biotechnol ; 99(5): 2209-23, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25219534

RESUMEN

The common saprophyte Aspergillus niger may experience carbon starvation in nature as well as during industrial fermentations. Starvation survival strategies, such as conidiation or the formation of exploratory hyphae, require energy and building blocks, which may be supplied by autolysis. Glycoside hydrolases are key effectors of autolytic degradation of fungal cell walls, but knowledge on their identity and functionality is still limited. We recently identified agnB and cfcA as two genes encoding carbohydrate-active enzymes that had notably increased transcription during carbon starvation in A. niger. Here, we report the biochemical and functional characterization of these enzymes. AgnB is an α-1,3-glucanase that releases glucose from α-1,3-glucan substrates with a minimum degree of polymerization of 4. CfcA is a chitinase that releases dimers from the nonreducing end of chitin. These enzymes thus attack polymers that are found in the fungal cell wall and may have a role in autolytic fungal cell wall degradation in A. niger. Indeed, cell wall degradation during carbon starvation was reduced in the double deletion mutant ΔcfcA ΔagnB compared to the wild-type strain. Furthermore, the cell walls of the carbon-starved mycelium of the mutant contained a higher fraction of chitin or chitosan. The function of at least one of these enzymes, CfcA, therefore appears to be in the recycling of cell wall carbohydrates under carbon limiting conditions. CfcA thus may be a candidate effector for on demand cell lysis, which could be employed in industrial processes for recovery of intracellular products.


Asunto(s)
Aspergillus niger/enzimología , Quitinasas/metabolismo , Glicósido Hidrolasas/metabolismo , Aspergillus niger/genética , Aspergillus niger/metabolismo , Carbono/metabolismo , Pared Celular/metabolismo , Quitina/metabolismo , Quitinasas/genética , Eliminación de Gen , Glucosa/metabolismo , Glicósido Hidrolasas/genética
9.
Appl Microbiol Biotechnol ; 99(14): 5885-94, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25586581

RESUMEN

Glucansucrases are exclusively found in lactic acid bacteria and synthesize a variety of α-glucans from sucrose. They are large multidomain enzymes belonging to the CAZy family 70 of glycoside hydrolase enzymes (GH70). The crystal structure of the N-terminal truncated GTF180 of Lactobacillus reuteri 180 (GTF180-ΔN) revealed that the polypeptide chain follows a U shape course to form five domains, including domains A, B, and C, which resemble those of family GH13 enzymes, and two extra and novel domains (domains IV and V), which are attached to the catalytic core. To elucidate the functional roles of domain V, we have deleted the domain V fragments from both the N- and C-terminal ends (GTF180-ΔNΔV). Truncation of domain V of GTF180-ΔN yielded a catalytically fully active enzyme but with heavily impaired polysaccharide synthesis ability. Instead, GTF180-ΔNΔV produced a large amount of oligosaccharides. Domain V is not involved in determining the linkage specificity, and the size of polysaccharide produced as the polysaccharide produced by GTF180-ΔNΔV was identical in size and structure with that of GTF180-ΔN. The data indicates that GTF180-ΔNΔV acts nonprocessively, frequently initiating synthesis of a new oligosaccharide from sucrose, instead of continuing the synthesis of a full size polysaccharide. Mutations L940E and L940F in GTF180-ΔNΔV, which are involved in the acceptor substrate binding, restored polysaccharide synthesis almost to the level of GTF180-ΔN. These results demonstrated that interactions of growing glucan chains with both domain V and acceptor substrate binding sites are important for polysaccharide synthesis.


Asunto(s)
Glicosiltransferasas/metabolismo , Limosilactobacillus reuteri/enzimología , Limosilactobacillus reuteri/metabolismo , Polisacáridos/biosíntesis , Glicosiltransferasas/genética , Limosilactobacillus reuteri/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Eliminación de Secuencia
10.
Appl Microbiol Biotechnol ; 99(17): 7101-13, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25693671

RESUMEN

4-α-Glucanotransferase (GTase) enzymes (EC 2.4.1.25) modulate the size of α-glucans by cleaving and reforming α-1,4 glycosidic bonds in α-glucans, an essential process in starch and glycogen metabolism in plants and microorganisms. The glycoside hydrolase family 57 enzyme (GTase57) studied in the current work catalyzes both disproportionation and cyclization reactions. Amylose was converted into cyclic amylose (with a minimum size of 17 glucose monomers) as well as to a spectrum of maltodextrins, but in contrast to glycoside hydrolase family 13 cyclodextrin glucanotransferases (CGTases), no production of cyclodextrins (C6-C8) was observed. GTase57 also effectively produced alkyl-glycosides with long α-glucan chains from dodecyl-ß-D-maltoside and starch, demonstrating the potential of the enzyme to produce novel variants of surfactants. Importantly, the GTase57 has excellent thermostability with a maximal activity at 95 °C and an activity half-life of 150 min at 90 °C which is highly advantageous in this manufacturing process suggesting that enzymes from this relatively uncharacterized family, GH57, can be powerful biocatalysts for the production of large head group glucosides from soluble starch.


Asunto(s)
Archaeoglobus fulgidus/enzimología , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Glicósidos/metabolismo , Archaeoglobus fulgidus/genética , Biotransformación , Estabilidad de Enzimas , Glucósidos/metabolismo , Sistema de la Enzima Desramificadora del Glucógeno/química , Sistema de la Enzima Desramificadora del Glucógeno/genética , Calor , Concentración de Iones de Hidrógeno , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Almidón/metabolismo
11.
Glycobiology ; 23(9): 1084-96, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23804502

RESUMEN

The probiotic bacterium Lactobacillus reuteri 121 produces a complex, branched (1 → 4, 1 → 6)-α-D-glucan as extracellular polysaccharide (reuteran) from sucrose (Suc), using a single glucansucrase/glucosyltransferase (GTFA) enzyme (reuteransucrase). To gain insight into the reaction/product specificity of the GTFA enzyme and the mechanism of reuteran formation, incubations with Suc and/or a series of malto-oligosaccharides (MOSs) (degree of polymerization (DP2-DP6)) were followed in time. The structures of the initially formed products, isolated via high-performance anion-exchange chromatography, were analyzed by matrix-assisted laser-desorption ionization time-of-flight mass spectrometry and 1D/2D (1)H/(13)C NMR spectroscopy. Incubations with Suc only, acting as both donor and acceptor, resulted in elongation of Suc with glucose (Glc) units via alternating (α1 → 4) and (α1 → 6) linkages, yielding linear gluco-oligosaccharides up to at least DP ~ 12. Simultaneously with the ensemble of oligosaccharides, polymeric material was formed early on, suggesting that alternan fragments longer than DP ~ 12 have higher affinity with the GTFA enzyme and are quickly extended, yielding high-molecular-mass branched reuteran (4 × 10(7) Da). MOSs (DP2-DP6) in the absence of Suc turned out to be poor substrates. Incubations of GTFA with Suc plus MOSs as substrates resulted in preferential elongation of MOSs (acceptors) with Glc units from Suc (donor). This apparently reflects the higher affinity of GTFA for MOSs compared with Suc. In accordance with the GTFA specificity, most prominent products were oligosaccharides with an (α1 → 4)/(α1 → 6) alternating structure.


Asunto(s)
Glicosiltransferasas/metabolismo , Limosilactobacillus reuteri/enzimología , Oligosacáridos/metabolismo , Sacarosa/metabolismo
12.
Appl Microbiol Biotechnol ; 97(1): 181-93, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22361861

RESUMEN

Family 70 glycoside hydrolase glucansucrase enzymes exclusively occur in lactic acid bacteria and synthesize a wide range of α-D-glucan (abbreviated as α-glucan) oligo- and polysaccharides. Of the 47 characterized GH70 enzymes, 46 use sucrose as glucose donor. A single GH70 enzyme was recently found to be inactive with sucrose and to utilize maltooligosaccharides [(1→4)-α-D-glucooligosaccharides] as glucose donor substrates for α-glucan synthesis, acting as a 4,6-α-glucanotransferase (4,6-αGT) enzyme. Here, we report the characterization of two further GH70 4,6-αGT enzymes, i.e., from Lactobacillus reuteri strains DSM 20016 and ML1, which use maltooligosaccharides as glucose donor. Both enzymes cleave α1→4 glycosidic linkages and add the released glucose moieties one by one to the non-reducing end of growing linear α-glucan chains via α1→6 glycosidic linkages (α1→4 to α1→6 transfer activity). In this way, they convert pure maltooligosaccharide substrates into linear α-glucan product mixtures with about 50% α1→6 glycosidic bonds (isomalto/maltooligosaccharides). These new α-glucan products may provide an exciting type of carbohydrate for the food industry. The results show that 4,6-αGTs occur more widespread in family GH70 and can be considered as a GH70 subfamily. Sequence analysis allowed identification of amino acid residues in acceptor substrate binding subsites +1 and +2, differing between GH70 GTF and 4,6-αGT enzymes.


Asunto(s)
Glucanos/metabolismo , Sistema de la Enzima Desramificadora del Glucógeno/genética , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Limosilactobacillus reuteri/enzimología , Oligosacáridos/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , ADN Bacteriano/química , ADN Bacteriano/genética , Limosilactobacillus reuteri/genética , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
13.
J Biol Chem ; 286(5): 3520-30, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21097495

RESUMEN

Branching enzyme (EC 2.4.1.18; glycogen branching enzyme; GBE) catalyzes the formation of α1,6-branching points in glycogen. Until recently it was believed that all GBEs belong to glycoside hydrolase family 13 (GH13). Here we describe the cloning and expression of the Thermus thermophilus family GH57-type GBE and report its biochemical properties and crystal structure at 1.35-Å resolution. The enzyme has a central (ß/α)(7)-fold catalytic domain A with an inserted domain B between ß2 and α5 and an α-helix-rich C-terminal domain, which is shown to be essential for substrate binding and catalysis. A maltotriose was modeled in the active site of the enzyme which suggests that there is insufficient space for simultaneously binding of donor and acceptor substrates, and that the donor substrate must be cleaved before acceptor substrate can bind. The biochemical assessment showed that the GH57 GBE possesses about 4% hydrolytic activity with amylose and in vitro forms a glucan product with a novel fine structure, demonstrating that the GH57 GBE is clearly different from the GH13 GBEs characterized to date.


Asunto(s)
Enzima Ramificadora de 1,4-alfa-Glucano/química , Thermus thermophilus/enzimología , Enzima Ramificadora de 1,4-alfa-Glucano/metabolismo , Dominio Catalítico , Clonación Molecular/métodos , Cristalografía por Rayos X , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Hidrólisis , Conformación Proteica , Especificidad por Sustrato
14.
Glycobiology ; 22(4): 517-28, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22138321

RESUMEN

Recently, a novel glucansucrase (GS)-like gene (gtfB) was isolated from the probiotic bacterium Lactobacillus reuteri 121 and expressed in Escherichia coli. The purified recombinant GTFB enzyme was characterized and turned out to be inactive with sucrose, the natural GS substrate. Instead, GTFB acted on malto-oligosaccharides (MOSs), thereby yielding elongated gluco-oligomers/polymers containing besides (α1 â†’ 4) also (α1 â†’ 6) glycosidic linkages, and it was classified as a 4,6-α-glucanotransferase. To gain more insight into its reaction specificity, incubations of the GTFB enzyme with a series of MOSs and their corresponding alditols [degree of polymerization, DP2(-ol)-DP7(-ol)] were carried out, and (purified) products were structurally analyzed with matrix-assisted laser desorption ionization time-of-flight mass spectrometry and one-/two-dimensional (1)H and (13)C nuclear magnetic resonance spectroscopy. With each of the tested malto-oligomers, the GTFB enzyme yielded series of novel linear isomalto-/malto-oligomers, in the case of DP7 up to DP >35.


Asunto(s)
Proteínas Bacterianas/química , Glucosiltransferasas/química , Limosilactobacillus reuteri/enzimología , Maltosa/química , Oligosacáridos/síntesis química , Conformación de Carbohidratos , Secuencia de Carbohidratos , Cromatografía por Intercambio Iónico , Glucanos/química , Glicosilación , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Oligosacáridos/química , Oligosacáridos/aislamiento & purificación , Proteínas Recombinantes/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Alcoholes del Azúcar/química , Trisacáridos/química
15.
Front Plant Sci ; 13: 981602, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204061

RESUMEN

Alginate (alginic acid) is a linear polysaccharide, wherein (1→4)-linked ß-D-mannuronic acid and its C5 epimer, α-L-guluronic acid, are arranged in varying sequences. Alginate lyases catalyze the depolymerization of alginate, thereby cleaving the (1→4) glycosidic linkages between the monomers by a ß-elimination mechanism, to yield unsaturated 4-deoxy-L-erythro-hex-4-enopyranosyluronic acid (Δ) at the non-reducing end of resulting oligosaccharides (α-L-erythro configuration) or, depending on the enzyme, the unsaturated monosaccharide itself. In solution, the released free unsaturated monomer product is further hydrated in a spontaneous (keto-enol tautomerization) process to form two cyclic stereoisomers. In this study, two alginate lyase genes, designated alyRm3 and alyRm4, from the marine thermophilic bacterium Rhodothermus marinus (strain MAT378), were cloned and expressed in Escherichia coli. The recombinant enzymes were characterized, and their substrate specificity and product structures determined. AlyRm3 (PL39) and AlyRm4 (PL17) are among the most thermophilic and thermostable alginate lyases described to date with temperature optimum of activity at ∼75 and 81°C, respectively. The pH optimum of activity of AlyRm3 is ∼5.5 and AlyRm4 at pH 6.5. Detailed NMR analysis of the incubation products demonstrated that AlyRm3 is an endolytic lyase, while AlyRm4 is an exolytic lyase, cleaving monomers from the non-reducing end of oligo/poly-alginates.

16.
Glycobiology ; 21(3): 304-28, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21030539

RESUMEN

Over the years several ß-glucan transferases from yeast and fungi have been reported, but enzymes with such an activity from bacteria have not been characterized so far. In this work, we describe the cloning and expression of genes encoding ß-glucosyltransferase domains of glycosyl hydrolase family GH17 from three species of proteobacteria: Pseudomonas aeruginosa PAO1, P. putida KT2440 and Azotobacter vinelandii ATCC BAA-1303. The encoded enzymes of these GH17 domains turned out to have a non-Leloir trans-ß-glucosylation activity, as they do not use activated nucleotide sugar as donor, but transfer a glycosyl group from a ß-glucan donor to a ß-glucan acceptor. More particularly, the activity of the three recombinant enzymes on linear (ß1 â†’ 3)-linked gluco-oligosaccharides (Lam-Glc(4-9)) and their corresponding alditols (Lam-Glc(4-9)-ol) was studied. Detailed structural analysis, based on thin-layer chromatography, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, electrospray ionization mass spectrometry, and 1D/2D (1)H and (13)C nuclear magnetic resonance data, revealed diverse product spectra. Depending on the enzyme used, besides (ß1 â†’ 3)-elongation activity, (ß1 â†’ 4)- or (ß1 â†’ 6)-elongation, or (ß1 â†’ 6)-branching activities were also detected.


Asunto(s)
Azotobacter vinelandii/enzimología , Glucosiltransferasas/biosíntesis , Polisacáridos/metabolismo , Pseudomonas aeruginosa/enzimología , Pseudomonas putida/enzimología , Pruebas de Enzimas , Glucanos , Glucosiltransferasas/química , Modelos Moleculares , Estructura Molecular , Conformación Proteica , beta-Glucanos/química
17.
Appl Environ Microbiol ; 77(22): 8154-63, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21948833

RESUMEN

Lactobacillus reuteri 121 uses the glucosyltransferase A (GTFA) enzyme to convert sucrose into large amounts of the α-D-glucan reuteran, an exopolysaccharide. Upstream of gtfA lies another putative glucansucrase gene, designated gtfB. Previously, we have shown that the purified recombinant GTFB protein/enzyme is inactive with sucrose. Various homologs of gtfB are present in other Lactobacillus strains, including the L. reuteri type strain, DSM 20016, the genome sequence of which is available. Here we report that GTFB is a novel α-glucanotransferase enzyme with disproportionating (cleaving α1→4 and synthesizing α1→6 and α1→4 glycosidic linkages) and α1→6 polymerizing types of activity on maltotetraose and larger maltooligosaccharide substrates (in short, it is a 4,6-α-glucanotransferase). Characterization of the types of compounds synthesized from maltoheptaose by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS), methylation analysis, and 1-dimensional ¹H nuclear magnetic resonance (NMR) spectroscopy revealed that only linear products were made and that with increasing degrees of polymerization (DP), more α1→6 glycosidic linkages were introduced into the final products, ranging from 18% in the incubation mixture to 33% in an enriched fraction. In view of its primary structure, GTFB clearly is a member of the glycoside hydrolase 70 (GH70) family, comprising enzymes with a permuted (ß/α)8 barrel that use sucrose to synthesize α-D-glucan polymers. The GTFB enzyme reaction and product specificities, however, are novel for the GH70 family, resembling those of the GH13 α-amylase type of enzymes in using maltooligosaccharides as substrates but differing in introducing a series of α1→6 glycosidic linkages into linear oligosaccharide products. We conclude that GTFB represents a novel evolutionary intermediate between the GH13 and GH70 enzyme families, and we speculate about its origin.


Asunto(s)
Evolución Molecular , Sistema de la Enzima Desramificadora del Glucógeno/genética , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Limosilactobacillus reuteri/enzimología , Secuencia de Aminoácidos , Análisis por Conglomerados , Glucanos/metabolismo , Sistema de la Enzima Desramificadora del Glucógeno/química , Limosilactobacillus reuteri/genética , Espectroscopía de Resonancia Magnética , Filogenia , Homología de Secuencia de Aminoácido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
18.
Int J Biol Macromol ; 151: 663-676, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32070739

RESUMEN

Glycosaminoglycans (GAGs) were extracted from heads of silver-banded whiting (SBW) fish and subjected to preliminary biocompatibility testing per ISO 10993: intracutaneous irritation, maximization sensitization, systemic toxicity, and cytotoxicity. When the GAG solution was injected intradermally, the observed irritation was within ISO limits and comparable to a marketed control. There was no evidence of sensitization, systemic toxicity, or cellular toxicity on the test organisms treated with the GAG mixture from SBW fish heads. Fractionation by size-exclusion chromatography has shown three distinct fractions: F1 as low molecular weight hyaluronic acid (190 kDa), F2 (82 kDa) and F3 (64 kDa), both as chondroitin sulfates. Structural characterization by 1D and 2D nuclear magnetic resonance spectroscopy and disaccharide analysis have shown sulfation ratios at positions C4:C6 of the F2 and F3 fractions respectively as 70:20% and 50:30%, and the balance of non-sulfated and 4,6-di-sulfated units. The preliminary results here suggest that GAG-based extracts from SBW fish heads are suitable alternative products to be used in soft tissue augmentation, although further long-term biocompatibility studies are still required.


Asunto(s)
Materiales Biocompatibles/química , Glicosaminoglicanos/química , Mariposas Nocturnas/química , Animales , Materiales Biocompatibles/aislamiento & purificación , Materiales Biocompatibles/farmacología , Línea Celular , Fraccionamiento Químico , Cromatografía en Gel , Glicosaminoglicanos/aislamiento & purificación , Glicosaminoglicanos/farmacología , Ácido Hialurónico/química , Ratones , Estructura Molecular , Análisis Espectral
19.
Carbohydr Res ; 343(4): 726-45, 2008 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-18184608

RESUMEN

The exopolysaccharides produced by three propionibacteria strains, Propionibacterium freudenreichii 109, Propionibacterium freudenreichii 111, and Propionibacterium thoenii 126, grown on whey-based media, were found to be charged heteropolymers, composed of D-glucose, D-mannose, and D-glucuronic acid in molar ratios of 2:2:1. By means of methylation analysis, mass spectrometry, partial acid hydrolysis, and 1D/2D NMR (1H and 13C) studies, it was determined that all three exopolysaccharides contain the same branched, pentasaccharide repeating unit: [Formula: see text].


Asunto(s)
Polisacáridos Bacterianos/química , Propionibacterium/química , Ácidos/química , Secuencia de Carbohidratos , Hidrólisis , Espectroscopía de Resonancia Magnética , Metilación , Datos de Secuencia Molecular , Polisacáridos Bacterianos/biosíntesis , Polisacáridos Bacterianos/aislamiento & purificación , Propionibacterium/metabolismo
20.
Nat Commun ; 9(1): 390, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29374171

RESUMEN

Lipopolysaccharides (LPS) are among the known pathogen-associated molecular patterns (PAMPs). LPSs are potent elicitors of PAMP-triggered immunity (PTI), and bacteria have evolved intricate mechanisms to dampen PTI. Here we demonstrate that Xylella fastidiosa (Xf), a hemibiotrophic plant pathogenic bacterium, possesses a long chain O-antigen that enables it to delay initial plant recognition, thereby allowing it to effectively skirt initial elicitation of innate immunity and establish itself in the host. Lack of the O-antigen modifies plant perception of Xf and enables elicitation of hallmarks of PTI, such as ROS production specifically in the plant xylem tissue compartment, a tissue not traditionally considered a spatial location of PTI. To explore translational applications of our findings, we demonstrate that pre-treatment of plants with Xf LPS primes grapevine defenses to confer tolerance to Xf challenge.


Asunto(s)
Inmunidad Innata/inmunología , Lipopolisacáridos/inmunología , Antígenos O/inmunología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/inmunología , Xylella/inmunología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/inmunología , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata/genética , Lipopolisacáridos/metabolismo , Antígenos O/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Vitis/genética , Vitis/inmunología , Vitis/microbiología , Xylella/metabolismo , Xylella/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA