Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Bioorg Med Chem ; 97: 117559, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-38109811

RESUMEN

Bacterial resistance is undoubtedly one of the main public health concerns especially with the emergence of metallo-ß-lactamases (MBLs) able to hydrolytically inactivate ß-lactam antibiotics. Currently, there are no inhibitors of MBLs in clinical use to rescue antibiotic action and the New Delhi metallo-ß-lactamase-1 (NDM-1) is still considered as one of the most relevant targets for inhibitor development. Following a fragment-based strategy to find new NDM-1 inhibitors, we identified aurone as a promising scaffold. A series of 60 derivatives were then evaluated and two of them were identified as promising inhibitors with Ki values as low as 1.7 and 2.5 µM. Moreover, these two most active compounds were able to potentiate meropenem in in vitro antimicrobial susceptibility assays. The molecular modelling provided insights about their likely interactions with the active site of NDM-1, thus enabling further improvement in the structure of this new inhibitor family.


Asunto(s)
Benzofuranos , Inhibidores de beta-Lactamasas , beta-Lactamasas , Antibacterianos/farmacología , Antibacterianos/química , Inhibidores de beta-Lactamasas/farmacología , Inhibidores de beta-Lactamasas/química , beta-Lactamasas/química , Pruebas de Sensibilidad Microbiana
2.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34819373

RESUMEN

A protracted outbreak of New Delhi metallo-ß-lactamase (NDM)-producing carbapenem-resistant Klebsiella pneumoniae started in Tuscany, Italy, in November 2018 and continued in 2020 and through 2021. To understand the regional emergence and transmission dynamics over time, we collected and sequenced the genomes of 117 extensively drug-resistant, NDM-producing K. pneumoniae isolates cultured over a 20-mo period from 76 patients at several healthcare facilities in southeast Tuscany. All isolates belonged to high-risk clone ST-147 and were typically nonsusceptible to all first-line antibiotics. Albeit sporadic, resistances to colistin, tigecycline, and fosfomycin were also observed as a result of repeated, independent mutations. Genomic analysis revealed that ST-147 isolates circulating in Tuscany were monophyletic and highly genetically related (including a network of 42 patients from the same hospital and sharing nearly identical isolates), and shared a recent ancestor with clinical isolates from the Middle East. While the blaNDM-1 gene was carried by an IncFIB-type plasmid, our investigations revealed that the ST-147 lineage from Italy also acquired a hybrid IncFIB/IncHIB-type plasmid carrying the 16S methyltransferase armA gene as well as key virulence biomarkers often found in hypervirulent isolates. This plasmid shared extensive homologies with mosaic plasmids circulating globally including from ST-11 and ST-307 convergent lineages. Phenotypically, the carriage of this hybrid plasmid resulted in increased siderophore production but did not confer virulence to the level of an archetypical, hypervirulent K. pneumoniae in a subcutaneous model of infection with immunocompetent CD1 mice. Our findings highlight the importance of performing genomic surveillance to identify emerging threats.


Asunto(s)
Brotes de Enfermedades , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Klebsiella/epidemiología , Klebsiella pneumoniae/genética , Animales , Antibacterianos , Proteínas Bacterianas/genética , Biomarcadores , Carbapenémicos , Colistina , Biología Computacional/métodos , Infección Hospitalaria/epidemiología , Humanos , Italia/epidemiología , Estimación de Kaplan-Meier , Funciones de Verosimilitud , Ratones , Pruebas de Sensibilidad Microbiana , Preparaciones Farmacéuticas , Plásmidos , Polimorfismo de Nucleótido Simple , beta-Lactamasas/genética
3.
Mol Divers ; 27(3): 1489-1499, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36036302

RESUMEN

Trifluoroacetic acid (TFA), due to its strong acidity and low boiling point, is extensively used in protecting groups-based synthetic strategies. Indeed, synthetic compounds bearing basic functions, such as amines or guanidines (commonly found in peptido or peptidomimetic derivatives), developed in the frame of drug discovery programmes, are often isolated as trifluoroacetate (TF-Acetate) salts and their biological activity is assessed as such in in vitro, ex vivo, or in vivo experiments. However, the presence of residual amounts of TFA was reported to potentially affect the accuracy and reproducibility of a broad range of cellular assays (e. g. antimicrobial susceptibility testing, and cytotoxicity assays) limiting the further development of these derivatives. Furthermore, the impact of the counterion on biological activity, including TF-Acetate, is still controversial. Herein, we present a focused case study aiming to evaluate the activity of an antibacterial AlkylGuanidino Urea (AGU) compound obtained as TF-Acetate (1a) and hydrochloride (1b) salt forms to highlight the role of counterions in affecting the biological activity. We also prepared and tested the corresponding free base (1c). The exchange of the counterions applied to polyguanidino compounds represents an unexplored and challenging field, which required significant efforts for the successful optimization of reliable methods of preparation, also reported in this work. In the end, the biological evaluation revealed a quite similar biological profile for the salt derivatives 1a and 1b and a lower potency was found for the free base 1c.


Asunto(s)
Aminas , Antibacterianos , Reproducibilidad de los Resultados , Antibacterianos/farmacología
4.
J Enzyme Inhib Med Chem ; 38(1): 2201402, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37073528

RESUMEN

Vibrio cholerae causes life-threatening infections in low-income countries due to the rise of antibacterial resistance. Innovative pharmacological targets have been investigated and carbonic anhydrases (CAs, EC: 4.2.1.1) encoded by V. cholerae (VchCAs) emerged as a valuable option. Recently, we developed a large library of para- and meta-benzenesulfonamides characterised by moieties with a different flexibility degree as CAs inhibitors. Stopped flow-based enzymatic assays showed strong inhibition of VchαCA for this library, while lower affinity was detected against the other isoforms. In particular, cyclic urea 9c emerged for a nanomolar inhibition of VchαCA (KI = 4.7 nM) and high selectivity with respect to human isoenzymes (SI≥ 90). Computational studies revealed the influence of moiety flexibility on inhibitory activity and isoform selectivity and allowed accurate SARs. However, although VchCAs are involved in the bacterium virulence and not in its survival, we evaluated the antibacterial activity of such compounds, resulting in no direct activity.


Asunto(s)
Anhidrasas Carbónicas , Vibrio cholerae , Humanos , Relación Estructura-Actividad , Estructura Molecular , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/química , Relación Dosis-Respuesta a Droga , Anhidrasas Carbónicas/metabolismo , Bencenosulfonamidas
5.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37175704

RESUMEN

New classes of antibacterial drugs are urgently needed to address the global issue of antibiotic resistance. In this context, peptaibols are promising membrane-active peptides since they are not involved in innate immunity and their antimicrobial activity does not involve specific cellular targets, therefore reducing the chance of bacterial resistance development. Trichogin GA IV is a nonhemolytic, natural, short-length peptaibol active against Gram-positive bacteria and resistant to proteolysis. In this work, we report on the antibacterial activity of cationic trichogin analogs. Several peptides appear non-hemolytic and strongly active against many clinically relevant bacterial species, including antibiotic-resistant clinical isolates, such as Staphylococcus aureus, Acinetobacter baumannii, and extensively drug-resistant Pseudomonas aeruginosa, against which there are only a limited number of antibiotics under development. Our results further highlight how the modification of natural peptides is a valuable strategy for obtaining improved antibacterial agents with potential therapeutic applications.


Asunto(s)
Acinetobacter baumannii , Peptaiboles , Péptidos Catiónicos Antimicrobianos/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias , Staphylococcus aureus , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa , Farmacorresistencia Bacteriana Múltiple
6.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36674628

RESUMEN

Streptomyces lunaelactis strains have been isolated from moonmilk deposits, which are calcium carbonate speleothems used for centuries in traditional medicine for their antimicrobial properties. Genome mining revealed that these strains are a remarkable example of a Streptomyces species with huge heterogeneity regarding their content in biosynthetic gene clusters (BGCs) for specialized metabolite production. BGC 28a is one of the cryptic BGCs that is only carried by a subgroup of S. lunaelactis strains for which in silico analysis predicted the production of nonribosomal peptide antibiotics containing the non-proteogenic amino acid piperazic acid (Piz). Comparative metabolomics of culture extracts of S. lunaelactis strains either holding or not holding BGC 28a combined with MS/MS-guided peptidogenomics and 1H/13C NMR allowed us to identify the cyclic hexapeptide with the amino acid sequence (D-Phe)-(L-HO-Ile)-(D-Piz)-(L-Piz)-(D-Piz)-(L-Piz), called lunaemycin A, as the main compound synthesized by BGC 28a. Molecular networking further identified 18 additional lunaemycins, with 14 of them having their structure elucidated by HRMS/MS. Antimicrobial assays demonstrated a significant bactericidal activity of lunaemycins against Gram-positive bacteria, including multi-drug resistant clinical isolates. Our work demonstrates how an accurate in silico analysis of a cryptic BGC can highly facilitate the identification, the structural elucidation, and the bioactivity of its associated specialized metabolites.


Asunto(s)
Antiinfecciosos , Streptomyces , Antibacterianos/farmacología , Antibacterianos/metabolismo , Espectrometría de Masas en Tándem , Antiinfecciosos/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Familia de Multigenes
7.
Bioorg Med Chem ; 72: 116964, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36030663

RESUMEN

Metallo-ß-lactamases (MBLs) represent an increasingly serious threat to public health because of their increased prevalence worldwide in relevant opportunistic Gram-negative pathogens. MBLs efficiently inactivate widely used and most valuable ß-lactam antibiotics, such as oxyiminocephalosporins (ceftriaxone, ceftazidime) and the last-resort carbapenems. To date, no MBL inhibitor has been approved for therapeutic applications. We are developing inhibitors characterized by a 1,2,4-triazole-3-thione scaffold as an original zinc ligand and few promising series were already reported. Here, we present the synthesis and evaluation of a new series of compounds characterized by the presence of an arylalkyl substituent at position 4 of the triazole ring. The alkyl link was mainly an ethylene, but a few compounds without alkyl or with an alkyl group of various lengths up to a butyl chain were also synthesized. Some compounds in both sub-series were micromolar to submicromolar inhibitors of tested VIM-type MBLs. A few of them were broad-spectrum inhibitors, as they showed significant inhibitory activity on NDM-1 and, to a lesser extent, IMP-1. Among these, several inhibitors were able to significantly reduce the meropenem MIC on VIM-1- and VIM-4- producing clinical isolates by up to 16-fold. In addition, ACE inhibition was absent or moderate and one promising compound did not show toxicity toward HeLa cells at concentrations up to 250 µM. This series represents a promising basis for further exploration. Finally, molecular modelling of representative compounds in complex with VIM-2 was performed to study their binding mode.


Asunto(s)
Tionas , Inhibidores de beta-Lactamasas , Humanos , Antibacterianos/farmacología , Inhibidores de beta-Lactamasas/química , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/metabolismo , Carbapenémicos/farmacología , Ceftazidima , Ceftriaxona , Etilenos , Células HeLa , Ligandos , Meropenem , Pruebas de Sensibilidad Microbiana , Triazoles/química , Triazoles/farmacología , Zinc
8.
J Comput Chem ; 42(2): 86-106, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33169865

RESUMEN

Molecular dynamics on the complexes of inhibitors with Zn-metalloproteins are a privileged area of applications of polarizable molecular mechanics potentials. With which accuracy could these reproduce the QC intermolecular interaction energies in the two mono-zinc cores and in the dizinc core, toward full-fledged MD simulations on the entire protein complexes? We considered the complexes of the extended recognition site of a Zn-dependent metallo-ß-lactamase, VIM-2, produced by bacteria responsible for nosocomial infections, with five newly synthesized inhibitors sharing an original dizinc binding group, 1,2,4-triazole-3-thione (TZT). We considered the energy-minimized structures of each of the five VIM-2 complexes obtained with the SIBFA potential. Energy decomposition analyses (EDA) at the HF level enabled to compare the QC and the SIBFA ΔE values and their contributions in the zinc cores, with and without TZT, totaling 30 complexes. With one exception, the ΔE(QC) values were reproduced with relative errors <1.5%. We next considered the complex of the entire inhibitors with an extended model of VIM-2 recognition site, totaling up to 280 atoms. ΔE(SIBFA) could closely reproduce ΔE(QC). EDA analyses were resumed on the complexes of each inhibitor arm with its interacting VIM-2 residues. As a last step, EDA results at correlated levels were analyzed for the mono- and dizinc sites enabling comparisons with dispersion-augmented ΔE(SIBFA) and correlated multipoles and polarizabilities. Closely reproducing ΔE(QC) and the contrasting trends of its individual contributions should enable for dependable free energy perturbation studies and comparisons to recent experimental ΔG values, limiting as much as possible the reliance on error compensations.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Simulación de Dinámica Molecular , Tionas/química , Tionas/farmacología , beta-Lactamasas/metabolismo , Sitios de Unión , Modelos Moleculares , Estructura Molecular , Conformación Proteica , beta-Lactamasas/química
9.
Bioorg Chem ; 113: 105024, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34116340

RESUMEN

In Gram-negative bacteria, the major mechanism of resistance to ß-lactam antibiotics is the production of one or several ß-lactamases (BLs), including the highly worrying carbapenemases. Whereas inhibitors of these enzymes were recently marketed, they only target serine-carbapenemases (e.g. KPC-type), and no clinically useful inhibitor is available yet to neutralize the class of metallo-ß-lactamases (MBLs). We are developing compounds based on the 1,2,4-triazole-3-thione scaffold, which binds to the di-zinc catalytic site of MBLs in an original fashion, and we previously reported its promising potential to yield broad-spectrum inhibitors. However, up to now only moderate antibiotic potentiation could be observed in microbiological assays and further exploration was needed to improve outer membrane penetration. Here, we synthesized and characterized a series of compounds possessing a diversely functionalized alkyl chain at the 4-position of the heterocycle. We found that the presence of a carboxylic group at the extremity of an alkyl chain yielded potent inhibitors of VIM-type enzymes with Ki values in the µM to sub-µM range, and that this alkyl chain had to be longer or equal to a propyl chain. This result confirmed the importance of a carboxylic function on the 4-substituent of 1,2,4-triazole-3-thione heterocycle. As observed in previous series, active compounds also preferentially contained phenyl, 2-hydroxy-5-methoxyphenyl, naphth-2-yl or m-biphenyl at position 5. However, none efficiently inhibited NDM-1 or IMP-1. Microbiological study on VIM-2-producing E. coli strains and on VIM-1/VIM-4-producing multidrug-resistant K. pneumoniae clinical isolates gave promising results, suggesting that the 1,2,4-triazole-3-thione scaffold worth continuing exploration to further improve penetration. Finally, docking experiments were performed to study the binding mode of alkanoic analogues in the active site of VIM-2.


Asunto(s)
Tionas/química , Inhibidores de beta-Lactamasas/química , beta-Lactamasas/química , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacología , Sitios de Unión , Supervivencia Celular/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Escherichia coli/enzimología , Células HeLa , Humanos , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Unión Proteica , Relación Estructura-Actividad , Tionas/metabolismo , Triazoles/química , Inhibidores de beta-Lactamasas/metabolismo , beta-Lactamasas/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-31871094

RESUMEN

As shifts in the epidemiology of ß-lactamase-mediated resistance continue, carbapenem-resistant Enterobacterales (CRE) and carbapenem-resistant Pseudomonas aeruginosa (CRPA) are the most urgent threats. Although approved ß-lactam (BL)-ß-lactamase inhibitor (BLI) combinations address widespread serine ß-lactamases (SBLs), such as CTX-M-15, none provide broad coverage against either clinically important serine-ß-lactamases (KPC, OXA-48) or clinically important metallo-ß-lactamases (MBLs; e.g., NDM-1). VNRX-5133 (taniborbactam) is a new cyclic boronate BLI that is in clinical development combined with cefepime for the treatment of infections caused by ß-lactamase-producing CRE and CRPA. Taniborbactam is the first BLI with direct inhibitory activity against Ambler class A, B, C, and D enzymes. From biochemical and structural analyses, taniborbactam exploits substrate mimicry while employing distinct mechanisms to inhibit both SBLs and MBLs. It is a reversible covalent inhibitor of SBLs with slow dissociation and a prolonged active-site residence time (half-life, 30 to 105 min), while in MBLs, it behaves as a competitive inhibitor, with inhibitor constant (Ki ) values ranging from 0.019 to 0.081 µM. Inhibition is achieved by mimicking the transition state structure and exploiting interactions with highly conserved active-site residues. In microbiological testing, taniborbactam restored cefepime activity in 33/34 engineered Escherichia coli strains overproducing individual enzymes covering Ambler classes A, B, C, and D, providing up to a 1,024-fold shift in the MIC. Addition of taniborbactam restored the antibacterial activity of cefepime against all 102 Enterobacterales clinical isolates tested and 38/41 P. aeruginosa clinical isolates tested with MIC90s of 1 and 4 µg/ml, respectively, representing ≥256- and ≥32-fold improvements, respectively, in antibacterial activity over that of cefepime alone. The data demonstrate the potent, broad-spectrum rescue of cefepime activity by taniborbactam against clinical isolates of CRE and CRPA.


Asunto(s)
Antibacterianos/farmacología , Ácidos Borínicos/farmacología , Ácidos Carboxílicos/farmacología , Inhibidores de beta-Lactamasas/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cefepima/farmacología , Pruebas de Sensibilidad Microbiana , Estructura Secundaria de Proteína , Pseudomonas aeruginosa/efectos de los fármacos
11.
Artículo en Inglés | MEDLINE | ID: mdl-31712217

RESUMEN

Unlike for classes A and B, a standardized amino acid numbering scheme has not been proposed for the class C (AmpC) ß-lactamases, which complicates communication in the field. Here, we propose a scheme developed through a collaborative approach that considers both sequence and structure, preserves traditional numbering of catalytically important residues (Ser64, Lys67, Tyr150, and Lys315), is adaptable to new variants or enzymes yet to be discovered and includes a variation for genetic and epidemiological applications.


Asunto(s)
Proteínas Bacterianas/clasificación , Bacterias Gramnegativas/genética , Bacterias Grampositivas/genética , Mutación , Terminología como Asunto , Resistencia betalactámica/genética , beta-Lactamasas/clasificación , Secuencia de Aminoácidos , Antibacterianos/química , Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Expresión Génica , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/enzimología , Bacterias Grampositivas/efectos de los fármacos , Bacterias Grampositivas/enzimología , Cooperación Internacional , Estructura Secundaria de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Inhibidores de beta-Lactamasas/química , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , beta-Lactamas/química , beta-Lactamas/farmacología
12.
Mol Cell Proteomics ; 17(3): 442-456, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29259044

RESUMEN

Resistance to ß-lactams in Acinetobacter baumannii involves various mechanisms. To decipher them, whole genome sequencing (WGS) and real-time quantitative polymerase chain reaction (RT-qPCR) were complemented by mass spectrometry (MS) in selected reaction monitoring mode (SRM) in 39 clinical isolates. The targeted label-free proteomic approach enabled, in one hour and using a single method, the quantitative detection of 16 proteins associated with antibiotic resistance: eight acquired ß-lactamases (i.e. GES, NDM-1, OXA-23, OXA-24, OXA-58, PER, TEM-1, and VEB), two resident ß-lactamases (i.e. ADC and OXA-51-like) and six components of the two major efflux systems (i.e. AdeABC and AdeIJK). Results were normalized using "bacterial quantotypic peptides," i.e. peptide markers of the bacterial quantity, to obtain precise protein quantitation (on average 8.93% coefficient of variation for three biological replicates). This allowed to correlate the levels of resistance to ß-lactam with those of the production of acquired as well as resident ß-lactamases or of efflux systems. SRM detected enhanced ADC or OXA-51-like production and absence or increased efflux pump production. Precise protein quantitation was particularly valuable to detect resistance mechanisms mediated by regulated genes or by overexpression of chromosomal genes. Combination of WGS and MS, two orthogonal and complementary techniques, allows thereby interpretation of the resistance phenotypes at the molecular level.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Farmacorresistencia Microbiana/fisiología , beta-Lactamas/farmacología , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Proteínas Bacterianas/genética , Genómica , Fenotipo , Proteómica , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
13.
Drug Resist Updat ; 36: 13-29, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29499835

RESUMEN

Antibiotic resistance, and the emergence of pan-resistant clinical isolates, seriously threatens our capability to treat bacterial diseases, including potentially deadly hospital-acquired infections. This growing issue certainly requires multiple adequate responses, including the improvement of both diagnosis methods and use of antibacterial agents, and obviously the development of novel antibacterial drugs, especially active against Gram-negative pathogens, which represent an urgent medical need. Considering the clinical relevance of both ß-lactam antibiotics and ß-lactamase-mediated resistance, the discovery and development of combinations including a ß-lactamase inhibitor seems to be particularly attractive, despite being extremely challenging due to the enormous diversity, both structurally and mechanistically, of the potential ß-lactamase targets. This review will cover the evolution of currently available ß-lactamase inhibitors along with the most recent research leading to new ß-lactamase inhibitors of potential clinical interest or already in the stage of clinical development.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Descubrimiento de Drogas , Bacterias Gramnegativas/fisiología , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Inhibidores de beta-Lactamasas/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Combinación de Medicamentos , Diseño de Fármacos , Bacterias Gramnegativas/efectos de los fármacos , Infecciones por Bacterias Gramnegativas/microbiología , Estructura Molecular , Relación Estructura-Actividad , Resistencia betalactámica/efectos de los fármacos , Resistencia betalactámica/fisiología , Inhibidores de beta-Lactamasas/química , Inhibidores de beta-Lactamasas/uso terapéutico , beta-Lactamasas/química , beta-Lactamasas/metabolismo
14.
Artículo en Inglés | MEDLINE | ID: mdl-29530861

RESUMEN

Infections caused by carbapenem-resistant Enterobacteriaceae (CRE) are increasingly prevalent and have become a major worldwide threat to human health. Carbapenem resistance is driven primarily by the acquisition of ß-lactamase enzymes, which are able to degrade carbapenem antibiotics (hence termed carbapenemases) and result in high levels of resistance and treatment failure. Clinically relevant carbapenemases include both serine ß-lactamases (SBLs; e.g., KPC-2 and OXA-48) and metallo-ß-lactamases (MBLs), such as NDM-1. MBL-producing strains are endemic within the community in many Asian countries, have successfully spread worldwide, and account for many significant CRE outbreaks. Recently approved combinations of ß-lactam antibiotics with ß-lactamase inhibitors are active only against SBL-producing pathogens. Therefore, new drugs that specifically target MBLs and which restore carbapenem efficacy against MBL-producing CRE pathogens are urgently needed. Here we report the discovery of a novel MBL inhibitor, ANT431, that can potentiate the activity of meropenem (MEM) against a broad range of MBL-producing CRE and restore its efficacy against an Escherichia coli NDM-1-producing strain in a murine thigh infection model. This is a strong starting point for a chemistry lead optimization program that could deliver a first-in-class MBL inhibitor-carbapenem combination. This would complement the existing weaponry against CRE and address an important and growing unmet medical need.


Asunto(s)
Antibacterianos/farmacología , Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Meropenem/farmacología , Pruebas de Sensibilidad Microbiana , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/genética
15.
Bioorg Med Chem Lett ; 27(15): 3332-3336, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28610983

RESUMEN

In the last ten years, we identified and developed a new therapeutic class of antifungal agents, the macrocyclic amidinoureas. These compounds are active against several Candida species, including clinical isolates resistant to currently available antifungal drugs. The mode of action of these molecules is still unknown. In this work, we developed an in-silico target fishing procedure to identify a possible target for this class of compounds based on shape similarity, inverse docking procedure and consensus score rank-by-rank. Chitinase enzyme emerged as possible target. To confirm this hypothesis a novel macrocyclic derivative has been produced, specifically designed to increase the inhibition of the chitinase. Biological evaluation highlights a stronger enzymatic inhibition for the new derivative, while its antifungal activity drops probably because of pharmacokinetic issues. Collectively, our data suggest that chitinase represent at least one of the main target of macrocyclic amidinoureas.


Asunto(s)
Antifúngicos/farmacología , Quitinasas/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Trichoderma/efectos de los fármacos , Antifúngicos/síntesis química , Antifúngicos/química , Quitinasas/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Trichoderma/enzimología
16.
Antimicrob Agents Chemother ; 60(12): 7189-7199, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27671060

RESUMEN

BEL-1 is an acquired class A extended-spectrum ß-lactamase (ESBL) found in Pseudomonas aeruginosa clinical isolates from Belgium which is divergent from other ESBLs (maximum identity of 54% with GES-type enzymes). This enzyme is efficiently inhibited by clavulanate, imipenem, and moxalactam. Crystals of BEL-1 were obtained at pH 5.6, and the structure of native BEL-1 was determined from orthorhombic and monoclinic crystal forms at 1.60-Å and 1.48-Å resolution, respectively. By soaking native BEL-1 crystals, complexes with imipenem (monoclinic form, 1.79-Å resolution) and moxalactam (orthorhombic form, 1.85-Å resolution) were also obtained. In the acyl-enzyme complexes, imipenem and moxalactam differ by the position of the α-substituent and of the carbonyl oxygen (in or out of the oxyanion hole). More surprisingly, the Ω-loop, which includes the catalytically relevant residue Glu166, was found in different conformations in the various subunits, resulting in the Glu166 side chain being rotated out of the active site or even in displacement of its Cα atom up to approximately 10 Å. A BEL-1 variant showing the single Leu162Phe substitution (BEL-2) confers a higher level of resistance to CAZ, CTX, and FEP and shows significantly lower Km values than BEL-1, especially with oxyiminocephalosporins. BEL-1 Leu162 is located at the beginning of the Ω-loop and is surrounded by Phe72, Leu139, and Leu148 (contact distances, 3.5 to 3.9 Å). This small hydrophobic cavity could not reasonably accommodate the bulkier Phe162 found in BEL-2 without altering neighboring residues or the Ω-loop itself, thus likely causing an important alteration of the enzyme kinetic properties.


Asunto(s)
Imipenem/química , Moxalactam/química , beta-Lactamasas/química , beta-Lactamasas/metabolismo , Antibacterianos/química , Dominio Catalítico , Ácido Cítrico/química , Cristalografía por Rayos X , Disulfuros/química
17.
Antimicrob Agents Chemother ; 60(12): 7513-7517, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27736757

RESUMEN

The effect of high N-acetylcysteine (NAC) concentrations (10 and 50 mM) on antibiotic activity against 40 strains of respiratory pathogens was investigated. NAC compromised the activity of carbapenems (of mostly imipenem and, to lesser extents, meropenem and ertapenem) in a dose-dependent fashion. We demonstrated chemical instability of carbapenems in the presence of NAC. With other antibiotics, 10 mM NAC had no major effects, while 50 mM NAC sporadically decreased (ceftriaxone and aminoglycosides) or increased (penicillins) antibiotic activity.


Asunto(s)
Acetilcisteína/farmacología , Antibacterianos/farmacología , Imipenem/farmacología , Tienamicinas/farmacología , beta-Lactamas/farmacología , Aminoglicósidos/antagonistas & inhibidores , Aminoglicósidos/farmacología , Ceftriaxona/antagonistas & inhibidores , Ceftriaxona/farmacología , Combinación de Medicamentos , Interacciones Farmacológicas , Enterobacter cloacae/efectos de los fármacos , Enterobacter cloacae/crecimiento & desarrollo , Enterobacter cloacae/aislamiento & purificación , Ertapenem , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Escherichia coli/aislamiento & purificación , Humanos , Imipenem/antagonistas & inhibidores , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/crecimiento & desarrollo , Klebsiella pneumoniae/aislamiento & purificación , Meropenem , Pruebas de Sensibilidad Microbiana , Penicilinas/agonistas , Penicilinas/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/aislamiento & purificación , Infecciones del Sistema Respiratorio/microbiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/aislamiento & purificación , Streptococcus pneumoniae/efectos de los fármacos , Streptococcus pneumoniae/crecimiento & desarrollo , Streptococcus pneumoniae/aislamiento & purificación , Streptococcus pyogenes/efectos de los fármacos , Streptococcus pyogenes/crecimiento & desarrollo , Streptococcus pyogenes/aislamiento & purificación , Tienamicinas/antagonistas & inhibidores , beta-Lactamas/antagonistas & inhibidores
18.
J Comput Aided Mol Des ; 30(10): 851-861, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27632226

RESUMEN

ß-Lactamases are bacterial enzymes conferring resistance to ß-lactam antibiotics in clinically-relevant pathogens, and represent relevant drug targets. Recently, the identification of new boronic acids (i.e. RPX7009) paved the way to the clinical application of these molecules as potential drugs. Here, we screened in silico a library of ~1400 boronic acids as potential AmpC ß-lactamase inhibitors. Six of the most promising candidates were evaluated in biochemical assays leading to the identification of potent inhibitors of clinically-relevant ß-lactamases like AmpC, KPC-2 and CTX-M-15. One of the selected compounds showed nanomolar K i value with the clinically-relevant KPC-2 carbapenemase, while another one exhibited broad spectrum inhibition, being also active on Enterobacter AmpC and the OXA-48 class D carbapenemase.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Ácidos Borónicos/química , Inhibidores de beta-Lactamasas/química , Proteínas Bacterianas/química , Sitios de Unión , Simulación por Computador , Descubrimiento de Drogas , Enterobacter/enzimología , Escherichia coli/enzimología , Modelos Moleculares , Unión Proteica , Conformación Proteica , Serina/química , beta-Lactamasas/química
19.
J Enzyme Inhib Med Chem ; 31(sup1): 98-109, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27121013

RESUMEN

Metallo-ß-lactamases (MBLs) represent one of the most important and widespread mechanisms of resistance to ß-lactam antibiotics (including the life-saving carbapenems), against which no clinically useful inhibitors are currently available. We report herein a structure-based high-throughput docking (HTD) campaign on three clinically-relevant acquired MBLs (IMP-1, NDM-1 and VIM-2). The initial hit NF1810 (1) was optimized providing the broad-spectrum inhibitor 3i, which is able to potentiate the in vitro activity of cefoxitin on a VIM-2-producing E. coli strain.


Asunto(s)
Antibacterianos/farmacología , Ensayos Analíticos de Alto Rendimiento , Simulación del Acoplamiento Molecular , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/metabolismo , Antibacterianos/síntesis química , Antibacterianos/química , Relación Dosis-Respuesta a Droga , Escherichia coli/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad , Inhibidores de beta-Lactamasas/síntesis química , Inhibidores de beta-Lactamasas/química
20.
Antimicrob Agents Chemother ; 60(3): 1869-73, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26666948

RESUMEN

CPS-1 is a subclass B3 metallo-ß-lactamase from a Chryseobacterium piscium isolate collected from soil, showing 68% amino acid identity to the GOB-1 enzyme. CPS-1 was overproduced in Escherichia coli Rosetta (DE3), purified by chromatography, and biochemically characterized. This enzyme exhibits a broad-spectrum substrate profile, including penicillins, cephalosporins, and carbapenems, which overall resembles those of L1, GOB-1, and acquired subclass B3 enzymes AIM-1 and SMB-1.


Asunto(s)
Antibacterianos/metabolismo , Chryseobacterium/efectos de los fármacos , Chryseobacterium/metabolismo , Farmacorresistencia Bacteriana Múltiple/genética , beta-Lactamasas/metabolismo , Secuencia de Aminoácidos , Carbapenémicos/metabolismo , Cefalosporinas/metabolismo , Chryseobacterium/aislamiento & purificación , Clonación Molecular , ADN Bacteriano/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Pruebas de Sensibilidad Microbiana , Penicilinas/metabolismo , Alineación de Secuencia , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA