Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Physiol ; 595(19): 6249-6262, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28737214

RESUMEN

KEY POINTS: While autologous stem cell-based therapies are currently being tested on elderly patients, there are limited data on the function of aged stem cells and in particular c-kit+ cardiac progenitor cells (CPCs). We isolated c-kit+ cells from young (3 months) and aged (24 months) C57BL/6 mice to compare their biological properties. Aged CPCs have increased senescence, decreased stemness and reduced capacity to proliferate or to differentiate following dexamethasone (Dex) treatment in vitro, as evidenced by lack of cardiac lineage gene upregulation. Aged CPCs fail to activate mitochondrial biogenesis and increase proteins involved in mitochondrial oxidative phosphorylation in response to Dex. Aged CPCs fail to upregulate paracrine factors that are potentially important for proliferation, survival and angiogenesis in response to Dex. The results highlight marked differences between young and aged CPCs, which may impact future design of autologous stem cell-based therapies. ABSTRACT: Therapeutic use of c-kit+ cardiac progenitor cells (CPCs) is being evaluated for regenerative therapy in older patients with ischaemic heart failure. Our understanding of the biology of these CPCs has, however, largely come from studies of young cells and animal models. In the present study we examined characteristics of CPCs isolated from young (3 months) and aged (24 months) mice that could underlie the diverse outcomes reported for CPC-based therapeutics. We observed morphological differences and altered senescence indicated by increased senescence-associated markers ß-galactosidase and p16 mRNA in aged CPCs. The aged CPCs also proliferated more slowly than their young counterparts and expressed lower levels of the stemness marker LIN28. We subsequently treated the cells with dexamethasone (Dex), routinely used to induce commitment in CPCs, for 7 days and analysed expression of cardiac lineage marker genes. While MEF2C, GATA4, GATA6 and PECAM mRNAs were significantly upregulated in response to Dex treatment in young CPCs, their expression was not increased in aged CPCs. Interestingly, Dex treatment of aged CPCs also failed to increase mitochondrial biogenesis and expression of the mitochondrial proteins Complex III and IV, consistent with a defect in mitochondria complex assembly in the aged CPCs. Dex-treated aged CPCs also had impaired ability to upregulate expression of paracrine factor genes and the conditioned media from these cells had reduced ability to induce angiogenesis in vitro. These findings could impact the design of future CPC-based therapeutic approaches for the treatment of older patients suffering from cardiac injury.


Asunto(s)
Células Madre Adultas/metabolismo , Envejecimiento/metabolismo , Senescencia Celular , Miocitos Cardíacos/metabolismo , Células Madre Adultas/citología , Células Madre Adultas/efectos de los fármacos , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Dexametasona/farmacología , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Factores de Transcripción GATA/genética , Factores de Transcripción GATA/metabolismo , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Biogénesis de Organelos , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/genética , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
2.
JAMA Oncol ; 6(12): 1947-1951, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33030521

RESUMEN

IMPORTANCE: Little is known about the penetration and bioactivity of systemically administered programmed cell death 1 (PD-1) antibodies in the central nervous system. Such information is critical for advancing checkpoint antibody therapies for treatment of brain tumors. OBJECTIVE: To evaluate pembrolizumab concentrations and PD-1 blockade on T cells in the cerebrospinal fluid (CSF) after intravenous administration. DESIGN, SETTING, AND PARTICIPANTS: Cerebrospinal fluid and blood samples were collected from 10 adult patients with high-grade gliomas who were participating in clinical trials of intracranially administered chimeric antigen receptor (CAR) T cells and intravenous pembrolizumab at City of Hope in Duarte, California, from 2017 through 2019. Neuropharmacokinetic and immunologic correlative studies were performed on CSF and serum samples. INTERVENTIONS OR EXPOSURES: Pembrolizumab, 200 mg, was given intravenously every 3 weeks with a median of 2 cycles (range, 1-8). CAR T cells were administered intracranially every 1 to 4 weeks. Cerebrospinal fluid and blood samples were collected on the day of CAR T-cell administration and then 24 hours later for a total of 100 paired samples. MAIN OUTCOMES AND MEASURES: Pembrolizumab concentrations were measured by enzyme-linked immunosorbent assay, PD-1 blocking on T cells by flow cytometry, and results of PD-1 blockade on CAR T-cell function by in vitro tumor rechallenge assays. RESULTS: Of the 10 patients included in this study, the mean (SD) age was 45.7 (11.0) years, and 6 (60%) were women. Steady-state pembrolizumab concentrations in the CSF were achieved by 24 hours after initial intravenous administration, with a mean CSF:serum ratio of 0.009 (95% CI, 0.004-0.014). The CSF concentrations of pembrolizumab effectively blocked PD-1 on both endogenous T cells and intracranially administered CAR T cells in the CSF, with flow cytometric detection of surface PD-1 on the T cells decreasing from a mean (SD) of 39.3% (20.2%) before pembrolizumab to a mean (SD) of 3.8% (5.8%) 24 hours after pembrolizumab infusion. Steady-state concentrations in the CSF were maintained throughout the 21-day cycle of pembrolizumab, as was the PD-1 blocking effect, evidenced by no increase in detectable surface PD-1 on T cells in the CSF during that time period. Incubation of PD-1-expressing T cells with CSF samples from patients treated with pembrolizumab also resulted in PD-1 blockade. CONCLUSIONS AND RELEVANCE: Results of this study demonstrate steady-state concentrations of pembrolizumab in CSF after intravenous administration as well as CSF concentrations that are sufficient for blocking PD-1 on endogenous and adoptively transferred T cells. This provides mechanistic insight regarding the ability of systemically administered PD-1 blocking antibodies to modulate T-cell activity in the brain.


Asunto(s)
Neoplasias , Receptor de Muerte Celular Programada 1 , Femenino , Humanos , Inmunoterapia/métodos , Recuento de Linfocitos , Receptor de Muerte Celular Programada 1/metabolismo , Linfocitos T
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA