Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 2557, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35169245

RESUMEN

Complaints of sleep disturbance are prevalent among breast cancer (BC) patients and are predictors of quality of life. Still, electrophysiological measures of sleep are missing in patients, which prevents from understanding the pathophysiological consequences of cancer and its past treatments. Using polysomnography, sleep can be investigated in terms of macro- (e.g. awakenings, sleep stages) and micro- (i.e. cortical activity) structure. We aimed to characterize sleep complaints, and macro- and microstructure in 33 BC survivors untreated by chemotherapy and that had finished radiotherapy since at least 6 months (i.e. out of the acute effects of radiotherapy) compared to 21 healthy controls (HC). Compared to HC, BC patients had a larger number of awakenings (p = 0.008); and lower Delta power (p < 0.001), related to sleep deepening and homeostasis; greater both Alpha (p = 0.002) and Beta power (p < 0.001), related to arousal during deep sleep; and lower Theta power (p = 0.004), related to emotion regulation during dream sleep. Here we show that patients have increased cortical activity related to arousal and lower activity related to sleep homeostasis compared to controls. These results give additional insights in sleep pathophysiology of BC survivors and suggest sleep homeostasis disruption in non-advanced stages of BC.


Asunto(s)
Neoplasias de la Mama/complicaciones , Trastornos del Sueño-Vigilia/etiología , Anciano , Supervivientes de Cáncer , Estudios de Casos y Controles , Femenino , Humanos , Persona de Mediana Edad , Calidad de Vida , Sueño
2.
EJNMMI Res ; 7(1): 21, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28266002

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a rapidly progressive disease of the nervous system involving both upper and lower motor neurons. The patterns of structural and metabolic brain alterations are still unclear. Several studies using anatomical MRI yielded a number of discrepancies in their results, and a few PET studies investigated the effect of ALS on cerebral glucose metabolism. The aim of this study was threefold: to highlight the patterns of grey matter (GM) atrophy, hypometabolism and hypermetabolism in patients with ALS, then to understand the neurobehavioral significance of hypermetabolism and, finally, to investigate the regional differences between the morphologic and functional changes in ALS patients, using a specially designed voxel-based method. Thirty-seven patients with ALS and 37 age- and sex-matched healthy individuals underwent both structural MRI and 18[F]-fluorodeoxyglucose (FDG) PET examinations. PET data were corrected for partial volume effects. Structural and metabolic abnormalities were examined in ALS patients compared with control subjects using two-sample t tests in statistical parametric mapping (SPM). Then, we extracted the metabolic values of clusters presenting hypermetabolism to correlate with selected cognitive scores. Finally, GM atrophy and hypometabolism patterns were directly compared with a one-paired t test in SPM. RESULTS: We found GM atrophy as well as hypometabolism in motor and extra motor regions and hypermetabolism in medial temporal lobe and cerebellum. We observed negative correlations between the metabolism of the right and left parahippocampal gyri and episodic memory and between the metabolism of right temporal pole and cognitive theory of mind. GM atrophy predominated in the temporal pole, left hippocampus and right thalamus, while hypometabolism predominated in a single cluster in the left frontal superior medial cortex. CONCLUSIONS: Our findings provide direct evidence of regional variations in the hierarchy and relationships between GM atrophy and hypometabolism in ALS. Moreover, the 18FDG-PET investigation suggests that cerebral hypermetabolism is deleterious to cognitive function in ALS.

3.
Brain Imaging Behav ; 11(1): 240-252, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-26852326

RESUMEN

Gray matter (GM) lobar atrophy and glucose hypometabolism are well-described hallmarks of frontotemporal lobar degeneration (FTLD), but the relationships between them are still poorly understood. In this study, we aimed to show the patterns of GM atrophy and hypometabolism in a sample of 15 patients with the behavioral variant of FTLD (bv-FTD), compared to 15 healthy controls, then to provide a direct comparison between GM atrophy and hypometabolism, using a voxel-based method specially designed to statistically compare the two imaging modalities. The participants underwent structural magnetic resonance imaging and 18F-fluorodeoxyglucose (FDG) positron emission tomography examinations. First, between-group comparisons of GM volume and metabolism were performed. Then, in the patient group, correlations between regional alterations and direct between-modality voxelwise comparison were performed. Finally, we examined individual patterns of brain abnormalities for each imaging modality and each patient. The observed patterns of GM atrophy and hypometabolism were consistent with previous studies. We found significant voxelwise correlations between changes in GM and FDG uptake, mainly in the frontal cortex, corresponding to the typical profile of alterations in bv-FTD. The direct comparison revealed regional variability in the relationship between hypometabolism and atrophy. This analysis revealed greater atrophy than hypometabolism in the right putamen and amygdala, and left insula and superior temporal gyrus, whereas hypometabolism was more severe than GM atrophy in the left caudate nucleus and anterior cingulate cortex. Finally, GM atrophy affected the right amygdala/hippocampus and left insula in 95 % of the patients. These findings provide evidence for regional variations in the hierarchy of hypometabolism and GM atrophy and the relationships between them, and enhance our understanding of the pathophysiology of bv-FTD.


Asunto(s)
Encéfalo/fisiopatología , Degeneración Lobar Frontotemporal/fisiopatología , Anciano , Atrofia , Variación Biológica Individual , Encéfalo/diagnóstico por imagen , Femenino , Fluorodesoxiglucosa F18 , Degeneración Lobar Frontotemporal/diagnóstico por imagen , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/fisiopatología , Humanos , Imagen por Resonancia Magnética , Masculino , Imagen Multimodal , Tamaño de los Órganos , Tomografía de Emisión de Positrones , Radiofármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA