RESUMEN
Actin-microtubule crosstalk is implicated in the formation of cellular protrusions, but the mechanism remains unclear. In this study, we examined the regulation of cell protrusion involving a ubiquitously expressed microtubule-associated protein (MAP) 4, and its superfamily proteins, neuronal MAP2 and tau. Fluorescence microscopy revealed that these MAPs bound to F-actin and microtubules simultaneously, and formed F-actin/microtubule hybrid bundles. The hybrid bundle-forming activity was in the order of MAP2 > MAP4 â« tau. Interestingly, the microtubule assembly-promoting activity of MAP4 and MAP2, but not of tau, was upregulated by their interaction with F-actin. When MAP4 was overexpressed in NG108-15 cells, the number of cell processes and maximum process length of each cell increased significantly by 28% and 30%, respectively. Super-resolution microscopy revealed that 95% of microtubules in cell processes colocalized with F-actin, and MAP4 was always found in their vicinity. These results suggest that microtubule elongation along F-actin induced by MAP4 contributes to the formation of cellular protrusions. Since MAP4, MAP2 and tau had different crosstalk activity between F-actin and microtubules, it is likely that the functional differentiation of these MAPs is a driving force for neural evolution, causing significant changes in cell morphology.
Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Extensiones de la Superficie Celular/metabolismo , Glioma/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Neuroblastoma/metabolismo , Animales , Sitios de Unión , Línea Celular Tumoral , Escherichia coli/genética , Escherichia coli/metabolismo , Glioma/patología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Microscopía Confocal , Proteínas Asociadas a Microtúbulos/genética , Neuritas/metabolismo , Neuroblastoma/patología , Plásmidos/genética , Plásmidos/metabolismo , Unión Proteica , Ratas , Transfección , Proteínas tau/metabolismoRESUMEN
The Tau family microtubule-associated proteins (MAPs) promote microtubule stabilization and regulate microtubule-based motility. They share the C-terminal microtubule-binding domain, which includes three to five tubulin-binding repeats. Different numbers of repeats formed by alternative splicing have distinct effects on the activities of these proteins, and the distribution of these variants regulates fundamental physiological phenomena in cells. In this study, using cryo-EM, we visualized the MAP4 microtubule complex with the molecular motor kinesin-1. MAP4 bound to the C-terminal domains of tubulins along the protofilaments stabilizes the longitudinal contacts of the microtubule. The strongest bond of MAP4 was found around the intertubulin-dimer interface such that MAP4 coexists on the microtubule with kinesin-1 bound to the intratubulin-dimer interface as well. MAP4, consisting of five repeats, further folds and accumulates above the intertubulin-dimer interface, interfering with kinesin-1 movement. Therefore, these cryo-EM studies reveal new insight into the structural basis of microtubule stabilization and inhibition of kinesin motility by the Tau family MAPs.