Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Synchrotron Radiat ; 31(Pt 4): 733-740, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38920268

RESUMEN

L3-edge high-energy-resolution fluorescence-detection X-ray absorption near-edge structure (XANES) spectra for palladium and rhodium compounds are presented, with focus on their electronic structures. The data are compared with transmission XANES spectra recorded at the K-edge. A correlation between the absorption edge energy and the metal ion oxidation state is not observed. Despite the different filling of the 4d orbitals and different local coordination, the Rh and Pd compounds show remarkably similar spectral shapes. Calculation of the density of states and of the L3-XANES data reproduce the experimental results.

2.
Angew Chem Int Ed Engl ; : e202408511, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38877822

RESUMEN

CeO2-supported noble metal clusters are attractive catalytic materials for several applications. However, their atomic dispersion under oxidizing reaction conditions often leads to catalyst deactivation. In this study, the noble metal cluster formation threshold is rationally adjusted by using a mixed CeO2-Al2O3 support. The preferential location of Pd on CeO2 islands leads to a high local surface noble metal concentration and promotes the in situ formation of small Pd clusters at a rather low noble metal loading (0.5 wt %), which are shown to be the active species for CO conversion at low temperatures. As elucidated by complementary in situ/operando techniques, the spatial separation of CeO2 islands on Al2O3 confines the mobility of Pd, preventing the full redispersion or the formation of larger noble metal particles and maintaining a high CO oxidation activity at low temperatures. In a broader perspective, this approach to more efficiently use the noble metal can be transferred to further systems and reactions in heterogeneous catalysis.

3.
Inorg Chem ; 57(21): 13104-13114, 2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30303381

RESUMEN

ZnS nanosystems are being extensively studied for their possible use in a wide range of technological applications. Recently, the gradual oxidation of ZnS to ZnO was exploited to tune their structural, electronic, and functional properties. However, the inherent complexity and size dependence of the ZnS oxidation phenomena resulted in a very fragmented description of the process. In this work, different-sized nanosystems were obtained through two different low temperature wet chemistry routes, namely, hydrothermal and inverse miniemulsion approaches. These protocols were used to obtain ZnS samples consisting of 21 and 7 nm crystallites, respectively, to be used as reference material. The obtained samples were then calcinated at different temperatures, ranging from 400 to 800 °C toward the complete oxidation of ZnO, passing through the coexistence of the two phases (ZnS/ZnO). A thorough comparison of the effects of thermal handling on ZnS structural, chemical, and functional evolution was carried out by TEM, XRD, XAS, XPS, Raman, FT-IR, and UV-Vis. Finally, the photocatalytic activity in the H2 evolution reaction was also compared for selected ZnS and ZnS/ZnO samples. A correlation between size and the oxidation process was observed, as the smaller nanosystems showed the formation of ZnO at lower temperature, or in a larger amount in the case of the ZnS and ZnO co-presence. A difference in the underlying mechanism of the reaction was also evidenced. Despite the ZnS/ZnO mixed samples being characterized by an increased light absorption in the visible range, their photocatalytic activity was found to be much lower.

4.
Langmuir ; 32(49): 13116-13123, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27951699

RESUMEN

A heterophase method to prepare hollow and/or porous crystalline nanoparticles of metal oxides at room temperature is presented, taking cerium(IV) oxide and γ-iron(III) oxide (i.e., maghemite) as representative cases. The crystallization begins at the oil-water interface in aqueous nanodroplets of the precursor in inverse (water-in-oil) miniemulsion systems, and it may continue toward the inner part of the droplets. A poly(styrene-b-acrylic acid) block copolymer is used as a structuring agent because the ability of the carboxylic groups to bind metal ions improves the inorganic shell formation. A precipitating base is added from the continuous phase, generating hydroxide species at the interface that begin the crystallization. We analyze the effects of the synthetic parameters in terms of colloidal stability and morphology of the resulting materials. In the case of maghemite samples, the prepared dispersions of hollow particles present a distinct magnetofluidic behavior.

5.
Chemistry ; 20(52): 17409-19, 2014 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-25367386

RESUMEN

Hierarchically organized silica-titania monoliths were synthesized under purely aqueous conditions by applying a new ethylene glycol-modified single-source precursor, such as 3-[3-{tris(2-hydroxyethoxy)silyl}propyl]acetylacetone coordinated to a titanium center. The influence of the silicon- and titanium-containing single-source precursor, the novel glycolated organofunctional silane, and the addition of tetrakis(2-hydroxyethyl)orthosilicate on the formation of the final porous network was investigated by SEM, TEM, nitrogen sorption, and SAXS/WAXS. In situ SAXS measurements were performed to obtain insight into the development of the mesoporous network during sol-gel transition. IR-ATR, UV/Vis, XPS, and XAFS measurements showed that up to a Si/Ti ratio of 35:1, well-dispersed titanium centers in a macro-/mesoporous SiO2 network with a specific surface area of up to 582 m(2) g(-1) were obtained. An increase in Ti content resulted in a decrease in specific surface area and a loss of the cellular character of the macroporous network. With a 1:1 Si/Ti ratio, silica-titania powders with circa 100 m(2) g(-1) and anatase domains within the SiO2 matrix were obtained.

6.
Adv Sci (Weinh) ; 10(6): e2205890, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36683242

RESUMEN

Nanoporosity is clearly beneficial for the performance of heterogeneous catalysts. Although exsolution is a modern method to design innovative catalysts, thus far it is predominantly studied for sintered matrices. A quantitative description of the exsolution of Ni nanoparticles from nanoporous perovskite oxides and their effective application in the biogas dry reforming is here presented. The exsolution process is studied between 500 and 900 °C in nanoporous and sintered La0.52 Sr0.28 Ti0.94 Ni0.06 O3±Î´ . Using temperature-programmed reduction (TPR) and X-ray absorption spectroscopy (XAS), it is shown that the faster and larger oxygen release in the nanoporous material is responsible for twice as high Ni reduction than in the sintered system. For the nanoporous material, the nanoparticle formation mechanism, studied by in situ TEM and small-angle X-ray scattering (SAXS), follows the classical nucleation theory, while on sintered systems also small endogenous nanoparticles form despite the low Ni concentration. Biogas dry reforming tests demonstrate that nanoporous exsolved catalysts are up to 18 times more active than sintered ones with 90% of CO2 conversion at 800 °C. Time-on-stream tests exhibit superior long-term stability (only 3% activity loss in 8 h) and full regenerability (over three cycles) of the nanoporous exsolved materials in comparison to a commercial Ni/Al2 O3 catalyst.

8.
Polymers (Basel) ; 13(19)2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34641087

RESUMEN

Zr-based oxoclusters MxOy(OR)w(OOR')z are promising catalysts for the activation of hydrogen peroxide. However, they need to be integrated into suitable matrices to increase their hydrolytic stability and allow for their recovery after use. Polymeric materials can be successfully employed for this aim, since they modify the properties of the resulting hybrid materials, in terms of polarity and chemical affinity for the substrates, improving the catalytic activity. Herein, we report the synthesis of different acrylic polymers based on various co-monomers (methyl methacrylate (MMA), 2,2,2-trifluoroethylmethacrylate (TFMA) and 3-methacryloxypropyltrimethoxylsilane (MAPTMS)) covalently cross-linked by a Zr4-based oxocluster, whose composition was tuned to optimise the catalytic oxidation of methyl p-tolyl sulphide. To assess their properties and stability, the materials were characterised via Fourier Transform Infrared (FT-IR) and Raman spectroscopies, Thermogravimetric Analysis (TGA), Solid-State NMR (SS-NMR) and X-Ray Absorption Spectroscopies XAS, before and after catalytic turnover.

9.
Chem Commun (Camb) ; 56(61): 8707-8710, 2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32613962

RESUMEN

The controlled nucleation and crystallization of small pure sphalerite ZnS nanoparticles was achieved under batch and continuous flow conditions at low temperature, in water and without the use of any stabilizing ligand. The obtained nanoparticles displayed a narrow size distribution and high specific surface area. Moreover, the synthesis was suitable to directly obtain stable water-based suspensions and the products were found to be active photocatalysts for the hydrogen evolution reaction.

10.
ACS Appl Mater Interfaces ; 12(39): 44074-44087, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32876432

RESUMEN

The room-temperature controlled crystallization of monodispersed ZnS nanoparticles (average size of 5 nm) doped with luminescent ions (such as Mn2+, Eu3+, Sm3+, Nd3+, and Yb3+) was achieved via a microfluidic approach. The preparation did not require any stabilizing ligands or surfactants, minimizing potential sources of impurities. The synthesized nanomaterials were characterized from a structural (XRD and XAS at lanthanide L3 edges), morphological (TEM), and compositional (XPS, ICP-MS) perspective, giving complementary information on the materials' features. In view of potential applications in the field of optical bioimaging, the optical emission properties of the doped nanoparticles were assessed, and samples showed strong luminescent properties while being less affected by self-quenching mechanisms. Furthermore, in vitro cytotoxicity experiments were conducted, showing no negative effects and evidencing the appeal of the synthesized materials for potential applications in the field of optical bioimaging.


Asunto(s)
Técnicas Analíticas Microfluídicas , Nanopartículas/química , Imagen Óptica , Sulfuros/química , Elementos de Transición/química , Compuestos de Zinc/química , Células A549 , Cristalización , Humanos , Luminiscencia , Tamaño de la Partícula , Propiedades de Superficie , Células Tumorales Cultivadas , Espectroscopía de Absorción de Rayos X
11.
Chempluschem ; 81(3): 338-350, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31968791

RESUMEN

The first examples of organic-inorganic hybrid materials reinforced by transition-metal oxoclusters that exhibit shape memory properties, based on the covalent incorporation of zirconium-based inorganic building blocks, are reported. Methacrylate-functionalized zirconium oxoclusters Zr4 O2 (OMc)12 and [Zr6 O4 (OH)4 (OOCCH2 CH3 )3 {OOCC(CH3 )=CH2 }9 ]2 , with the covalent incorporation in a butyl acrylate (BA)/polycaprolactone dimethacrylate (PCLDMA) copolymer and the noncovalent incorporation of [Zr6 O4 (OH)4 (OOCCH2 CH3 )12 ]2 are focused upon herein. Shape recovery and fixity rates are studied to observe if the shape memory properties are preserved upon going from a simple copolymer to noncovalent or covalent-based hybrids. These rates display values higher than 90 %, which provides evidence that the oxocluster does not hinder the shape memory properties in the hybrid materials. The introduction of an inorganic phase and the progressively more stable interactions between organic and inorganic parts lead to an enhancement of the thermomechanical properties. The materials are characterized through FTIR spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and swelling tests. Dynamic-mechanical analyses are used to investigate whether the hybrid materials display thermally activated shape memory properties. The stability of the hybrid materials are evaluated by a combined spectroscopic approach based on FTIR, solid-state NMR, and X-ray absorption spectroscopy.

12.
J Mater Chem B ; 2(38): 6639-6651, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32261824

RESUMEN

Nanostructured (d∼ 20-35 nm) and highly luminescent Ca(OH)2:Ln and Mg(OH)2:Ln (Ln = EuIII, SmIII, TbIII, Mg(Ca)/Ln = 20 : 1 atomic) nanostructures were obtained in inverse (water in oil - w/o) miniemulsion (ME), by exploiting the nanosized compartments of the droplets to spatially confine the hydroxide precipitation in basic environment (NaOH). The functional nanostructures were prepared using different surfactants (Span80 (span) and a mixture of Igepal co-630 and Brij 52 (mix)) to optimise ME stability and hydroxide biocompatibility as well as tune the droplet sizes. X-Ray diffraction (XRD) analyses testify the achievement of a pure brucite-Mg(OH)2-phase and pure portlandite-Ca(OH)2-phase with a high degree of crystallinity. Besides structural characterisations, the products were thoroughly characterised by means of several and complementary techniques (dynamic light scattering (DLS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), micro-Raman spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS) and Fourier transform infrared spectroscopy (FT-IR)) to assess their chemico-physical properties as well as their morphological and microstructural features. The stoichiometry of the doped systems was confirmed using ICP-MS measurements. Finally, the cytotoxicity of the nanoparticles was assessed by in vitro tests using ES2 cells in order to provide preliminary data on the biocompatibility of this kind of nanoparticles. The luminescence of the Eu-doped and Tb-doped materials is clearly visible to the naked eye in the red and green regions, respectively, corroborating their employment as materials for imaging in the optical window of interest.

13.
Nanoscale ; 5(21): 10534-41, 2013 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-24057197

RESUMEN

An original synthetic route, based on the combination of a single-source precursor, UV-photodegradation and inverse w/o miniemulsion, is used to prepare Au nanoparticles (NPs) dispersed on titania. The source of the nanocomposite materials is the photolabile single-source precursor AuCl4(NH4)7[Ti2(O2)2(cit)(Hcit)]2·12H2O, which is suspended in a w/o miniemulsion consisting of different surfactant/hydrocarbon/water formulations (surfactant: sodium dodecylsulfate (SDS) or Triton X-100) and subsequently irradiated with a UV lamp to promote its decomposition in the confined space of the droplets. Gold NPs that form at room temperature are found to be crystalline, while titanium dioxide occurs as an amorphous phase. Moreover, the average crystallite size of gold NPs ranges between 20 and 24 nm when using SDS and between 26 and 40 nm in the case of Triton X-100, after 4 and 8 hours of irradiation time, respectively. Scanning and transmission electron microscopies (SEM and TEM) are used to get information about the nanocomposite morphology and nanostructure, revealing that gold NPs are uniformly distributed on the titanium oxide surface. Furthermore, X-ray photoelectron spectroscopy (XPS) outcomes, besides confirming the formation of both metallic gold and titania, provide information about the high dispersion of Au NPs on the TiO2 surface. In fact, the Au : Ti atomic ratio is found to be 0.45-1.5 (1 : 2-1.5 : 1), which is higher than the value determined by starting from the precursor stoichiometry (0.25). Catalytic testing in the oxidation of 2-propanol shows that decomposition of the precursor in a miniemulsion provides a nanocomposite with enhanced activity compared to the decomposition in the aqueous phase.

14.
ACS Appl Mater Interfaces ; 3(11): 4292-8, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21956966

RESUMEN

Tin dioxide coatings are widely applied in glasses and ceramics to improve not only optical, but also mechanical properties. In this work, we report a new method to prepare SnO(2) coatings from aqueous dispersions of polymer/organotin hybrid nanoparticles. Various liquid organotin compounds were encapsulated in polymeric nanoparticles synthesized by miniemulsion polymerization. Large amounts of tetrabutyltin and bis(tributyltin) could be successfully incorporated in cross-linked and noncross-linked polystyrene nanoparticles that served as sacrificial templates for the formation of tin oxide coatings after etching with oxygen plasma or calcination. Cross-linked polystyrene particles containing bis(tributyltin)--selected for having a high boiling point--were found to be especially suited for the oxide coating formation. The content of metal in the particles was up to 12 wt %, and estimations by thermogravimetrical indicated that at least 96% of the total organotin compound was converted to SnO(2). The resulting coatings were mainly identified as tetragonal SnO(2) (cassiterite) by X-ray diffraction, although a coexistence of this phase with orthorhombic SnO(2) was observed for samples prepared with bis(tributyltin).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA