Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Curr Issues Mol Biol ; 46(4): 3364-3378, 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38666941

RESUMEN

Neuroglobin (Ngb) is a cytosolic heme protein that plays an important role in protecting cells from apoptosis through interaction with oxidized cytochrome c (Cyt c) released from mitochondria. The interaction of reduced Ngb and oxidized Cyt c is accompanied by electron transfer between them and the reduction in Cyt c. Despite the growing number of studies on Ngb, the mechanism of interaction between Ngb and Cyt c is still unclear. Using Raman spectroscopy, we studied the effect of charged amino acid substitutions in Ngb and Cyt c on the conformation of their hemes. It has been shown that Ngb mutants E60K, K67E, K95E and E60K/E87K demonstrate changed heme conformations with the lower probability of the heme planar conformation compared to wild-type Ngb. Moreover, oxidized Cyt c mutants K25E, K72E and K25E/K72E demonstrate the decrease in the probability of methyl-radicals vibrations, indicating the higher rigidity of the protein microenvironment. It is possible that these changes can affect electron transfer between Ngb and Cyt c.

2.
Int J Mol Sci ; 25(15)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39125806

RESUMEN

Cytochrome c (CytC), a one-electron carrier, transfers electrons from complex bc1 to cytochrome c oxidase (CcO) in the electron-transport chain. Electrostatic interaction with the partners, complex bc1 and CcO, is ensured by a lysine cluster near the heme forming the Universal Binding Site (UBS). We constructed three mutant variants of mitochondrial CytC with one (2Mut), four (5Mut), and five (8Mut) Lys->Glu substitutions in the UBS and some compensating Glu->Lys substitutions at the periphery of the UBS for charge compensation. All mutants showed a 4-6 times increased peroxidase activity and accelerated binding of cyanide to the ferric heme of CytC. In contrast, decomposition of the cyanide complex with ferrous CytC, as monitored by magnetic circular dichroism spectroscopy, was slower in mutants compared to WT. Molecular dynamic simulations revealed the increase in the fluctuations of Cα atoms of individual residues of mutant CytC compared to WT, especially in the Ω-loop (70-85), which can cause destabilization of the Fe…S(Met80) coordination link, facilitation of the binding of exogenous ligands cyanide and peroxide, and an increase in peroxidase activity. It was found that only one substitution K72E is enough to induce all these changes, indicating the significance of K72 and the Ω-loop (70-85) for the structure and physiology of mitochondrial CytC. In this work, we also propose using a ferro-ferricyanide buffer as a substrate to monitor the peroxidase activity of CytC. This new approach allows us to determine the rate of peroxidase activity at moderate (200 µM) concentrations of H2O2 and avoid complications of radical formation during the reaction.


Asunto(s)
Citocromos c , Simulación de Dinámica Molecular , Sitios de Unión , Ligandos , Citocromos c/metabolismo , Citocromos c/química , Citocromos c/genética , Peroxidasa/metabolismo , Peroxidasa/química , Peroxidasa/genética , Sustitución de Aminoácidos , Unión Proteica , Cianuros/metabolismo , Cianuros/química , Animales , Hemo/metabolismo , Hemo/química , Mutación
4.
Biochemistry (Mosc) ; 88(11): 1905-1909, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38105207

RESUMEN

In this paper the answer to O. B. Ptitsyn's question "What is the role of conserved non-functional residues in apomyoglobin" is presented, which is based on the research results of three laboratories. The role of conserved non-functional apomyoglobin residues in formation of native topology in the molten globule state of this protein is revealed. This fact allows suggesting that the conserved non-functional residues in this protein are indispensable for fixation and maintaining main elements of the correct topology of its secondary structure in the intermediate state. The correct topology is a native element in the intermediate state of the protein.


Asunto(s)
Apoproteínas , Pliegue de Proteína , Apoproteínas/genética , Apoproteínas/química , Mioglobina/química , Estructura Secundaria de Proteína , Conformación Proteica
5.
Biochemistry (Mosc) ; 88(5): 716-722, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37331717

RESUMEN

Cell-surface display using anchor motifs of outer membrane proteins allows exposure of target peptides and proteins on the surface of microbial cells. Previously, we obtained and characterized highly catalytically active recombinant oligo-α-1,6-glycosidase from the psychrotrophic bacterium Exiguobacterium sibiricum (EsOgl). It was also shown that the autotransporter AT877 from Psychrobacter cryohalolentis and its deletion variants efficiently displayed type III fibronectin (10Fn3) domain 10 on the surface of Escherichia coli cells. The aim of the work was to obtain an AT877-based system for displaying EsOgl on the surface of bacterial cells. The genes for the hybrid autotransporter EsOgl877 and its deletion mutants EsOgl877Δ239 and EsOgl877Δ310 were constructed, and the enzymatic activity of EsOgl877 was investigated. Cells expressing this protein retained ~90% of the enzyme maximum activity within a temperature range of 15-35°C. The activity of cells expressing EsOgl877Δ239 and EsOgl877Δ310 was 2.7 and 2.4 times higher, respectively, than of the cells expressing the full-size AT. Treatment of cells expressing EsOgl877 deletion variants with proteinase K showed that the passenger domain localized to the cell surface. These results can be used for further optimization of display systems expressing oligo-α-1,6-glycosidase and other heterologous proteins on the surface of E. coli cells.


Asunto(s)
Escherichia coli , Sistemas de Secreción Tipo V , Escherichia coli/metabolismo , Sistemas de Secreción Tipo V/metabolismo , Glicósido Hidrolasas/metabolismo
6.
Biochemistry (Mosc) ; 88(10): 1544-1554, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38105023

RESUMEN

Retinal-containing light-sensitive proteins - rhodopsins - are found in many microorganisms. Interest in them is largely explained by their role in light energy storage and photoregulation in microorganisms, as well as the prospects for their use in optogenetics to control neuronal activity, including treatment of various diseases. One of the representatives of microbial rhodopsins is ESR, the retinal protein of Exiguobacterium sibiricum. What distinguishes ESR from homologous proteins is the presence of a lysine residue (Lys96) as a proton donor for the Schiff base. This feature, along with the hydrogen bond of the proton acceptor Asp85 with the His57 residue, determines functional characteristics of ESR as a proton pump. This review examines the results of ESR studies conducted using various methods, including direct electrometry. Comparison of the obtained data with the results of structural studies and with other retinal proteins allows us to draw conclusions about the mechanisms of transport of hydrogen ions in ESR and similar retinal proteins.


Asunto(s)
Bacteriorodopsinas , Protones , Transporte Iónico , Bombas de Protones/química , Bombas de Protones/metabolismo , Rodopsinas Microbianas/metabolismo , Bacteriorodopsinas/química
7.
Int J Mol Sci ; 24(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37108532

RESUMEN

Microbial rhodopsins comprise a diverse family of retinal-containing membrane proteins that convert absorbed light energy to transmembrane ion transport or sensory signals. Incorporation of these proteins in proteoliposomes allows their properties to be studied in a native-like environment; however, unidirectional protein orientation in the artificial membranes is rarely observed. We aimed to obtain proteoliposomes with unidirectional orientation using a proton-pumping retinal protein from Exiguobacterium sibiricum, ESR, as a model. Three ESR hybrids with soluble protein domains (mCherry or thioredoxin at the C-terminus and Caf1M chaperone at the N-terminus) were obtained and characterized. The photocycle of the hybrid proteins incorporated in proteoliposomes demonstrated a higher pKa of the M state accumulation compared to that of the wild-type ESR. Large negative electrogenic phases and an increase in the relative amplitude of kinetic components in the microsecond time range in the kinetics of membrane potential generation of ESR-Cherry and ESR-Trx indicate a decrease in the efficiency of transmembrane proton transport. On the contrary, Caf-ESR demonstrates a native-like kinetics of membrane potential generation and the corresponding electrogenic stages. Our experiments show that the hybrid with Caf1M promotes the unidirectional orientation of ESR in proteoliposomes.


Asunto(s)
Bacillaceae , Protones , Bacillaceae/metabolismo , Bombas de Protones/metabolismo , Rodopsinas Microbianas/metabolismo
8.
Int J Mol Sci ; 23(11)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35682540

RESUMEN

In the last two decades, bifunctional proteins have been created by genetic and protein engineering methods to increase therapeutic effects in various diseases, including cancer. Unlike conventional small molecule or monotargeted drugs, bifunctional proteins have increased biological activity while maintaining low systemic toxicity. The recombinant anti-cancer cytokine TRAIL has shown a limited therapeutic effect in clinical trials. To enhance the efficacy of TRAIL, we designed the HRH-DR5-B fusion protein based on the DR5-selective mutant variant of TRAIL fused to the anti-angiogenic synthetic peptide HRHTKQRHTALH. Initially low expression of HRH-DR5-B was enhanced by the substitution of E. coli-optimized codons with AT-rich codons in the DNA sequence encoding the first 7 amino acid residues of the HRH peptide. However, the HRH-DR5-B degraded during purification to form two adjacent protein bands on the SDS-PAGE gel. The replacement of His by Ser at position P2 immediately after the initiator Met dramatically minimized degradation, allowing more than 20 mg of protein to be obtained from 200 mL of cell culture. The resulting SRH-DR5-B fusion bound the VEGFR2 and DR5 receptors with high affinity and showed increased cytotoxic activity in 3D multicellular tumor spheroids. SRH-DR5-B can be considered as a promising candidate for therapeutic applications.


Asunto(s)
Receptores del Ligando Inductor de Apoptosis Relacionado con TNF , Ligando Inductor de Apoptosis Relacionado con TNF , Apoptosis , Línea Celular Tumoral , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Proteínas Recombinantes/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/química , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología
9.
Int J Mol Sci ; 23(3)2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35163644

RESUMEN

Peptide pore blockers and their fluorescent derivatives are useful molecular probes to study the structure and functions of the voltage-gated potassium Kv1.3 channel, which is considered as a pharmacological target in the treatment of autoimmune and neurological disorders. We present Kv1.3 fluorescent ligand, GFP-MgTx, constructed on the basis of green fluorescent protein (GFP) and margatoxin (MgTx), the peptide, which is widely used in physiological studies of Kv1.3. Expression of the fluorescent ligand in E. coli cells resulted in correctly folded and functionally active GFP-MgTx with a yield of 30 mg per 1 L of culture. Complex of GFP-MgTx with the Kv1.3 binding site is reported to have the dissociation constant of 11 ± 2 nM. GFP-MgTx as a component of an analytical system based on the hybrid KcsA-Kv1.3 channel is shown to be applicable to recognize Kv1.3 pore blockers of peptide origin and to evaluate their affinities to Kv1.3. GFP-MgTx can be used in screening and pre-selection of Kv1.3 channel blockers as potential drug candidates.


Asunto(s)
Proteínas Fluorescentes Verdes/metabolismo , Canal de Potasio Kv1.3 , Péptidos/metabolismo , Bloqueadores de los Canales de Potasio/metabolismo , Sitios de Unión , Humanos , Canal de Potasio Kv1.3/análisis , Canal de Potasio Kv1.3/metabolismo , Ligandos , Unión Proteica
10.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36293545

RESUMEN

TRAIL (TNF-related apoptosis-inducing ligand) and its derivatives are potentials for anticancer therapy due to the selective induction of apoptosis in tumor cells upon binding to death receptors DR4 or DR5. Previously, we generated a DR5-selective TRAIL mutant variant DR5-B overcoming receptor-dependent resistance of tumor cells to TRAIL. In the current study, we improved the antitumor activity of DR5-B by fusion with a tumor-homing iRGD peptide, which is known to enhance the drug penetration into tumor tissues. The obtained bispecific fusion protein DR5-B-iRGD exhibited dual affinity for DR5 and integrin αvß3 receptors. DR5-B-iRGD penetrated into U-87 tumor spheroids faster than DR5-B and demonstrated an enhanced antitumor effect in human glioblastoma cell lines T98G and U-87, as well as in primary patient-derived glioblastoma neurospheres in vitro. Additionally, DR5-B-iRGD was highly effective in a xenograft mouse model of the U-87 human glioblastoma cell line in vivo. We suggest that DR5-B-iRGD may become a promising candidate for targeted therapy for glioblastoma.


Asunto(s)
Glioblastoma , Ligando Inductor de Apoptosis Relacionado con TNF , Humanos , Ratones , Animales , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Integrina alfaVbeta3/genética , Línea Celular Tumoral , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Apoptosis
11.
Molecules ; 27(14)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35889244

RESUMEN

Quite a long time ago, Oleg B. Ptitsyn put forward a hypothesis about the possible functional significance of the molten globule (MG) state for the functioning of proteins. MG is an intermediate between the unfolded and the native state of a protein. Its experimental detection and investigation in a cell are extremely difficult. In the last decades, intensive studies have demonstrated that the MG-like state of some globular proteins arises from either their modifications or interactions with protein partners or other cell components. This review summarizes such reports. In many cases, MG was evidenced to be functionally important. Thus, the MG state is quite common for functional cellular proteins. This supports Ptitsyn's hypothesis that some globular proteins may switch between two active states, rigid (N) and soft (MG), to work in solution or interact with partners.


Asunto(s)
Pliegue de Proteína , Proteínas , Dicroismo Circular , Conformación Proteica , Desnaturalización Proteica
12.
Biochem Biophys Res Commun ; 548: 74-77, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33631678

RESUMEN

Peroxidase activity of cytochrome c (cyt c)/cardiolipin (CL) complex is supposed to be involved in the initiation of apoptosis via peroxidative induction of mitochondrial membrane permeabilization. As cyt c binding to CL-containing membranes is at least partially associated with electrostatic protein/lipid interaction, we screened single-point mutants of horse heart cyt c with various substitutions of lysine at position 72, considered to play a significant role in both the binding and peroxidase activity of the protein. Contrary to expectations, K72A, K72R and K72L substitutions exerted slight effects on both the cyt c binding to CL-containing liposomal membranes and the cyt c/H2O2-induced calcein leakage from liposomes, used here as a membrane permeabilization assay. Both the binding and permeabilization were decreased to various extents, but not significantly, in the case of K72E and K72N mutants. A drastic difference was found between the sequence of the permeabilizing activities of the cyt c variants and the previously described order of their proapoptotic activities (Chertkova et al., 2008).


Asunto(s)
Sustitución de Aminoácidos , Apoptosis , Citocromos c/metabolismo , Caballos/metabolismo , Membrana Dobles de Lípidos/metabolismo , Lisina/genética , Miocardio/metabolismo , Animales , Liposomas/metabolismo , Permeabilidad , Unión Proteica , Factores de Tiempo
13.
Molecules ; 26(22)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34834068

RESUMEN

Electron transfer within and between proteins is a fundamental biological phenomenon, in which efficiency depends on several physical parameters. We have engineered a number of horse heart cytochrome c single-point mutants with cysteine substitutions at various positions of the protein surface. To these cysteines, as well as to several native lysine side chains, the photoinduced redox label 8-thiouredopyrene-1,3,6-trisulfonate (TUPS) was covalently attached. The long-lived, low potential triplet excited state of TUPS, generated with high quantum efficiency, serves as an electron donor to the oxidized heme c. The rates of the forward (from the label to the heme) and the reverse (from the reduced heme back to the oxidized label) electron transfer reactions were obtained from multichannel and single wavelength flash photolysis absorption kinetic experiments. The electronic coupling term and the reorganization energy for electron transfer in this system were estimated from temperature-dependent experiments and compared with calculated parameters using the crystal and the solution NMR structure of the protein. These results together with the observation of multiexponential kinetics strongly support earlier conclusions that the flexible arm connecting TUPS to the protein allows several shortcut routes for the electron involving through space jumps between the label and the protein surface.


Asunto(s)
Citocromos c/química , Animales , Cisteína/química , Cisteína/genética , Citocromos c/genética , Transporte de Electrón , Hemo/química , Caballos , Cinética , Modelos Moleculares , Oxidación-Reducción , Mutación Puntual , Conformación Proteica , Pirenos/química
14.
J Neurochem ; 155(1): 45-61, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32222974

RESUMEN

Lynx1 is a GPI-tethered protein colocalized with nicotinic acetylcholine receptors (nAChRs) in the brain areas important for learning and memory. Previously, we demonstrated that at low micromolar concentrations the water-soluble Lynx1 variant lacking GPI-anchor (ws-Lynx1) acts on α7-nAChRs as a positive allosteric modulator. We hypothesized that ws-Lynx1 could be used for improvement of cognitive processes dependent on nAChRs. Here we showed that 2 µM ws-Lynx1 increased the acetylcholine-evoked current at α7-nAChRs in the rat primary visual cortex L1 interneurons. At higher concentrations ws-Lynx1 inhibits α7-nAChRs expressed in Xenopus laevis oocytes with IC50  ~ 50 µM. In mice, ws-Lynx1 penetrated the blood-brain barrier upon intranasal administration and accumulated in the cortex, hippocampus, and cerebellum. Chronic ws-Lynx1 treatment prevented the olfactory memory and motor learning impairment induced by the α7-nAChRs inhibitor methyllycaconitine (MLA). Enhanced long-term potentiation and increased paired-pulse facilitation ratio were observed in the hippocampal slices incubated with ws-Lynx1 and in the slices from ws-Lynx1-treated mice. Long-term potentiation blockade observed in MLA-treated mice was abolished by ws-Lynx1 co-administration. To understand the mechanism of ws-Lynx1 action, we studied the interaction of ws-Lynx1 and MLA at α7-nAChRs, measured the basal concentrations of endogenous Lynx1 and the α7 nAChR subunit and their association in the mouse brain. Our findings suggest that endogenous Lynx1 limits α7-nAChRs activation in the adult brain. Ws-Lynx1 partially displaces Lynx1 causing positive modulation of α7-nAChRs and enhancement of synaptic plasticity. Ws-Lynx1 and similar compounds may constitute useful hits for treatment of cognitive deficits associated with the cholinergic system dysfunction.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/farmacología , Inhibidores de la Colinesterasa/toxicidad , Disfunción Cognitiva/prevención & control , Disfunción Cognitiva/psicología , Plasticidad Neuronal/efectos de los fármacos , Receptor Nicotínico de Acetilcolina alfa 7/antagonistas & inhibidores , Acetilcolina/farmacología , Proteínas Adaptadoras Transductoras de Señales/farmacocinética , Alcaloides/farmacología , Animales , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/metabolismo , Disfunción Cognitiva/inducido químicamente , Interneuronas/efectos de los fármacos , Aprendizaje/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Wistar , Olfato/efectos de los fármacos , Corteza Visual/efectos de los fármacos , Xenopus laevis
15.
Angew Chem Int Ed Engl ; 58(34): 11852-11859, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31246354

RESUMEN

A sample-type protein monolayer, that can be a stepping stone to practical devices, can behave as an electrically driven switch. This feat is achieved using a redox protein, cytochrome C (CytC), with its heme shielded from direct contact with the solid-state electrodes. Ab initio DFT calculations, carried out on the CytC-Au structure, show that the coupling of the heme, the origin of the protein frontier orbitals, to the electrodes is sufficiently weak to prevent Fermi level pinning. Thus, external bias can bring these orbitals in and out of resonance with the electrode. Using a cytochrome C mutant for direct S-Au bonding, approximately 80 % of the Au-CytC-Au junctions show at greater than 0.5 V bias a clear conductance peak, consistent with resonant tunneling. The on-off change persists up to room temperature, demonstrating reversible, bias-controlled switching of a protein ensemble, which, with its built-in redundancy, provides a realistic path to protein-based bioelectronics.


Asunto(s)
Citocromos c/química , Citocromos c/metabolismo , Conductividad Eléctrica , Electrodos , Hemo/química , Hierro/química , Electroquímica , Transporte de Electrón , Humanos , Oxidación-Reducción , Conformación Proteica
16.
Biochemistry ; 56(34): 4468-4477, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28749688

RESUMEN

Today, recombinant proteins are quite widely used in biomedical and biotechnological applications. At the same time, the question about their full equivalence to the native analogues remains unanswered. To gain additional insight into this problem, intimate atomistic details of a relatively simple protein, small and structurally rigid recombinant cardiotoxin I (CTI) from cobra Naja oxiana venom, were characterized using nuclear magnetic resonance (NMR) spectroscopy and atomistic molecular dynamics (MD) simulations in water. Compared to the natural protein, it contains an additional Met residue at the N-terminus. In this work, the NMR-derived spatial structure of uniformly 13C- and 15N-labeled CTI and its dynamic behavior were investigated and subjected to comparative analysis with the corresponding data for the native toxin. The differences were found in dihedral angles of only a single residue, adjacent to the N-terminal methionine. Microsecond-long MD traces of the toxins reveal an increased flexibility in the residues spatially close to the N-Met. As the detected structural and dynamic changes of the two CTI models do not result in substantial differences in their cytotoxicities, we assume that the recombinant protein can be used for many purposes as a reasonable surrogate of the native one. In addition, we discuss general features of the spatial organization of cytotoxins, implied by the results of the current combined NMR and MD study.


Asunto(s)
Venenos Elapídicos/química , Elapidae , Simulación de Dinámica Molecular , Animales , Venenos Elapídicos/genética , Venenos Elapídicos/metabolismo , Dominios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
Proc Natl Acad Sci U S A ; 111(15): 5556-61, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24706771

RESUMEN

Electronic coupling to electrodes, Γ, as well as that across the examined molecules, H, is critical for solid-state electron transport (ETp) across proteins. Assessing the importance of each of these couplings helps to understand the mechanism of electron flow across molecules. We provide here experimental evidence for the importance of both couplings for solid-state ETp across the electron-mediating protein cytochrome c (CytC), measured in a monolayer configuration. Currents via CytC are temperature-independent between 30 and ∼130 K, consistent with tunneling by superexchange, and thermally activated at higher temperatures, ascribed to steady-state hopping. Covalent protein-electrode binding significantly increases Γ, as currents across CytC mutants, bound covalently to the electrode via a cysteine thiolate, are higher than those through electrostatically adsorbed CytC. Covalent binding also reduces the thermal activation energy, Ea, of the ETp by more than a factor of two. The importance of H was examined by using a series of seven CytC mutants with cysteine residues at different surface positions, yielding distinct electrode-protein(-heme) orientations and separation distances. We find that, in general, mutants with electrode-proximal heme have lower Ea values (from high-temperature data) and higher conductance at low temperatures (in the temperature-independent regime) than those with a distal heme. We conclude that ETp across these mutants depends on the distance between the heme group and the top or bottom electrode, rather than on the total separation distance between electrodes (protein width).


Asunto(s)
Citocromos c/metabolismo , Conductividad Eléctrica , Electrodos , Transporte de Electrón/fisiología , Animales , Citocromos c/genética , Escherichia coli , Hemo/metabolismo , Caballos , Mutagénesis Sitio-Dirigida , Mutación/genética , Unión Proteica , Temperatura
18.
J Biol Chem ; 290(39): 23616-30, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26242733

RESUMEN

Weak toxin from Naja kaouthia (WTX) belongs to the group of nonconventional "three-finger" snake neurotoxins. It irreversibly inhibits nicotinic acetylcholine receptors and allosterically interacts with muscarinic acetylcholine receptors (mAChRs). Using site-directed mutagenesis, NMR spectroscopy, and computer modeling, we investigated the recombinant mutant WTX analogue (rWTX) which, compared with the native toxin, has an additional N-terminal methionine residue. In comparison with the wild-type toxin, rWTX demonstrated an altered pharmacological profile, decreased binding of orthosteric antagonist N-methylscopolamine to human M1- and M2-mAChRs, and increased antagonist binding to M3-mAChR. Positively charged arginine residues located in the flexible loop II were found to be crucial for rWTX interactions with all types of mAChR. Computer modeling suggested that the rWTX loop II protrudes to the M1-mAChR allosteric ligand-binding site blocking the entrance to the orthosteric site. In contrast, toxin interacts with M3-mAChR by loop II without penetration into the allosteric site. Data obtained provide new structural insight into the target-specific allosteric regulation of mAChRs by "three-finger" snake neurotoxins.


Asunto(s)
Venenos Elapídicos/química , Neurotoxinas/metabolismo , Receptores Muscarínicos/metabolismo , Secuencia de Aminoácidos , Animales , Elapidae , Datos de Secuencia Molecular , Mutagénesis Insercional , Neurotoxinas/química , Neurotoxinas/genética , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica , Homología de Secuencia de Aminoácido
19.
J Biol Chem ; 290(37): 22747-58, 2015 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-26221036

RESUMEN

Ionotropic receptors of γ-aminobutyric acid (GABAAR) regulate neuronal inhibition and are targeted by benzodiazepines and general anesthetics. We show that a fluorescent derivative of α-cobratoxin (α-Ctx), belonging to the family of three-finger toxins from snake venoms, specifically stained the α1ß3γ2 receptor; and at 10 µm α-Ctx completely blocked GABA-induced currents in this receptor expressed in Xenopus oocytes (IC50 = 236 nm) and less potently inhibited α1ß2γ2 ≈ α2ß2γ2 > α5ß2γ2 > α2ß3γ2 and α1ß3δ GABAARs. The α1ß3γ2 receptor was also inhibited by some other three-finger toxins, long α-neurotoxin Ls III and nonconventional toxin WTX. α-Conotoxin ImI displayed inhibitory activity as well. Electrophysiology experiments showed mixed competitive and noncompetitive α-Ctx action. Fluorescent α-Ctx, however, could be displaced by muscimol indicating that most of the α-Ctx-binding sites overlap with the orthosteric sites at the ß/α subunit interface. Modeling and molecular dynamic studies indicated that α-Ctx or α-bungarotoxin seem to interact with GABAAR in a way similar to their interaction with the acetylcholine-binding protein or the ligand-binding domain of nicotinic receptors. This was supported by mutagenesis studies and experiments with α-conotoxin ImI and a chimeric Naja oxiana α-neurotoxin indicating that the major role in α-Ctx binding to GABAAR is played by the tip of its central loop II accommodating under loop C of the receptors.


Asunto(s)
Proteínas Neurotóxicas de Elápidos , Conotoxinas , Simulación de Dinámica Molecular , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Animales , Sitios de Unión , Línea Celular Tumoral , Proteínas Neurotóxicas de Elápidos/química , Proteínas Neurotóxicas de Elápidos/farmacología , Conotoxinas/química , Conotoxinas/farmacología , Elapidae , Ratones , Estructura Secundaria de Proteína , Receptores de GABA-A/genética
20.
Proc Natl Acad Sci U S A ; 110(31): 12631-6, 2013 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-23872846

RESUMEN

Light-driven proton pumps are present in many organisms. Here, we present a high-resolution structure of a proteorhodopsin from a permafrost bacterium, Exiguobacterium sibiricum rhodopsin (ESR). Contrary to the proton pumps of known structure, ESR possesses three unique features. First, ESR's proton donor is a lysine side chain that is situated very close to the bulk solvent. Second, the α-helical structure in the middle of the helix F is replaced by 3(10)- and π-helix-like elements that are stabilized by the Trp-154 and Asn-224 side chains. This feature is characteristic for the proteorhodopsin family of proteins. Third, the proton release region is connected to the bulk solvent by a chain of water molecules already in the ground state. Despite these peculiarities, the positions of water molecule and amino acid side chains in the immediate Schiff base vicinity are very well conserved. These features make ESR a very unusual proton pump. The presented structure sheds light on the large family of proteorhodopsins, for which structural information was not available previously.


Asunto(s)
Bacillaceae/química , Proteínas Bacterianas/química , Rodopsina/química , Cristalografía por Rayos X , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Rodopsinas Microbianas , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA