Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
RNA ; 29(11): 1673-1690, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37562960

RESUMEN

U7 snRNP is a multisubunit endonuclease required for 3' end processing of metazoan replication-dependent histone pre-mRNAs. In contrast to the spliceosomal snRNPs, U7 snRNP lacks the Sm subunits D1 and D2 and instead contains two related proteins, Lsm10 and Lsm11. The remaining five subunits of the U7 heptameric Sm ring, SmE, F, G, B, and D3, are shared with the spliceosomal snRNPs. The pathway that assembles the unique ring of U7 snRNP is unknown. Here, we show that a heterodimer of Lsm10 and Lsm11 tightly interacts with the methylosome, a complex of the arginine methyltransferase PRMT5, MEP50, and pICln known to methylate arginines in the carboxy-terminal regions of the Sm proteins B, D1, and D3 during the spliceosomal Sm ring assembly. Both biochemical and cryo-EM structural studies demonstrate that the interaction is mediated by PRMT5, which binds and methylates two arginine residues in the amino-terminal region of Lsm11. Surprisingly, PRMT5 also methylates an amino-terminal arginine in SmE, a subunit that does not undergo this type of modification during the biogenesis of the spliceosomal snRNPs. An intriguing possibility is that the unique methylation pattern of Lsm11 and SmE plays a vital role in the assembly of the U7 snRNP.


Asunto(s)
Ribonucleoproteína Nuclear Pequeña U7 , Ribonucleoproteínas Nucleares Pequeñas , Animales , Ribonucleoproteína Nuclear Pequeña U7/química , Metilación , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Histonas/metabolismo , Arginina/química
2.
RNA ; 26(10): 1345-1359, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32554553

RESUMEN

Metazoan replication-dependent histone pre-mRNAs are cleaved at the 3' end by U7 snRNP, an RNA-guided endonuclease that contains U7 snRNA, seven proteins of the Sm ring, FLASH, and four polyadenylation factors: symplekin, CPSF73, CPSF100, and CstF64. A fully recombinant U7 snRNP was recently reconstituted from all 13 components for functional and structural studies and shown to accurately cleave histone pre-mRNAs. Here, we analyzed the activity of recombinant U7 snRNP in more detail. We demonstrate that in addition to cleaving histone pre-mRNAs endonucleolytically, reconstituted U7 snRNP acts as a 5'-3' exonuclease that degrades the downstream product generated from histone pre-mRNAs as a result of the endonucleolytic cleavage. Surprisingly, recombinant U7 snRNP also acts as an endonuclease on single-stranded DNA substrates. All these activities depend on the ability of U7 snRNA to base-pair with the substrate and on the presence of the amino-terminal domain (NTD) of symplekin in either cis or trans, and are abolished by mutations within the catalytic center of CPSF73, or by binding of the NTD to the SSU72 phosphatase of RNA polymerase II. Altogether, our results demonstrate that recombinant U7 snRNP functionally mimics its endogenous counterpart and provide evidence that CPSF73 is both an endonuclease and a 5'-3' exonuclease, consistent with the activity of other members of the ß-CASP family. Our results also raise the intriguing possibility that CPSF73 may be involved in some aspects of DNA metabolism in vivo.


Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Endonucleasas/genética , Exonucleasas/genética , ARN Nuclear Pequeño/genética , Ribonucleoproteína Nuclear Pequeña U7/genética , Animales , Histonas/genética , Ratones , Precursores del ARN/genética , Procesamiento Postranscripcional del ARN/genética
3.
Nucleic Acids Res ; 48(3): 1508-1530, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31819999

RESUMEN

In animal cells, replication-dependent histone pre-mRNAs are cleaved at the 3' end by U7 snRNP consisting of two core components: a ∼60-nucleotide U7 snRNA and a ring of seven proteins, with Lsm10 and Lsm11 replacing the spliceosomal SmD1 and SmD2. Lsm11 interacts with FLASH and together they recruit the endonuclease CPSF73 and other polyadenylation factors, forming catalytically active holo U7 snRNP. Here, we assembled core U7 snRNP bound to FLASH from recombinant components and analyzed its appearance by electron microscopy and ability to support histone pre-mRNA processing in the presence of polyadenylation factors from nuclear extracts. We demonstrate that semi-recombinant holo U7 snRNP reconstituted in this manner has the same composition and functional properties as endogenous U7 snRNP, and accurately cleaves histone pre-mRNAs in a reconstituted in vitro processing reaction. We also demonstrate that the U7-specific Sm ring assembles efficiently in vitro on a spliceosomal Sm site but the engineered U7 snRNP is functionally impaired. This approach offers a unique opportunity to study the importance of various regions in the Sm proteins and U7 snRNA in 3' end processing of histone pre-mRNAs.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al ARN/genética , Ribonucleoproteína Nuclear Pequeña U7/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Secuencia de Aminoácidos/genética , Animales , Núcleo Celular/genética , Drosophila/genética , Histonas/genética , Humanos , Ratones , Unión Proteica/genética , Precursores del ARN/genética , Empalmosomas/genética , Factores de Escisión y Poliadenilación de ARNm/genética
4.
Biochem Soc Trans ; 49(5): 2229-2240, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34351387

RESUMEN

In animal cells, replication-dependent histone mRNAs end with a highly conserved stem-loop structure followed by a 4- to 5-nucleotide single-stranded tail. This unique 3' end distinguishes replication-dependent histone mRNAs from all other eukaryotic mRNAs, which end with a poly(A) tail produced by the canonical 3'-end processing mechanism of cleavage and polyadenylation. The pioneering studies of Max Birnstiel's group demonstrated nearly 40 years ago that the unique 3' end of animal replication-dependent histone mRNAs is generated by a distinct processing mechanism, whereby histone mRNA precursors are cleaved downstream of the stem-loop, but this cleavage is not followed by polyadenylation. The key role is played by the U7 snRNP, a complex of a ∼60 nucleotide U7 snRNA and many proteins. Some of these proteins, including the enzymatic component CPSF73, are shared with the canonical cleavage and polyadenylation machinery, justifying the view that the two metazoan pre-mRNA 3'-end processing mechanisms have a common evolutionary origin. The studies on U7 snRNP culminated in the recent breakthrough of reconstituting an entirely recombinant human machinery that is capable of accurately cleaving histone pre-mRNAs, and determining its structure in complex with a pre-mRNA substrate (with 13 proteins and two RNAs) that is poised for the cleavage reaction. The structure uncovered an unanticipated network of interactions within the U7 snRNP and a remarkable mechanism of activating catalytically dormant CPSF73 for the cleavage. This work provides a conceptual framework for understanding other eukaryotic 3'-end processing machineries.


Asunto(s)
Histonas/genética , ARN Mensajero/metabolismo , ARN Nuclear Pequeño/genética , Animales , Humanos , Hidrólisis , Proteínas Recombinantes/metabolismo , Ribonucleoproteína Nuclear Pequeña U7/metabolismo
5.
Nucleic Acids Res ; 46(9): 4752-4770, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29529248

RESUMEN

3' end cleavage of metazoan replication-dependent histone pre-mRNAs requires the multi-subunit holo-U7 snRNP and the stem-loop binding protein (SLBP). The exact composition of the U7 snRNP and details of SLBP function in processing remain unclear. To identify components of the U7 snRNP in an unbiased manner, we developed a novel approach for purifying processing complexes from Drosophila and mouse nuclear extracts. In this method, catalytically active processing complexes are assembled in vitro on a cleavage-resistant histone pre-mRNA containing biotin and a photo-sensitive linker, and eluted from streptavidin beads by UV irradiation for direct analysis by mass spectrometry. In the purified processing complexes, Drosophila and mouse U7 snRNP have a remarkably similar composition, always being associated with CPSF73, CPSF100, symplekin and CstF64. Many other proteins previously implicated in the U7-dependent processing are not present. Drosophila U7 snRNP bound to histone pre-mRNA in the absence of SLBP contains the same subset of polyadenylation factors but is catalytically inactive and addition of recombinant SLBP is sufficient to trigger cleavage. This result suggests that Drosophila SLBP promotes a structural rearrangement of the processing complex, resulting in juxtaposition of the CPSF73 endonuclease with the cleavage site in the pre-mRNA substrate.


Asunto(s)
Histonas/genética , Procesamiento de Término de ARN 3' , Precursores del ARN/metabolismo , ARN Mensajero/metabolismo , Ribonucleoproteína Nuclear Pequeña U7/química , Ribonucleoproteína Nuclear Pequeña U7/metabolismo , Animales , Biocatálisis , Biotina , Proteínas de Drosophila/aislamiento & purificación , Histonas/metabolismo , Espectrometría de Masas , Ratones , Nucleótidos/química , División del ARN , Precursores del ARN/química , ARN Mensajero/química , Ribonucleoproteína Nuclear Pequeña U7/aislamiento & purificación , Células Tumorales Cultivadas , Rayos Ultravioleta
6.
Int J Mol Sci ; 21(15)2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32722282

RESUMEN

FLICE-associated huge protein (FLASH), Yin Yang 1-Associated Protein-Related Protein (YARP) and Nuclear Protein, Ataxia-Telangiectasia Locus (NPAT) localize to discrete nuclear structures called histone locus bodies (HLBs) where they control various steps in histone gene expression. Near the C-terminus, FLASH and YARP contain a highly homologous domain that interacts with the C-terminal region of NPAT. Structural aspects of the FLASH-NPAT and YARP-NPAT complexes and their role in histone gene expression remain largely unknown. In this study, we used multidimensional NMR spectroscopy and in silico modeling to analyze the C-terminal domain in FLASH and YARP in an unbound form and in a complex with the last 31 amino acids of NPAT. Our results demonstrate that FLASH and YARP domains share the same fold of a triple α -helical bundle that resembles the DNA binding domain of Myb transcriptional factors and the SANT domain found in chromatin-modifying and remodeling complexes. The NPAT peptide contains a single α -helix that makes multiple contacts with α -helices I and III of the FLASH and YARP domains. Surprisingly, in spite of sharing a significant amino acid similarity, each domain likely binds NPAT using a unique network of interactions, yielding two distinct complexes. In silico modeling suggests that both complexes are structurally compatible with DNA binding, raising the possibility that they may function in identifying specific sequences within histone gene clusters, hence initiating the assembly of HLBs and regulating histone gene expression during cell cycle progression.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/química , Proteínas de Unión al Calcio/química , Proteínas de Ciclo Celular/química , Proteínas Co-Represoras/química , Simulación por Computador , Proteínas de Unión al ADN/química , Espectroscopía de Resonancia Magnética , Complejos Multiproteicos/química , Humanos , Conformación Proteica en Hélice alfa , Dominios Proteicos
7.
RNA ; 23(6): 938-951, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28289156

RESUMEN

Cleavage of histone pre-mRNAs at the 3' end requires stem-loop binding protein (SLBP) and U7 snRNP that consists of U7 snRNA and a unique Sm ring containing two U7-specific proteins: Lsm10 and Lsm11. Lsm11 interacts with FLASH and together they bring a subset of polyadenylation factors to U7 snRNP, including the CPSF73 endonuclease that cleaves histone pre-mRNA. SLBP binds to a conserved stem-loop structure upstream of the cleavage site and acts by promoting an interaction between the U7 snRNP and a sequence element located downstream from the cleavage site. We show that both human and Drosophila SLBPs stabilize U7 snRNP on histone pre-mRNA via two regions that are not directly involved in recognizing the stem-loop structure: helix B of the RNA binding domain and the C-terminal region that follows the RNA binding domain. Stabilization of U7 snRNP binding to histone pre-mRNA by SLBP requires FLASH but not the polyadenylation factors. Thus, FLASH plays two roles in 3' end processing of histone pre-mRNAs: It interacts with Lsm11 to form a docking platform for the polyadenylation factors, and it cooperates with SLBP to recruit U7 snRNP to histone pre-mRNA.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Unión al Calcio/metabolismo , Histonas/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U7/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Drosophila , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , Ratones , Modelos Biológicos , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Mutación , Proteínas Nucleares/metabolismo , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Precursores del ARN/química , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo
8.
Mol Cell ; 36(2): 267-78, 2009 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-19854135

RESUMEN

3' end processing of histone pre-mRNA requires U7 snRNP, which binds downstream of the cleavage site and recruits the endonuclease CPSF-73. U7 snRNP contains a unique Sm ring in which the canonical SmD2 protein is replaced by Lsm11. We used the yeast two-hybrid system to identify binding partners of Lsm11 and selected the proapoptotic protein FLASH. Human FLASH interacts with Lsm11 in vitro and stimulates 3' end processing of histone pre-mRNA in mammalian nuclear extracts. We also identified the FLASH ortholog in Drosophila and demonstrate that it interacts with Lsm11 in vitro and in vivo. Drosophila FLASH localizes to histone locus bodies, and its depletion from fly cells inhibits U7-dependent processing, resulting in polyadenylation of histone mRNAs. These results demonstrate that FLASH is an essential factor required for 3' end maturation of histone mRNAs in both vertebrates and invertebrates and suggest a potential link between this process and apoptosis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Proteínas de Unión al Calcio/metabolismo , Caspasa 8/metabolismo , Proteínas de Drosophila/metabolismo , Histonas/metabolismo , Procesamiento de Término de ARN 3'/genética , Precursores del ARN/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/química , Secuencia de Bases , Proteínas de Unión al Calcio/química , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Activación Enzimática , Genes Reporteros , Humanos , Ratones , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Poliadenilación , Unión Proteica , Transporte de Proteínas , Precursores del ARN/química , Precursores del ARN/genética , Proteínas de Unión al ARN/metabolismo , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos
9.
Proc Natl Acad Sci U S A ; 111(29): E2937-46, 2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-25002523

RESUMEN

Replication-dependent histone mRNAs end with a conserved stem loop that is recognized by stem-loop-binding protein (SLBP). The minimal RNA-processing domain of SLBP is phosphorylated at an internal threonine, and Drosophila SLBP (dSLBP) also is phosphorylated at four serines in its 18-aa C-terminal tail. We show that phosphorylation of dSLBP increases RNA-binding affinity dramatically, and we use structural and biophysical analyses of dSLBP and a crystal structure of human SLBP phosphorylated on the internal threonine to understand the striking improvement in RNA binding. Together these results suggest that, although the C-terminal tail of dSLBP does not contact the RNA, phosphorylation of the tail promotes SLBP conformations competent for RNA binding and thereby appears to reduce the entropic penalty for the association. Increased negative charge in this C-terminal tail balances positively charged residues, allowing a more compact ensemble of structures in the absence of RNA.


Asunto(s)
Proteínas de Drosophila/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Calorimetría , Cristalografía por Rayos X , Proteínas de Drosophila/química , Drosophila melanogaster , Entropía , Transferencia Resonante de Energía de Fluorescencia , Humanos , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Proteínas Nucleares/química , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Alineación de Secuencia , Factores de Escisión y Poliadenilación de ARNm/química
10.
J Biol Chem ; 289(49): 33767-82, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25339177

RESUMEN

Nuclear protein, ataxia-telangiectasia locus (NPAT) and FLICE-associated huge protein (FLASH) are two major components of discrete nuclear structures called histone locus bodies (HLBs). NPAT is a key co-activator of histone gene transcription, whereas FLASH through its N-terminal region functions in 3' end processing of histone primary transcripts. The C-terminal region of FLASH contains a highly conserved domain that is also present at the end of Yin Yang 1-associated protein-related protein (YARP) and its Drosophila homologue, Mute, previously shown to localize to HLBs in Drosophila cells. Here, we show that the C-terminal domain of human FLASH and YARP interacts with the C-terminal region of NPAT and that this interaction is essential and sufficient to drive FLASH and YARP to HLBs in HeLa cells. Strikingly, only the last 16 amino acids of NPAT are sufficient for the interaction. We also show that the C-terminal domain of Mute interacts with a short region at the end of the Drosophila NPAT orthologue, multi sex combs (Mxc). Altogether, our data indicate that the conserved C-terminal domain shared by FLASH, YARP, and Mute recognizes the C-terminal sequence of NPAT orthologues, thus acting as a signal targeting proteins to HLBs. Finally, we demonstrate that the C-terminal domain of human FLASH can be directly joined with its N-terminal region through alternative splicing. The resulting 190-amino acid MiniFLASH, despite lacking 90% of full-length FLASH, contains all regions necessary for 3' end processing of histone pre-mRNA in vitro and accumulates in HLBs.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Proteínas de Unión al Calcio/genética , Proteínas de Ciclo Celular/genética , Proteínas de Drosophila/genética , Regulación de la Expresión Génica , Histonas/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Regiones no Traducidas 3' , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Co-Represoras , Secuencia Conservada , Proteínas de Unión al ADN , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células HeLa , Histonas/metabolismo , Humanos , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia , Transducción de Señal , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos
11.
RNA ; 19(12): 1726-44, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24145821

RESUMEN

3'-End cleavage of animal replication-dependent histone pre-mRNAs is controlled by the U7 snRNP. Lsm11, the largest component of the U7-specific Sm ring, interacts with FLASH, and in mammalian nuclear extracts these two proteins form a platform that recruits the CPSF73 endonuclease and other polyadenylation factors to the U7 snRNP. FLASH is limiting, and the majority of the U7 snRNP in mammalian extracts exists as a core particle consisting of the U7 snRNA and the Sm ring. Here, we purified the U7 snRNP from Drosophila nuclear extracts and characterized its composition by mass spectrometry. In contrast to the mammalian U7 snRNP, a significant fraction of the Drosophila U7 snRNP contains endogenous FLASH and at least six subunits of the polyadenylation machinery: symplekin, CPSF73, CPSF100, CPSF160, WDR33, and CstF64. The same composite U7 snRNP is recruited to histone pre-mRNA for 3'-end processing. We identified a motif in Drosophila FLASH that is essential for the recruitment of the polyadenylation complex to the U7 snRNP and analyzed the role of other factors, including SLBP and Ars2, in 3'-end processing of Drosophila histone pre-mRNAs. SLBP that binds the upstream stem-loop structure likely recruits a yet-unidentified essential component(s) to the processing machinery. In contrast, Ars2, a protein previously shown to interact with FLASH in mammalian cells, is dispensable for processing in Drosophila. Our studies also demonstrate that Drosophila symplekin and three factors involved in cleavage and polyadenylation-CPSF, CstF, and CF Im-are present in Drosophila nuclear extracts in a stable supercomplex.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Drosophila/metabolismo , Histonas/genética , Procesamiento de Término de ARN 3' , Precursores del ARN/metabolismo , ARN Mensajero/metabolismo , Ribonucleoproteína Nuclear Pequeña U7/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Drosophila melanogaster , Histonas/metabolismo , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Mapeo de Interacción de Proteínas , Subunidades de Proteína/metabolismo , División del ARN , Precursores del ARN/genética , ARN Mensajero/genética , Ribonucleoproteína Nuclear Pequeña U7/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo
12.
Biochim Biophys Acta ; 1829(6-7): 532-51, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23403287

RESUMEN

The ß-CASP ribonucleases, which are found in the three domains of life, have in common a core of 460 residues containing seven conserved sequence motifs involved in the tight binding of two catalytic zinc ions. A hallmark of these enzymes is their ability to catalyze both endo- and exo-ribonucleolytic degradation. Exo-ribonucleolytic degradation proceeds in the 5' to 3' direction and is sensitive to the phosphorylation state of the 5' end of a transcript. Recent phylogenomic analyses have shown that the ß-CASP ribonucleases can be partitioned into two major subdivisions that correspond to orthologs of eukaryal CPSF73 and bacterial RNase J. We discuss the known functions of the CPSF73 and RNase J orthologs, their association into complexes, and their structure as it relates to mechanism of action. Eukaryal CPSF73 is part of a large multiprotein complex that is involved in the maturation of the 3' end of RNA Polymerase II transcripts and the polyadenylation of messenger RNA. RNase J1 and J2 are paralogs in Bacillus subtilis that are involved in the degradation of messenger RNA and the maturation of non-coding RNA. RNase J1 and J2 co-purify as a heteromeric complex and there is recent evidence that they interact with other enzymes to form a bacterial RNA degradosome. Finally, we speculate on the evolutionary origin of ß-CASP ribonucleases and on their functions in Archaea. Orthologs of CPSF73 with endo- and exo-ribonuclease activity are strictly conserved throughout the archaea suggesting a role for these enzymes in the maturation and/or degradation of messenger RNA. This article is part of a Special Issue entitled: RNA Decay mechanisms.


Asunto(s)
Endorribonucleasas/genética , Complejos Multienzimáticos/genética , Polirribonucleótido Nucleotidiltransferasa/genética , ARN Helicasas/genética , Estabilidad del ARN/genética , Archaea/enzimología , Archaea/genética , Secuencia Conservada/genética , Endorribonucleasas/química , Evolución Molecular , Humanos , Complejos Multienzimáticos/química , Polirribonucleótido Nucleotidiltransferasa/química , ARN Helicasas/química , Factores de Escisión y Poliadenilación de ARNm/genética
13.
Cell Chem Biol ; 31(1): 139-149.e14, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-37967558

RESUMEN

A novel class of benzoxaboroles was reported to induce cancer cell death but the mechanism was unknown. Using a forward genetics platform, we discovered mutations in cleavage and polyadenylation specific factor 3 (CPSF3) that reduce benzoxaborole binding and confer resistance. CPSF3 is the endonuclease responsible for pre-mRNA 3'-end processing, which is also important for RNA polymerase II transcription termination. Benzoxaboroles inhibit this endonuclease activity of CPSF3 in vitro and also curb transcriptional termination in cells, which results in the downregulation of numerous constitutively expressed genes. Furthermore, we used X-ray crystallography to demonstrate that benzoxaboroles bind to the active site of CPSF3 in a manner distinct from the other known inhibitors of CPSF3. The benzoxaborole compound impeded the growth of cancer cell lines derived from different lineages. Our results suggest benzoxaboroles may represent a promising lead as CPSF3 inhibitors for clinical development.


Asunto(s)
Antineoplásicos , Compuestos de Boro , Factor de Especificidad de Desdoblamiento y Poliadenilación , Endonucleasas , Precursores del ARN , Procesamiento Postranscripcional del ARN , Factor de Especificidad de Desdoblamiento y Poliadenilación/antagonistas & inhibidores , Factor de Especificidad de Desdoblamiento y Poliadenilación/química , Endonucleasas/antagonistas & inhibidores , Precursores del ARN/genética , Precursores del ARN/metabolismo , Compuestos de Boro/química , Compuestos de Boro/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Procesamiento Postranscripcional del ARN/efectos de los fármacos , Humanos , Línea Celular Tumoral
14.
RNA ; 17(6): 1132-47, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21525146

RESUMEN

Metazoan replication-dependent histone mRNAs are the only nonpolyadenylated cellular mRNAs. Formation of the histone mRNA 3' end requires the U7 snRNP, which contains Lsm10 and Lsm11, and FLASH, a processing factor that binds Lsm11. Here, we identify sequences in Drosophila FLASH (dFLASH) that bind Drosophila Lsm11 (dLsm11), allow localization of dFLASH to the nucleus and histone locus body (HLB), and participate in histone pre-mRNA processing in vivo. Amino acids 105-154 of dFLASH bind to amino acids 1-78 of dLsm11. A two-amino acid mutation of dLsm11 that prevents dFLASH binding but does not affect localization of U7 snRNP to the HLB cannot rescue the lethality or histone pre-mRNA processing defects resulting from an Lsm11 null mutation. The last 45 amino acids of FLASH are required for efficient localization to the HLB in Drosophila cultured cells. Removing the first 64 amino acids of FLASH has no effect on processing in vivo. Removal of 13 additional amino acids of dFLASH results in a dominant negative protein that binds Lsm11 but inhibits processing of histone pre-mRNA in vivo. Inhibition requires the Lsm11 binding site, suggesting that the mutant dFLASH protein sequesters the U7 snRNP in an inactive complex and that residues between 64 and 77 of dFLASH interact with a factor required for processing. Together, these studies demonstrate that direct interaction between dFLASH and dLsm11 is essential for histone pre-mRNA processing in vivo and for proper development and viability in flies.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila/genética , Histonas/genética , Precursores del ARN/metabolismo , ARN Mensajero/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Animales , Sitios de Unión , Proteínas Portadoras/genética , Células Cultivadas , Drosophila/metabolismo , Proteínas de Drosophila/genética , Histonas/metabolismo , Procesamiento Postranscripcional del ARN , ARN Nuclear Heterogéneo/genética , ARN Nuclear Heterogéneo/metabolismo , Ribonucleoproteína Nuclear Pequeña U7/genética , Ribonucleoproteína Nuclear Pequeña U7/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética
15.
bioRxiv ; 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37215023

RESUMEN

U7 snRNP is a multi-subunit endonuclease required for 3' end processing of metazoan replication-dependent histone pre-mRNAs. In contrast to the spliceosomal snRNPs, U7 snRNP lacks the Sm subunits D1 and D2 and instead contains two related proteins, Lsm10 and Lsm11. The remaining five subunits of the U7 heptameric Sm ring, SmE, F, G, B and D3, are shared with the spliceosomal snRNPs. The pathway that assembles the unique ring of U7 snRNP is unknown. Here, we show that a heterodimer of Lsm10 and Lsm11 tightly interacts with the methylosome, a complex of the arginine methyltransferase PRMT5, MEP50 and pICln known to methylate arginines in the C-terminal regions of the Sm proteins B, D1 and D3 during the spliceosomal Sm ring assembly. Both biochemical and Cryo-EM structural studies demonstrate that the interaction is mediated by PRMT5, which binds and methylates two arginine residues in the N-terminal region of Lsm11. Surprisingly, PRMT5 also methylates an N-terminal arginine in SmE, a subunit that does not undergo this type of modification during the biogenesis of the spliceosomal snRNPs. An intriguing possibility is that the unique methylation pattern of Lsm11 and SmE plays a vital role in the assembly of the U7 snRNP.

16.
RNA ; 16(11): 2120-30, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20855541

RESUMEN

MRP RNA is a noncoding RNA component of RNase mitochondrial RNA processing (MRP), a multi-protein eukaryotic endoribonuclease reported to function in multiple cellular processes, including ribosomal RNA processing, mitochondrial DNA replication, and cell cycle regulation. A recent study predicted a potential Drosophila ortholog of MRP RNA (CR33682) by computer-based genome analysis. We have confirmed the expression of this gene and characterized the phenotype associated with this locus. Flies with mutations that specifically affect MRP RNA show defects in growth and development that begin in the early larval period and end in larval death during the second instar stage. We present several lines of evidence demonstrating a role for Drosophila MRP RNA in rRNA processing. The nuclear fraction of Drosophila MRP RNA localizes to the nucleolus. Further, a mutant strain shows defects in rRNA processing that include a defect in 5.8S rRNA processing, typical of MRP RNA mutants in other species, as well as defects in early stages of rRNA processing.


Asunto(s)
Drosophila melanogaster/genética , Mitocondrias/metabolismo , ARN no Traducido/genética , ARN/metabolismo , Transporte Activo de Núcleo Celular , Animales , Secuencia de Bases , Núcleo Celular/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Estadios del Ciclo de Vida , Mitocondrias/genética , Datos de Secuencia Molecular , ARN/genética , ARN Mitocondrial , ARN Ribosómico/genética , ARN no Traducido/metabolismo
17.
J Cell Physiol ; 226(5): 1149-56, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-20945438

RESUMEN

Induced pluripotent stem (iPS) cells derived from terminally differentiated human fibroblasts are reprogrammed to possess stem cell like properties. However, the extent to which iPS cells exhibit unique properties of the human embryonic stem (hES) cell cycle remains to be established. hES cells are characterized by an abbreviated G1 phase (∼ 2.5 h) and accelerated organization of subnuclear domains that mediate the assembly of regulatory machinery for histone gene expression [i.e., histone locus bodies (HLBs)]. We therefore examined cell cycle parameters of iPS cells in comparison to hES cells. Analysis of DNA synthesis [5-bromo-2'-deoxy-uridine (BrdU) incorporation], cell cycle distribution (FACS analysis and Ki67 staining) and subnuclear organization of HLBs [immunofluorescence microscopy and fluorescence in situ hybridization (FISH)] revealed that human iPS cells have a short G1 phase (∼ 2.5 h) and an abbreviated cell cycle (16-18 h). Furthermore, HLBs are formed and reorganized rapidly after mitosis (within 1.5-2 h). Thus, reprogrammed iPS cells have cell cycle kinetics and dynamic subnuclear organization of regulatory machinery that are principal properties of pluripotent hES cells. Our findings support the concept that the abbreviated cell cycle of hES and iPS cells is functionally linked to pluripotency.


Asunto(s)
Núcleo Celular/fisiología , Células Madre Embrionarias/fisiología , Fase G1 , Células Madre Pluripotentes Inducidas/fisiología , Mitosis , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Replicación del ADN , Células Madre Embrionarias/metabolismo , Fase G1/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Hibridación Fluorescente in Situ , Células Madre Pluripotentes Inducidas/metabolismo , Antígeno Ki-67/metabolismo , Cinética , Microscopía Fluorescente , Mitosis/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Proc Natl Acad Sci U S A ; 105(44): 16964-9, 2008 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-18957539

RESUMEN

Human embryonic stem (hES) cells have an abbreviated G(1) phase of the cell cycle. How cells expedite G(1) events that are required for the initiation of S phase has not been resolved. One key regulatory pathway that controls G(1)/S-phase transition is the cyclin E/CDK2-dependent activation of the coactivator protein nuclear protein, ataxia-telangiectasia locus/histone nuclear factor-P (p220(NPAT)/HiNF-P) complex that induces histone gene transcription. In this study, we use the subnuclear organization of factors controlling histone gene expression to define mechanistic differences in the G(1) phase of hES and somatic cells using in situ immunofluorescence microscopy and fluorescence in situ hybridization (FISH). We show that histone gene expression is supported by the staged assembly and modification of a unique subnuclear structure that coordinates initiation and processing of transcripts originating from histone gene loci. Our results demonstrate that regulatory complexes that mediate transcriptional initiation (e.g., p220(NPAT)) and 3'-end processing (e.g., Lsm10, Lsm11, and SLBP) of histone gene transcripts colocalize at histone gene loci in dedicated subnuclear foci (histone locus bodies) that are distinct from Cajal bodies. Although appearance of CDK2-phosphorylated p220(NPAT) in these domains occurs at the time of S-phase entry, histone locus bodies are formed approximately 1 to 2 h before S phase in embryonic cells but 6 h before S phase in somatic cells. These temporal differences in the formation of histone locus bodies suggest that the G(1) phase of the cell cycle in hES cells is abbreviated in part by contraction of late G(1).


Asunto(s)
Ciclo Celular/genética , Células Madre Embrionarias/metabolismo , Histonas/genética , Espacio Intranuclear/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Células Madre Embrionarias/citología , Histonas/metabolismo , Humanos , Hibridación Fluorescente in Situ , Ratones , Microscopía Fluorescente , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo
19.
Methods Enzymol ; 655: 291-324, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34183127

RESUMEN

In animal cells, replication-dependent histone pre-mRNAs are processed at the 3'-end by an endonucleolytic cleavage carried out by the U7 snRNP, a machinery that contains the U7 snRNA and many protein subunits. Studies on the composition of this machinery and understanding of its role in 3'-end processing were greatly facilitated by the development of an in vitro system utilizing nuclear extracts from mammalian cells 35 years ago and later from Drosophila cells. Most recently, recombinant expression and purification of the components of the machinery have enabled the full reconstitution of an active machinery and its complex with a model pre-mRNA substrate, using 13 proteins and 2 RNAs, and the determination of the structure of this active machinery. This chapter presents protocols for preparing nuclear extracts containing endogenous processing machinery, for assembling semi-recombinant and fully reconstituted machineries, and for histone pre-mRNA 3'-end processing assays with these samples.


Asunto(s)
Histonas , Precursores del ARN , Animales , Drosophila/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Precursores del ARN/genética , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , Ribonucleoproteína Nuclear Pequeña U7/genética , Ribonucleoproteína Nuclear Pequeña U7/metabolismo
20.
Mol Biol Cell ; 32(9): 942-955, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33788585

RESUMEN

The histone locus body (HLB) is an evolutionarily conserved nuclear body that regulates the transcription and processing of replication-dependent (RD) histone mRNAs, which are the only eukaryotic mRNAs lacking a poly-A tail. Many nuclear bodies contain distinct domains, but how internal organization is related to nuclear body function is not fully understood. Here, we demonstrate using structured illumination microscopy that Drosophila HLBs have a "core-shell" organization in which the internal core contains transcriptionally active RD histone genes. The N-terminus of Mxc, which contains a domain required for Mxc oligomerization, HLB assembly, and RD histone gene expression, is enriched in the HLB core. In contrast, the C-terminus of Mxc is enriched in the HLB outer shell as is FLASH, a component of the active U7 snRNP that cotranscriptionally cleaves RD histone pre-mRNA. Consistent with these results, we show biochemically that FLASH binds directly to the Mxc C-terminal region. In the rapid S-M nuclear cycles of syncytial blastoderm Drosophila embryos, the HLB disassembles at mitosis and reassembles the core-shell arrangement as histone gene transcription is activated immediately after mitosis. Thus, the core-shell organization is coupled to zygotic histone gene transcription, revealing a link between HLB internal organization and RD histone gene expression.


Asunto(s)
Estructuras del Núcleo Celular/metabolismo , Histonas/metabolismo , Microscopía/métodos , Animales , Proteínas Portadoras/metabolismo , Núcleo Celular/metabolismo , Estructuras del Núcleo Celular/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Mitosis , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Elementos Reguladores de la Transcripción/genética , Ribonucleoproteína Nuclear Pequeña U7/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Cigoto/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA