Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cell ; 169(1): 148-160.e15, 2017 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-28340340

RESUMEN

Type 2 diabetes (T2D) is a worldwide epidemic with a medical need for additional targeted therapies. Suppression of hepatic glucose production (HGP) effectively ameliorates diabetes and can be exploited for its treatment. We hypothesized that targeting PGC-1α acetylation in the liver, a chemical modification known to inhibit hepatic gluconeogenesis, could be potentially used for treatment of T2D. Thus, we designed a high-throughput chemical screen platform to quantify PGC-1α acetylation in cells and identified small molecules that increase PGC-1α acetylation, suppress gluconeogenic gene expression, and reduce glucose production in hepatocytes. On the basis of potency and bioavailability, we selected a small molecule, SR-18292, that reduces blood glucose, strongly increases hepatic insulin sensitivity, and improves glucose homeostasis in dietary and genetic mouse models of T2D. These studies have important implications for understanding the regulatory mechanisms of glucose metabolism and treatment of T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Gluconeogénesis/efectos de los fármacos , Hipoglucemiantes/administración & dosificación , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/antagonistas & inhibidores , Acetilación , Animales , Glucemia/metabolismo , Células Cultivadas , Glucosa/metabolismo , Factor Nuclear 4 del Hepatocito/metabolismo , Hepatocitos/metabolismo , Ensayos Analíticos de Alto Rendimiento , Resistencia a la Insulina , Ratones , Factores de Transcripción p300-CBP/metabolismo
2.
Nature ; 510(7506): 547-51, 2014 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-24870244

RESUMEN

Insulin constitutes a principal evolutionarily conserved hormonal axis for maintaining glucose homeostasis; dysregulation of this axis causes diabetes. PGC-1α (peroxisome-proliferator-activated receptor-γ coactivator-1α) links insulin signalling to the expression of glucose and lipid metabolic genes. The histone acetyltransferase GCN5 (general control non-repressed protein 5) acetylates PGC-1α and suppresses its transcriptional activity, whereas sirtuin 1 deacetylates and activates PGC-1α. Although insulin is a mitogenic signal in proliferative cells, whether components of the cell cycle machinery contribute to its metabolic action is poorly understood. Here we report that in mice insulin activates cyclin D1-cyclin-dependent kinase 4 (Cdk4), which, in turn, increases GCN5 acetyltransferase activity and suppresses hepatic glucose production independently of cell cycle progression. Through a cell-based high-throughput chemical screen, we identify a Cdk4 inhibitor that potently decreases PGC-1α acetylation. Insulin/GSK-3ß (glycogen synthase kinase 3-beta) signalling induces cyclin D1 protein stability by sequestering cyclin D1 in the nucleus. In parallel, dietary amino acids increase hepatic cyclin D1 messenger RNA transcripts. Activated cyclin D1-Cdk4 kinase phosphorylates and activates GCN5, which then acetylates and inhibits PGC-1α activity on gluconeogenic genes. Loss of hepatic cyclin D1 results in increased gluconeogenesis and hyperglycaemia. In diabetic models, cyclin D1-Cdk4 is chronically elevated and refractory to fasting/feeding transitions; nevertheless further activation of this kinase normalizes glycaemia. Our findings show that insulin uses components of the cell cycle machinery in post-mitotic cells to control glucose homeostasis independently of cell division.


Asunto(s)
Ciclo Celular , Ciclina D1/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Transducción de Señal , Acetilación , Aminoácidos/farmacología , Animales , Línea Celular Tumoral , Núcleo Celular/metabolismo , Células Cultivadas , Ciclina D1/deficiencia , Ciclina D1/genética , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Diabetes Mellitus/metabolismo , Activación Enzimática , Ayuno , Eliminación de Gen , Gluconeogénesis/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Histona Acetiltransferasas/metabolismo , Homeostasis , Humanos , Hiperglucemia/metabolismo , Hiperinsulinismo/metabolismo , Masculino , Ratones , Fosforilación , ARN Mensajero/análisis , ARN Mensajero/genética , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos
3.
Mol Cell ; 48(6): 900-13, 2012 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-23142079

RESUMEN

Hepatic glucose production (HGP) maintains blood glucose levels during fasting but can also exacerbate diabetic hyperglycemia. HGP is dynamically controlled by a signaling/transcriptional network that regulates the expression/activity of gluconeogenic enzymes. A key mediator of gluconeogenic gene transcription is PGC-1α. PGC-1α's activation of gluconeogenic gene expression is dependent upon its acetylation state, which is controlled by the acetyltransferase GCN5 and the deacetylase Sirt1. Nevertheless, whether other chromatin modifiers-particularly other sirtuins-can modulate PGC-1α acetylation is currently unknown. Herein, we report that Sirt6 strongly controls PGC-1α acetylation. Surprisingly, Sirt6 induces PGC-1α acetylation and suppresses HGP. Sirt6 depletion decreases PGC-1α acetylation and promotes HGP. These acetylation effects are GCN5 dependent: Sirt6 interacts with and modifies GCN5, enhancing GCN5's activity. Lepr(db/db) mice, an obese/diabetic animal model, exhibit reduced Sirt6 levels; ectopic re-expression suppresses gluconeogenic genes and normalizes glycemia. Activation of hepatic Sirt6 may therefore be therapeutically useful for treating insulin-resistant diabetes.


Asunto(s)
Gluconeogénesis , Hepatocitos/metabolismo , Sirtuinas/fisiología , Transactivadores/metabolismo , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Animales , Glucemia , Línea Celular , Activación Enzimática , Expresión Génica , Gluconeogénesis/genética , Hepatocitos/enzimología , Humanos , Hígado/enzimología , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Obesos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fosforilación , Procesamiento Proteico-Postraduccional , Sirtuina 1/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo , Factores de Transcripción
4.
Mol Cell ; 44(6): 851-63, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22195961

RESUMEN

The NAD(+)-dependent deacetylase SIRT1 is an evolutionarily conserved metabolic sensor of the Sirtuin family that mediates homeostatic responses to certain physiological stresses such as nutrient restriction. Previous reports have implicated fluctuations in intracellular NAD(+) concentrations as the principal regulator of SIRT1 activity. However, here we have identified a cAMP-induced phosphorylation of a highly conserved serine (S434) located in the SIRT1 catalytic domain that rapidly enhanced intrinsic deacetylase activity independently of changes in NAD(+) levels. Attenuation of SIRT1 expression or the use of a nonphosphorylatable SIRT1 mutant prevented cAMP-mediated stimulation of fatty acid oxidation and gene expression linked to this pathway. Overexpression of SIRT1 in mice significantly potentiated the increases in fatty acid oxidation and energy expenditure caused by either pharmacological ß-adrenergic agonism or cold exposure. These studies support a mechanism of Sirtuin enzymatic control through the cAMP/PKA pathway with important implications for stress responses and maintenance of energy homeostasis.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Ácidos Grasos/metabolismo , NAD/metabolismo , Transducción de Señal , Sirtuina 1/metabolismo , Acetilación , Secuencia de Aminoácidos , Animales , Células Cultivadas , Humanos , Masculino , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Oxidación-Reducción , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fosforilación , Fosfoserina/metabolismo , Transactivadores/metabolismo , Factores de Transcripción
5.
J Biol Chem ; 291(20): 10635-45, 2016 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-27022023

RESUMEN

Methionine is an essential sulfur amino acid that is engaged in key cellular functions such as protein synthesis and is a precursor for critical metabolites involved in maintaining cellular homeostasis. In mammals, in response to nutrient conditions, the liver plays a significant role in regulating methionine concentrations by altering its flux through the transmethylation, transsulfuration, and transamination metabolic pathways. A comprehensive understanding of how hepatic methionine metabolism intersects with other regulatory nutrient signaling and transcriptional events is, however, lacking. Here, we show that methionine and derived-sulfur metabolites in the transamination pathway activate the GCN5 acetyltransferase promoting acetylation of the transcriptional coactivator PGC-1α to control hepatic gluconeogenesis. Methionine was the only essential amino acid that rapidly induced PGC-1α acetylation through activating the GCN5 acetyltransferase. Experiments employing metabolic pathway intermediates revealed that methionine transamination, and not the transmethylation or transsulfuration pathways, contributed to methionine-induced PGC-1α acetylation. Moreover, aminooxyacetic acid, a transaminase inhibitor, was able to potently suppress PGC-1α acetylation stimulated by methionine, which was accompanied by predicted alterations in PGC-1α-mediated gluconeogenic gene expression and glucose production in primary murine hepatocytes. Methionine administration in mice likewise induced hepatic PGC-1α acetylation, suppressed the gluconeogenic gene program, and lowered glycemia, indicating that a similar phenomenon occurs in vivo These results highlight a communication between methionine metabolism and PGC-1α-mediated hepatic gluconeogenesis, suggesting that influencing methionine metabolic flux has the potential to be therapeutically exploited for diabetes treatment.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Gluconeogénesis/efectos de los fármacos , Histona Acetiltransferasas/biosíntesis , Hígado/metabolismo , Metionina/farmacología , Factores de Transcripción/metabolismo , Factores de Transcripción p300-CBP/biosíntesis , Acetilación/efectos de los fármacos , Animales , Gluconeogénesis/genética , Células Hep G2 , Histona Acetiltransferasas/genética , Humanos , Ratones , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Factores de Transcripción/genética , Factores de Transcripción p300-CBP/genética
6.
J Biol Chem ; 288(10): 7117-26, 2013 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-23329830

RESUMEN

Fatty acids are essential components of the dynamic lipid metabolism in cells. Fatty acids can also signal to intracellular pathways to trigger a broad range of cellular responses. Oleic acid is an abundant monounsaturated omega-9 fatty acid that impinges on different biological processes, but the mechanisms of action are not completely understood. Here, we report that oleic acid stimulates the cAMP/protein kinase A pathway and activates the SIRT1-PGC1α transcriptional complex to modulate rates of fatty acid oxidation. In skeletal muscle cells, oleic acid treatment increased intracellular levels of cyclic adenosine monophosphate (cAMP) that turned on protein kinase A activity. This resulted in SIRT1 phosphorylation at Ser-434 and elevation of its catalytic deacetylase activity. A direct SIRT1 substrate is the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1α), which became deacetylated and hyperactive after oleic acid treatment. Importantly, oleic acid, but not other long chain fatty acids such as palmitate, increased the expression of genes linked to fatty acid oxidation pathway in a SIRT1-PGC1α-dependent mechanism. As a result, oleic acid potently accelerated rates of complete fatty acid oxidation in skeletal muscle cells. These results illustrate how a single long chain fatty acid specifically controls lipid oxidation through a signaling/transcriptional pathway. Pharmacological manipulation of this lipid signaling pathway might provide therapeutic possibilities to treat metabolic diseases associated with lipid dysregulation.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ácidos Grasos/metabolismo , Ácido Oléico/farmacología , Sirtuina 1/metabolismo , Transactivadores/metabolismo , Acetilación/efectos de los fármacos , Animales , Western Blotting , Línea Celular , Células Cultivadas , Transferencia Resonante de Energía de Fluorescencia , Ratones , Ratones Endogámicos C57BL , Complejos Multiproteicos/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Mutación , Oxidación-Reducción/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fosforilación/efectos de los fármacos , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Serina/genética , Serina/metabolismo , Sirtuina 1/genética , Transactivadores/genética , Factores de Transcripción , Activación Transcripcional/efectos de los fármacos
7.
Biochim Biophys Acta ; 1804(8): 1676-83, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20005308

RESUMEN

Mammals possess an intricate regulatory system for controlling flux through fuel utilization pathways in response to the dietary availability of particular macronutrients. Under fasting conditions, for instance, mammals initiate a whole body metabolic response that limits glucose utilization and favors fatty acid oxidation. Understanding the underlying mechanisms by which this process occurs will facilitate the development of new treatments for metabolic disorders such as type II diabetes and obesity. One of the recently identified components of the signal transduction pathway involved in metabolic reprogramming is PGC-1alpha. This transcriptional coactivator is able to coordinate the expression of a wide array of genes involved in glucose and fatty acid metabolism. The nutrient-mediated control of PGC-1alpha activity is tightly correlated with its acetylation state. In this review, we evaluate how the nutrient regulation of PGC-1alpha activity squares with the regulation of its acetylation state by the deacetylase Sirt1 and the acetyltransferase GCN5. We also propose an outline of additional experimental directives that will help to shed additional light on this very powerful transcriptional coactivator.


Asunto(s)
Histona Acetiltransferasas/metabolismo , Sirtuina 1/metabolismo , Factores de Transcripción/metabolismo , Acetilación , Animales , Ayuno/metabolismo , Humanos , Hígado/metabolismo , Modelos Biológicos , Músculo Esquelético/metabolismo , Transducción de Señal , Factores de Transcripción/química
8.
Amino Acids ; 41(1): 91-102, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20195658

RESUMEN

Proteins in the cupin superfamily have a wide range of biological functions in archaea, bacteria and eukaryotes. Although proteins in the cupin superfamily show very low overall sequence similarity, they all contain two short but partially conserved cupin sequence motifs separated by a less conserved intermotif region that varies both in length and amino acid sequence. Furthermore, these proteins all share a common architecture described as a six-stranded ß-barrel core, and this canonical cupin or "jelly roll" ß-barrel is formed with cupin motif 1, the intermotif region, and cupin motif 2 each forming two of the core six ß-strands in the folded protein structure. The recently obtained crystal structures of cysteine dioxygenase (CDO), with contains conserved cupin motifs, show that it has the predicted canonical cupin ß-barrel fold. Although there had been no reports of CDO activity in prokaryotes, we identified a number of bacterial cupin proteins of unknown function that share low similarity with mammalian CDO and that conserve many residues in the active-site pocket of CDO. Putative bacterial CDOs predicted to have CDO activity were shown to have similar substrate specificity and kinetic parameters as eukaryotic CDOs. Information gleaned from crystal structures of mammalian CDO along with sequence information for homologs shown to have CDO activity facilitated the identification of a CDO family fingerprint motif. One key feature of the CDO fingerprint motif is that the canonical metal-binding glutamate residue in cupin motif 1 is replaced by a cysteine (in mammalian CDOs) or by a glycine (bacterial CDOs). The recent report that some putative bacterial CDO homologs are actually 3-mercaptopropionate dioxygenases suggests that the CDO family may include proteins with specificities for other thiol substrates. A paralog of CDO in mammals was also identified and shown to be the other mammalian thiol dioxygenase, cysteamine dioxygenase (ADO). A tentative fingerprint motif for ADOs, or DUF1637 family members, is proposed. In ADOs, the conserved glutamate residue in cupin motif 1 is replaced by either glycine or valine. Both ADOs and CDOs appear to represent unique clades within the cupin superfamily.


Asunto(s)
Cisteína-Dioxigenasa/metabolismo , Dioxigenasas/metabolismo , Animales , Biocatálisis , Cisteína-Dioxigenasa/química , Dioxigenasas/química , Humanos , Modelos Moleculares , Estructura Molecular , Conformación Proteica
10.
Biochemistry ; 47(44): 11390-2, 2008 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-18847220

RESUMEN

The common reactions of dioxygen, superoxide, and hydroperoxides with thiolates are thought to proceed via persulfenate intermediates, yet these have never been visualized. Here we report a 1.4 A resolution crystal structure of the Fe(2+)-dependent enzyme cysteine dioxygenase (CDO) containing this putative intermediate trapped in its active site pocket. The complex raises the possibility that, distinct from known dioxygenases and proposed CDO mechanisms, the Fe-proximal oxygen atom may be involved in the primary oxidation event yielding a unique three-membered Fe-S-O cyclic intermediate. A nonpolar environment of the distal oxygen would facilitate isomerization of the persulfenate to the sulfinate product.


Asunto(s)
Cisteína-Dioxigenasa/química , Cisteína-Dioxigenasa/metabolismo , Animales , Dominio Catalítico , Cristalografía por Rayos X , Cisteína/análogos & derivados , Cisteína/química , Cisteína/metabolismo , Técnicas In Vitro , Hierro/metabolismo , Hígado/enzimología , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica , Ratas , Ácidos Sulfénicos/química , Ácidos Sulfénicos/metabolismo
11.
Physiol Genomics ; 33(2): 218-29, 2008 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-18285520

RESUMEN

To further define genes that are differentially expressed during cysteine deprivation and to evaluate the roles of amino acid deprivation vs. oxidative stress in the response to cysteine deprivation, we assessed gene expression in human hepatoma cells cultured in complete or cysteine-deficient medium. Overall, C3A cells responded to cysteine deprivation by activation of the eukaryotic initiation factor (eIF)2alpha kinase-mediated integrated stress response to inhibit global protein synthesis; increased expression of genes containing amino acid response elements (ASNS, ATF3, CEBPB, SLC7A11, and TRIB3); increased expression of genes for amino acid transporters (SLC7A11, SLC1A4, and SLC3A2), aminoacyl-tRNA synthetases (CARS), and, to a limited extent, amino acid metabolism (ASNS and CTH); increased expression of genes that act to suppress growth (STC2, FOXO3A, GADD45A, LNK, and INHBE); and increased expression of several enzymes that favor glutathione synthesis and maintenance of protein thiol groups (GCLC, GCLM, SLC7A11, and TXNRD1). Although GCLC, GCLM, SLC7A11, HMOX, and TXNRD1 were upregulated, most genes known to be upregulated via oxidative stress were not affected by cysteine deprivation. Because most genes known to be upregulated in response to eIF2alpha phosphorylation and activating transcription factor 4 (ATF4) synthesis were differentially expressed in response to cysteine deprivation, it is likely that many responses to cysteine deprivation are mediated, at least in part, by the general control nondepressible 2 (GCN2)/ATF4-dependent integrated stress response. This conclusion was supported by the observation of similar differential expression of a subset of genes in response to leucine deprivation. A consequence of sulfur amino acid restriction appears to be the upregulation of the cellular capacity to cope with oxidative and chemical stresses via the integrated stress response.


Asunto(s)
Aminoácidos/metabolismo , Cisteína/deficiencia , Factor de Transcripción Activador 4/metabolismo , Línea Celular Tumoral , Medios de Cultivo , Enfermedad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glutatión/metabolismo , Humanos , Espacio Intracelular/metabolismo , Leucina/deficiencia , Factor 2 Relacionado con NF-E2/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Estrés Oxidativo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Elementos de Respuesta/genética , Transducción de Señal
12.
Biochem J ; 394(Pt 1): 267-73, 2006 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-16262602

RESUMEN

Mammalian metabolism of ingested cysteine is conducted principally within the liver. The liver tightly regulates its intracellular cysteine pool to keep levels high enough to meet the many catabolic and anabolic pathways for which cysteine is needed, but low enough to prevent toxicity. One of the enzymes the liver uses to regulate cysteine levels is CDO (cysteine dioxygenase). Catalysing the irreversible oxidation of cysteine, CDO protein is up-regulated in the liver in response to the dietary intake of cysteine. In the present study, we have evaluated the contribution of the ubiquitin-26 S proteasome pathway to the diet-induced changes in CDO half-life. In the living rat, inhibition of the proteasome with PS1 (proteasome inhibitor 1) dramatically stabilized CDO in the liver under dietary conditions that normally favour its degradation. Ubiquitinated CDO intermediates were also seen to accumulate in the liver. Metabolic analyses showed that PS1 had a significant effect on sulphoxidation flux secondary to the stabilization of CDO but no significant effect on the intracellular cysteine pool. Finally, by a combination of in vitro hepatocyte culture and in vivo whole animal studies, we were able to attribute the changes in CDO stability specifically to cysteine rather than the metabolite 2-mercaptoethylamine (cysteamine). The present study represents the first demonstration of regulated ubiquitination and degradation of a protein in a living mammal, inhibition of which had dramatic effects on cysteine catabolism.


Asunto(s)
Cisteína-Dioxigenasa/metabolismo , Cisteína/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Animales , Células Cultivadas , Cisteamina/farmacología , Hepatocitos/metabolismo , Hígado/enzimología , Masculino , Oligopéptidos/farmacología , Inhibidores de Proteasoma , Ratas , Ratas Sprague-Dawley
13.
Nutr Rev ; 62(9): 348-53, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15497768

RESUMEN

The enzymes of the transsulfuration pathway also have the capacity to catalyze the desulfhydration of cysteine. Recent studies demonstrate a role of the transsulfuration enzymes, cystathionine gamma-lyase and cystathionine beta-synthase, in catalyzing the desulfhydration of cysteine in brain and smooth muscle. The H2S produced from cysteine functions as a neuromodulator and smooth muscle relaxant. In glutamatergic neurons, the production of H2S by cystathionine beta-synthase enhances N-methyl-D-aspartate (NMDA) receptor-mediated currents. In smooth muscle cells, H2S produced by cystathionine gamma-lyase enhances the outward flux of potassium by opening potassium channels, leading to hyperpolarization of membrane potential and smooth muscle relaxation.


Asunto(s)
Cisteína/metabolismo , Sulfuro de Hidrógeno/metabolismo , Relajación Muscular/fisiología , Músculo Liso/fisiología , Animales , Encéfalo/metabolismo , Cistationina betasintasa/metabolismo , Cistationina gamma-Liasa/metabolismo , Humanos
14.
Mol Metab ; 3(4): 419-31, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24944901

RESUMEN

Lipid deposition in the liver is associated with metabolic disorders including fatty liver disease, type II diabetes, and hepatocellular cancer. The enzymes acetyl-CoA carboxylase 1 (ACC1) and ACC2 are powerful regulators of hepatic fat storage; therefore, their inhibition is expected to prevent the development of fatty liver. In this study we generated liver-specific ACC1 and ACC2 double knockout (LDKO) mice to determine how the loss of ACC activity affects liver fat metabolism and whole-body physiology. Characterization of LDKO mice revealed unexpected phenotypes of increased hepatic triglyceride and decreased fat oxidation. We also observed that chronic ACC inhibition led to hyper-acetylation of proteins in the extra-mitochondrial space. In sum, these data reveal the existence of a compensatory pathway that protects hepatic fat stores when ACC enzymes are inhibited. Furthermore, we identified an important role for ACC enzymes in the regulation of protein acetylation in the extra-mitochondrial space.

15.
Artículo en Inglés | MEDLINE | ID: mdl-23818499

RESUMEN

The dynamics of mitochondrial biogenesis and function is a complex interplay of cellular and molecular processes that ultimately shape bioenergetics capacity. Mitochondrial mass, by itself, represents the net balance between rates of biogenesis and degradation. Mitochondrial biogenesis is dependent on different signaling cascades and transcriptional complexes that promote the formation and assembly of mitochondria--a process that is heavily dependent on timely and coordinated transcriptional control of genes encoding for mitochondrial proteins. In this article, we discuss the major signals and transcriptional complexes, programming mitochondrial biogenesis, and bioenergetic activity. This regulatory network represents a new therapeutic window into the treatment of the wide spectrum of mitochondrial and neurodegenerative diseases characterized by dysregulation of mitochondrial dynamics and bioenergetic deficiencies.


Asunto(s)
Mitocondrias/metabolismo , Recambio Mitocondrial , Proteínas Nucleares/metabolismo , Transducción de Señal , Metabolismo Energético , Regulación de la Expresión Génica , Humanos , Mitocondrias/fisiología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/terapia , Proteínas Mitocondriales/metabolismo , Modelos Biológicos
16.
J Clin Invest ; 123(3): 973-9, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23454760

RESUMEN

The 7 mammalian sirtuin proteins compose a protective cavalry of enzymes that can be invoked by cells to aid in the defense against a vast array of stressors. The pathologies associated with aging, such as metabolic syndrome, neurodegeneration, and cancer, are either caused by or exacerbated by a lifetime of chronic stress. As such, the activation of sirtuin proteins could provide a therapeutic approach to buffer against chronic stress and ameliorate age-related decline. Here we review experimental evidence both for and against this proposal, as well as the implications that isoform-specific sirtuin activation may have for healthy aging in humans.


Asunto(s)
Envejecimiento/metabolismo , Sirtuinas/fisiología , Envejecimiento/patología , Animales , Restricción Calórica , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Humanos , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/fisiopatología , Neoplasias/metabolismo , Neoplasias/fisiopatología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/fisiopatología , Sirtuinas/metabolismo
17.
Cancer Cell ; 21(2): 143-5, 2012 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-22340586

RESUMEN

Tumor-initiating cells (TICs) are thought to be critical for promoting tumorigenesis. In a recent Cell article, Zhang and colleagues found that non-small cell lung cancer TICs overexpress the metabolic enzyme glycine decarboxylase, which leads to increases in pyrimidine synthesis and is critical for proliferation and tumor initiation.

20.
Curr Protoc Toxicol ; 38: 6.15.1-6.15.25, 2008 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19885389

RESUMEN

Cysteine dioxygenase is an iron (Fe(2+))-dependent thiol dioxygenase that uses molecular oxygen to oxidize the sulfhydryl group of cysteine to generate 3-sulfinoalanine (commonly called cysteinesulfinic acid). Cysteine dioxygenase activity is routinely assayed by measuring cysteinesulfinate formation from substrate L-cysteine at pH 6.1 in the presence of ferrous ions to saturate the enzyme with metal cofactor, a copper chelator to diminish substrate oxidation, and hydroxylamine to inhibit pyridoxal 5'-phosphate-dependent degradation of product. The amount of cysteine dioxygenase may be measured by immunoblotting. Upon SDS-PAGE, cysteine dioxygenase can be separated into two major bands, with the upper band representing the 23-kDa protein and the lower band representing the mature enzyme that has undergone formation of an internal thioether cross link in the active site. Formation of this cross link is dependent upon the catalytic turnover of substrate and produces an enzyme with a higher catalytic efficiency and catalytic half-life.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA