Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Glob Chang Biol ; 30(1): e16983, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37905459

RESUMEN

The term carbon (C) sequestration has not just become a buzzword but is something of a siren's call to scientific communicators and media outlets. Carbon sequestration is the removal of C from the atmosphere and the storage, for example, in soil. It has the potential to partially compensate for anthropogenic greenhouse gas emissions and is, therefore, an important piece in the global climate change mitigation puzzle. However, the term C sequestration is often used misleadingly and, while likely unintentional, can lead to the perpetuation of biased conclusions and exaggerated expectations about its contribution to climate change mitigation efforts. Soils have considerable potential to take up C but many are also in a state of continuous loss. In such soils, measures to build up soil C may only lead to a reduction in C losses (C loss mitigation) rather than result in real C sequestration and negative emissions. In an examination of 100 recent peer-reviewed papers on topics surrounding soil C, only 4% were found to have used the term C sequestration correctly. Furthermore, 13% of the papers equated C sequestration with C stocks. The review, further, revealed that measures leading to C sequestration will not always result in climate change mitigation when non-CO2 greenhouse gases and leakage are taken into consideration. This paper highlights potential pitfalls when using the term C sequestration incorrectly and calls for accurate usage of this term going forward. Revised and new terms are suggested to distinguish clearly between C sequestration in soils, SOC loss mitigation, negative emissions, climate change mitigation, SOC storage, and SOC accrual to avoid miscommunication among scientists and stakeholder groups in future.


Asunto(s)
Gases de Efecto Invernadero , Suelo , Cambio Climático , Secuestro de Carbono , Carbono/análisis , Agricultura
2.
Glob Chang Biol ; 29(16): 4662-4669, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37271832

RESUMEN

Soil organic carbon (SOC) sequestration is a promising climate change mitigation option. In this context, the formation of the relatively long-lived mineral-associated organic carbon (MAOC) is key. To date, soils are considered to be limited in their ability to accumulate MAOC, mainly by the amount of clay and silt particles present. Using the comprehensive German Agricultural Soil Inventory, we selected 189 samples with a wide range of SOC (5-118 g kg-1 ) and clay contents (30-770 g kg-1 ) to test whether there is a detectable upper limit of MAOC content. We found that the proportion of MAOC was surprisingly stable for soils under cropland and grassland use across the whole range of bulk SOC contents. Soil texture influenced the slope of the relationship between bulk SOC and MAOC, but no upper limit was observed in any texture class. Also, C content in the fine fraction (g C kg-1 fraction) was negatively correlated to fine fraction content (g kg-1 bulk soil). Both findings challenge the notion that MAOC accumulation is limited by soil fine fraction content per se.


Asunto(s)
Carbono , Suelo , Arcilla , Agricultura , Secuestro de Carbono , Minerales
3.
Glob Chang Biol ; 29(21): e4-e6, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37632374

RESUMEN

In this response to a letter to the editor, we provide evidence that the findings regarding a non-detectable limit of mineral-associated organic carbon as published in Begill et al. (2023) are robust. This is mainly done by showing that no methodological bias was present and that the main correlation was not driven by a few exceptional soils.


Asunto(s)
Carbono , Suelo , Minerales , Secuestro de Carbono
4.
J Environ Manage ; 330: 117142, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36608610

RESUMEN

Increasing soil organic carbon (SOC) stocks in agricultural soils removes carbon dioxide from the atmosphere and contributes towards achieving carbon neutrality. For farmers, higher SOC levels have multiple benefits, including increased soil fertility and resilience against drought-related yield losses. However, increasing SOC levels requires agricultural management changes that are associated with costs. Private soil carbon certificates could compensate for these costs. In these schemes, farmers register their fields with commercial certificate providers who certify SOC increases. Certificates are then sold as voluntary emission offsets on the carbon market. In this paper, we assess the suitability of these certificates as an instrument for climate change mitigation. From a soils' perspective, we address processes of SOC enrichment, their potentials and limits, and options for cost-effective measurement and monitoring. From a farmers' perspective, we assess management options likely to increase SOC, and discuss their synergies and trade-offs with economic, environmental and social targets. From a governance perspective, we address requirements to guarantee additionality and permanence while preventing leakage effects. Furthermore, we address questions of legitimacy and accountability. While increasing SOC is a cornerstone for more sustainable cropping systems, private carbon certificates fall short of expectations for climate change mitigation as permanence of SOC sequestration cannot be guaranteed. Governance challenges include lack of long-term monitoring, problems to ensure additionality, problems to safeguard against leakage effects, and lack of long-term accountability if stored SOC is re-emitted. We conclude that soil-based private carbon certificates are unlikely to deliver the emission offset attributed to them and that their benefit for climate change mitigation is uncertain. Additional research is needed to develop standards for SOC change metrics and monitoring, and to better understand the impact of short term, non-permanent carbon removals on peaks in atmospheric greenhouse gas concentrations and on the probability of exceeding climatic tipping points.


Asunto(s)
Cambio Climático , Suelo , Carbono , Agricultura , Granjas , Secuestro de Carbono
5.
Glob Chang Biol ; 27(19): 4921-4934, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34228862

RESUMEN

The ratio of soil organic carbon stock (SOC) to annual carbon input gives an estimate of the mean residence time of organic carbon that enters the soil (MRTOC ). It indicates how efficiently biomass can be transformed into SOC, which is of particular relevance for mitigating climate change by means of SOC storage. There have been few comprehensive studies of MRTOC and their drivers, and these have mainly been restricted to the global scale, on which climatic drivers dominate. This study used the unique combination of regional-scale cropland and grassland topsoil (0-30 cm) SOC stock data and average site-specific OC input data derived from the German Agricultural Soil Inventory to elucidate the main drivers of MRTOC . Explanatory variables related to OC input composition and other soil-forming factors were used to explain the variability in MRTOC by means of a machine-learning approach. On average, OC entering German agricultural topsoils had an MRT of 21.5 ± 11.6 years, with grasslands (29.0 ± 11.2 years, n = 465) having significantly higher MRTOC than croplands (19.4 ± 10.7, n = 1635). This was explained by the higher proportion of root-derived OC inputs in grassland soils, which was the most important variable for explaining MRTOC variability at a regional scale. Soil properties such as clay content, soil group, C:N ratio and groundwater level were also important, indicating that MRTOC is driven by a combination of site properties and OC input composition. However, the great importance of root-derived OC inputs indicated that MRTOC can be actively managed, with maximization of root biomass input to the soil being a straightforward means to extend the time that assimilated C remains in the soil and consequently also increase SOC stocks.


Asunto(s)
Carbono , Suelo , Agricultura , Secuestro de Carbono
6.
Glob Chang Biol ; 27(21): 5670-5679, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34351036

RESUMEN

Treatment effects are traditionally quantified in controlled experiments. However, experimental control is often achieved at the expense of representativeness. Here, we present a data-driven reciprocal modelling framework to quantify the individual effects of environmental treatments under field conditions. The framework requires a representative survey data set describing the treatment (A or B), its responding target variable and other environmental properties that cause variability of the target within the region or population studied. A machine learning model is trained to predict the target only based on observations in group A. This model is then applied to group B, with predictions restricted to the model's space of applicability. The resulting residuals represent case-specific effect size estimates and thus provide a quantification of treatment effects. This paper illustrates the new concept of such data-driven reciprocal modelling to estimate spatially explicit effects of land-use change on organic carbon stocks in European agricultural soils. For many environmental treatments, the proposed concept can provide accurate effect size estimates that are more representative than could feasibly ever be achieved with controlled experiments.


Asunto(s)
Ecosistema , Suelo , Agricultura , Carbono , Secuestro de Carbono
7.
Glob Chang Biol ; 26(7): 4158-4168, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32412147

RESUMEN

This study evaluates the dynamics of soil organic carbon (SOC) under perennial crops across the globe. It quantifies the effect of change from annual to perennial crops and the subsequent temporal changes in SOC stocks during the perennial crop cycle. It also presents an empirical model to estimate changes in the SOC content under crops as a function of time, land use, and site characteristics. We used a harmonized global dataset containing paired-comparison empirical values of SOC and different types of perennial crops (perennial grasses, palms, and woody plants) with different end uses: bioenergy, food, other bio-products, and short rotation coppice. Salient outcomes include: a 20-year period encompassing a change from annual to perennial crops led to an average 20% increase in SOC at 0-30 cm (6.0 ± 4.6 Mg/ha gain) and a total 10% increase over the 0-100 cm soil profile (5.7 ± 10.9 Mg/ha). A change from natural pasture to perennial crop decreased SOC stocks by 1% over 0-30 cm (-2.5 ± 4.2 Mg/ha) and 10% over 0-100 cm (-13.6 ± 8.9 Mg/ha). The effect of a land use change from forest to perennial crops did not show significant impacts, probably due to the limited number of plots; but the data indicated that while a 2% increase in SOC was observed at 0-30 cm (16.81 ± 55.1 Mg/ha), a decrease in 24% was observed at 30-100 cm (-40.1 ± 16.8 Mg/ha). Perennial crops generally accumulate SOC through time, especially woody crops; and temperature was the main driver explaining differences in SOC dynamics, followed by crop age, soil bulk density, clay content, and depth. We present empirical evidence showing that the FAO perennialization strategy is reasonable, underscoring the role of perennial crops as a useful component of climate change mitigation strategies.


Asunto(s)
Carbono , Suelo , Agricultura , Secuestro de Carbono , Productos Agrícolas
8.
Glob Chang Biol ; 25(7): 2296-2309, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30737870

RESUMEN

Sequestration of soil organic carbon (SOC) has been recognized as an opportunity to off-set global carbon dioxide (CO2 ) emissions. Flipping (full inversion to 1-3 m) is a practice used on New Zealand's South Island West Coast to eliminate water-logging in highly podzolized sandy soils. Flipping results in burial of SOC formed in surface soil horizons into the subsoil and the transfer of subsoil material low in SOC to the "new" topsoil. The aims of this study were to quantify changes in the storage and stability of SOC over a 20-year period following flipping of high-productive pasture grassland. Topsoils (0-30 cm) from sites representing a chronosequence of flipping (3-20 years old) were sampled (2005/07) and re-sampled (2017) to assess changes in topsoil carbon stocks. Deeper samples (30-150 cm) were also collected (2017) to evaluate the changes in stocks of SOC previously buried by flipping. Density fractionation was used to determine SOC stability in recent and buried topsoils. Total SOC stocks (0-150 cm) increased significantly by 69 ± 15% (179 ± 40 Mg SOC ha-1 ) over 20 years following flipping. Topsoil burial caused a one-time sequestration of 160 ± 14 Mg SOC ha-1 (30-150 cm). The top 0-30 cm accumulated 3.6 Mg SOC ha-1  year-1 . The chronosequence and re-sampling revealed SOC accumulation rates of 1.2-1.8 Mg SOC ha-1  year-1 in the new surface soil (0-15 cm) and a SOC deficit of 36 ± 5% after 20 years. Flipped subsoils contained up to 32% labile SOC (compared to <1% in un-flipped subsoils) thus buried SOC was preserved. This study confirms that burial of SOC and the exposure of SOC depleted subsoil results in an overall increase of SOC stocks of the whole soil profile and long-term SOC preservation.


Asunto(s)
Secuestro de Carbono , Suelo , Dióxido de Carbono , Pradera , Nueva Zelanda
11.
Glob Chang Biol ; 24(4): 1470-1487, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29235213

RESUMEN

As the applications of Earth system models (ESMs) move from general climate projections toward questions of mitigation and adaptation, the inclusion of land management practices in these models becomes crucial. We carried out a survey among modeling groups to show an evolution from models able only to deal with land-cover change to more sophisticated approaches that allow also for the partial integration of land management changes. For the longer term a comprehensive land management representation can be anticipated for all major models. To guide the prioritization of implementation, we evaluate ten land management practices-forestry harvest, tree species selection, grazing and mowing harvest, crop harvest, crop species selection, irrigation, wetland drainage, fertilization, tillage, and fire-for (1) their importance on the Earth system, (2) the possibility of implementing them in state-of-the-art ESMs, and (3) availability of required input data. Matching these criteria, we identify "low-hanging fruits" for the inclusion in ESMs, such as basic implementations of crop and forestry harvest and fertilization. We also identify research requirements for specific communities to address the remaining land management practices. Data availability severely hampers modeling the most extensive land management practice, grazing and mowing harvest, and is a limiting factor for a comprehensive implementation of most other practices. Inadequate process understanding hampers even a basic assessment of crop species selection and tillage effects. The need for multiple advanced model structures will be the challenge for a comprehensive implementation of most practices but considerable synergy can be gained using the same structures for different practices. A continuous and closer collaboration of the modeling, Earth observation, and land system science communities is thus required to achieve the inclusion of land management in ESMs.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales/métodos , Planeta Tierra , Ecosistema , Modelos Teóricos
13.
Glob Chang Biol ; 23(2): 512-533, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27447350

RESUMEN

In the light of daunting global sustainability challenges such as climate change, biodiversity loss and food security, improving our understanding of the complex dynamics of the Earth system is crucial. However, large knowledge gaps related to the effects of land management persist, in particular those human-induced changes in terrestrial ecosystems that do not result in land-cover conversions. Here, we review the current state of knowledge of ten common land management activities for their biogeochemical and biophysical impacts, the level of process understanding and data availability. Our review shows that ca. one-tenth of the ice-free land surface is under intense human management, half under medium and one-fifth under extensive management. Based on our review, we cluster these ten management activities into three groups: (i) management activities for which data sets are available, and for which a good knowledge base exists (cropland harvest and irrigation); (ii) management activities for which sufficient knowledge on biogeochemical and biophysical effects exists but robust global data sets are lacking (forest harvest, tree species selection, grazing and mowing harvest, N fertilization); and (iii) land management practices with severe data gaps concomitant with an unsatisfactory level of process understanding (crop species selection, artificial wetland drainage, tillage and fire management and crop residue management, an element of crop harvest). Although we identify multiple impediments to progress, we conclude that the current status of process understanding and data availability is sufficient to advance with incorporating management in, for example, Earth system or dynamic vegetation models in order to provide a systematic assessment of their role in the Earth system. This review contributes to a strategic prioritization of research efforts across multiple disciplines, including land system research, ecological research and Earth system modelling.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Biodiversidad , Ecosistema , Árboles
14.
Glob Chang Biol ; 22(8): 2939-56, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26994321

RESUMEN

Subsoils play an important role within the global C cycle, since they have high soil organic carbon (SOC) storage capacity due to generally low SOC concentrations. However, measures for enhancing SOC storage commonly focus on topsoils. This study assessed the long-term storage and stability of SOC in topsoils buried in arable subsoils by deep ploughing, a globally applied method for breaking up hard pans and improving soil structure to optimize crop growing conditions. One effect of deep ploughing is translocation of SOC formed near the surface into the subsoil, with concomitant mixing of SOC-poor subsoil material into the 'new' topsoil. Deep-ploughed croplands represent unique long-term in situ incubations of SOC-rich material in subsoils. In this study, we sampled five loamy and five sandy soils that were ploughed to 55-90 cm depth 35-50 years ago. Adjacent, similarly managed but conventionally ploughed subplots were sampled as reference. The deep-ploughed soils contained on average 42 ± 13% more SOC than the reference subplots. On average, 45 years after deep ploughing, the 'new' topsoil still contained 15% less SOC than the reference topsoil, indicating long-term SOC accumulation potential in the topsoil. In vitro incubation experiments on the buried sandy soils revealed 63 ± 6% lower potential SOC mineralisation rates and also 67 ± 2% lower SOC mineralisation per unit SOC in the buried topsoils than in the reference topsoils. Wider C/N ratio in the buried sandy topsoils than in the reference topsoils indicates that deep ploughing preserved SOC. The SOC mineralisation per unit SOC in the buried loamy topsoils was not significantly different from that in the reference topsoils. However, 56 ± 4% of the initial SOC was preserved in the buried topsoils. It can be concluded that deep ploughing contributes to SOC sequestration by enlarging the storage space for SOC-rich material.


Asunto(s)
Agricultura/métodos , Secuestro de Carbono , Carbono/análisis , Suelo/química
15.
J Environ Qual ; 42(5): 1565-73, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24216434

RESUMEN

Biomass carbonized via hydrothermal carbonization (HTC) yields a liquid and a carbon (C)-rich solid called hydrochar. In soil, hydrochars may act as fertilizers and promote C sequestration. We assumed that the chemical composition of the raw material (woodchips, straw, grass cuttings, or digestate) determines the properties of the liquid and solid HTC products, including their degradability. Additionally, we investigated whether easily mineralizable organic components adsorbed on the hydrochar surface influence the degradability of the hydrochars and could be removed by repetitive washing. Carbon mineralization was measured as CO production over 30 d in aerobic incubation experiments with loamy sand. Chemical analysis revealed that most nutrients were preferably enriched in the liquid phase. The C mineralization of hydrochars from woodchips (2% of total C added), straw (3%), grass (6%), and digestate (14%) were dependent on the raw material carbonized and were significantly lower (by 60-92%; < 0.05) than the mineralization of the corresponding raw materials. Washing of the hydrochars significantly decreased mineralization of digestate-hydrochar (up to 40%) but had no effect on mineralization rates of the other three hydrochars. Variations in C mineralization between different hydrochars could be explained by multiple factors, including differences in the O/C-H/C ratios, C/N ratios, lignin content, amount of oxygen-containing functional groups, and pH. In contrast to the solids, the liquid products were highly degradable, with 61 to 89% of their dissolved organic C being mineralized within 30 d. The liquids may be treated aerobically (e.g., for nutrient recovery).


Asunto(s)
Carbono , Suelo , Adsorción , Biomasa , Carbono/química , Secuestro de Carbono , Carbón Orgánico/química , Fertilizantes , Suelo/química
16.
Sci Data ; 6(1): 57, 2019 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-31086193

RESUMEN

A global, unified dataset on Soil Organic Carbon (SOC) changes under perennial crops has not existed till now. We present a global, harmonised database on SOC change resulting from perennial crop cultivation. It contains information about 1605 paired-comparison empirical values (some of which are aggregated data) from 180 different peer-reviewed studies, 709 sites, on 58 different perennial crop types, from 32 countries in temperate, tropical and boreal areas; including species used for food, bioenergy and bio-products. The database also contains information on climate, soil characteristics, management and topography. This is the first such global compilation and will act as a baseline for SOC changes in perennial crops. It will be key to supporting global modelling of land use and carbon cycle feedbacks, and supporting agricultural policy development.

17.
FEMS Microbiol Ecol ; 93(12)2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29087486

RESUMEN

Land-use and their change have dramatic consequences for above-ground biodiversity, but their impact on soil microbial communities is poorly understood. In this study, soils from 19 European sites representing conversion of croplands to grasslands or forests and of grasslands to croplands or forests were characterized for microbial abundance and bacterial diversity. The abundance of Bacteria and Fungi but not Archaea responded to land-use change. Site was the major determinant of the soil bacterial community structure, explaining 32% of the variation in 16S rRNA gene diversity. While the quantity of soil organic carbon (SOC) only explained 5% of the variation, SOC when differentiated by its quality could explain 22%. This was similar to the impact of soil pH (21%) and higher than that of land-use type (15%). Croplands had the highest bacterial diversity. Converting croplands to grassland caused an increase of Verrucomicrobia; croplands to forest increased Rhizobiales but decreased Bacteroidetes and Nitrospirae; and grasslands to cropland increased Gemmatimonadetes but decreased Verrucomicrobia and Planctomycetes. Network analysis identified associations between particular SOC fractions and specific bacterial taxa. We conclude that land-use-related effects on soil microorganisms can be consistently observed across a continental scale.


Asunto(s)
Agricultura , Archaea/clasificación , Bacterias/clasificación , Hongos/clasificación , Microbiología del Suelo , Suelo/química , Archaea/genética , Bacterias/genética , Biodiversidad , Carbono/análisis , Europa (Continente) , Bosques , Hongos/genética , Pradera , ARN Ribosómico 16S/genética
18.
Sci Rep ; 7(1): 5511, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28710454

RESUMEN

Accumulation of soil organic carbon (SOC) may play a key role in climate change mitigation and adaptation. In particular, subsoil provides a great potential for additional SOC storage due to the assumed higher stability of subsoil SOC. The fastest way in which SOC reaches the subsoil is via burial, e.g. via erosion or deep ploughing. We assessed the effect of active SOC burial through deep ploughing on long-term SOC stocks and stability in forest and cropland subsoil. After 25-48 years, deep-ploughed subsoil contained significantly more SOC than reference subsoils, in both forest soil (+48%) and cropland (+67%). However, total SOC stocks down to 100 cm in deep-ploughed soil were greater than in reference soil only in cropland, and not in forests. This was explained by slower SOC accumulation in topsoil of deep-ploughed forest soils. Buried SOC was on average 32% more stable than reference SOC, as revealed by long-term incubation. Moreover, buried subsoil SOC had higher apparent radiocarbon ages indicating that it is largely isolated from exchange with atmospheric CO2. We concluded that deep ploughing increased subsoil SOC storage and that the higher subsoil SOC stability is not only a result of selective preservation of more stable SOC fractions.


Asunto(s)
Carbono/análisis , Suelo/química , Dióxido de Carbono/química , Secuestro de Carbono , Productos Agrícolas/crecimiento & desarrollo , Bosques
19.
Glob Chang Biol ; 19(4): 1107-13, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23504888

RESUMEN

More than 50% of the world's population feeds on rice. Soils used for rice production are mostly managed under submerged conditions (paddy soils). This management, which favors carbon sequestration, potentially decouples surface from subsurface carbon cycling. The objective of this study was to elucidate the long-term rates of carbon accrual in surface and subsurface soil horizons relative to those of soils under nonpaddy management. We assessed changes in total soil organic as well as of inorganic carbon stocks along a 2000-year chronosequence of soils under paddy and adjacent nonpaddy management in the Yangtze delta, China. The initial organic carbon accumulation phase lasts much longer and is more intensive than previously assumed, e.g., by the Intergovernmental Panel on Climate Change (IPCC). Paddy topsoils accumulated 170-178 kg organic carbon ha(-1) a(-1) in the first 300 years; subsoils lost 29-84 kg organic carbon ha(-1) a(-1) during this period of time. Subsoil carbon losses were largest during the first 50 years after land embankment and again large beyond 700 years of cultivation, due to inorganic carbonate weathering and the lack of organic carbon replenishment. Carbon losses in subsoils may therefore offset soil carbon gains or losses in the surface soils. We strongly recommend including subsoils into global carbon accounting schemes, particularly for paddy fields.


Asunto(s)
Carbono/análisis , Productos Agrícolas , Oryza , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA