Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Neurobiol Dis ; 124: 353-363, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30557659

RESUMEN

Emerging evidence links changes in the gut microbiome and intestinal barrier function to alterations in CNS function. We examined the role of endotoxin-responsive, cAMP-specific, Pde4 subfamily b (Pde4b) enzyme in gut dysbiosis induced neuro-inflammation and white matter loss following spinal cord injury (SCI). Using a thoracic contusion model in C57Bl/6 wild type female mice, SCI led to significant shifts in the gut bacterial community including an increase in the phylum Proteobacteria, which consists of endotoxin-harboring, gram-negative bacteria. This was accompanied by increased systemic inflammatory marker, soluble CD14, along with markers of the endoplasmic reticulum stress response (ERSR) and inflammation in the SCI epicenter. Deletion of Pde4b reduced epicenter expression of markers for the ERSR and inflammation, at both acute and chronic time points post-SCI. Correspondingly, expression of oligodendrocyte mRNAs increased. Within the injury penumbra, inflammatory protein markers of activated astrocytes (GFAP), macrophage/microglia (CD11b, Iba1), and the proinflammatory mediator Cox2, were decreased in Pde4b-/- mice. The absence of Pde4b improved white matter sparing and recovery of hindlimb locomotion following injury. Importantly, SCI-induced gut dysbiosis, bacterial overgrowth and endotoxemia were also prevented in Pde4b-/- mice. Taken together, these findings indicate that PDE4B plays an important role in the development of acute and chronic inflammatory response and consequent recovery following SCI.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Inflamación/metabolismo , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/metabolismo , Animales , Disbiosis/etiología , Disbiosis/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Endotoxemia/etiología , Endotoxemia/metabolismo , Femenino , Inflamación/etiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Recuperación de la Función/fisiología
2.
J Hepatol ; 69(4): 886-895, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29803899

RESUMEN

BACKGROUND & AIMS: Alcoholic liver disease (ALD) is characterized by gut dysbiosis and increased gut permeability. Hypoxia inducible factor 1α (HIF-1α) has been implicated in transcriptional regulation of intestinal barrier integrity and inflammation. We aimed to test the hypothesis that HIF-1α plays a critical role in gut microbiota homeostasis and the maintenance of intestinal barrier integrity in a mouse model of ALD. METHODS: Wild-type (WT) and intestinal epithelial-specific Hif1a knockout mice (IEhif1α-/-) were pair-fed modified Lieber-DeCarli liquid diet containing 5% (w/v) alcohol or isocaloric maltose dextrin for 24 days. Serum levels of alanine aminotransferase and endotoxin were determined. Fecal microbiota were assessed. Liver steatosis and injury, and intestinal barrier integrity were evaluated. RESULTS: Alcohol feeding increased serum levels of alanine aminotransferase and lipopolysaccharide, hepatic triglyceride concentration, and liver injury in the WT mice. These deleterious effects were exaggerated in IEhif1α-/- mice. Alcohol exposure resulted in greater reduction of the expression of intestinal epithelial tight junction proteins, claudin-1 and occludin, in IEhif1α-/- mice. In addition, cathelicidin-related antimicrobial peptide and intestinal trefoil factor were further decreased by alcohol in IEhif1α-/- mice. Metagenomic analysis showed increased gut dysbiosis and significantly decreased Firmicutes/Bacteroidetes ratio in IEhif1α-/- mice compared to the WT mice exposed to alcohol. An increased abundance of Akkermansia and a decreased level of Lactobacillus in IEhif1α-/- mice were also observed. Non-absorbable antibiotic treatment reversed the liver steatosis in both WT and IEhif1α-/- mice. CONCLUSION: Intestinal HIF-1α is essential for the adaptative response to alcohol-induced changes in intestinal microbiota and barrier function associated with elevated endotoxemia and hepatic steatosis and injury. LAY SUMMARY: Alcohol consumption alters gut microbiota and multiple intestinal barrier protecting factors that are regulated by intestinal hypoxia-inducible factor 1α (HIF-1α). Absence of intestinal HIF-1α exacerbates gut leakiness leading to an increased translocation of bacteria and bacterial products to the liver, consequently causing alcoholic liver disease. Intestinal specific upregulation of HIF-1α could be developed as a novel approach for the treatment of alcoholic liver disease.


Asunto(s)
Disbiosis , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Intestinos/microbiología , Hepatopatías Alcohólicas/etiología , Animales , Heces/microbiología , Hepatitis/etiología , Humanos , Mucosa Intestinal/metabolismo , Masculino , Metagenómica , Ratones , Ratones Endogámicos C57BL
3.
Gut Microbes ; 13(1): 1946367, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34369304

RESUMEN

Emerging research evidence has established the critical role of the gut-liver axis in the development of alcohol-associated liver disease (ALD). The present study employed 16S rRNA gene and whole genome shotgun (WGS) metagenomic analysis in combination with a revised microbial dataset to comprehensively detail the butyrate-producing microbial communities and the associated butyrate metabolic pathways affected by chronic ethanol feeding. Specifically, the data demonstrated that a decrease in several butyrate-producing bacterial genera belonging to distinct families within the Firmicutes phyla was a significant component of ethanol-induced dysbiosis. WGS analysis of total bacterial genomes encompassing butyrate synthesizing pathways provided the functional characteristics of the microbiome associated with butyrate synthesis. The data revealed that in control mice microbiome, the acetyl-coenzyme A (CoA) butyrate synthesizing pathway was the most prevalent and was significantly and maximally decreased by chronic ethanol feeding. Further WGS analysis i) validated the ethanol-induced decrease in the acetyl-CoA pathway by identifying the decrease in two critical genes but - (butyryl-CoA: acetate CoA transferase) and buk - (butyrate kinase) that encode the terminal condensing enzymes required for converting butyryl-CoA to butyrate and ii) detection of specific taxa of butyrate-producing bacteria containing but and buk genes. Notably, the administration of tributyrin (Tb) - a butyrate prodrug - significantly prevented ethanol-induced decrease in butyrate-producing bacteria, hepatic steatosis, inflammation, and injury. Taken together, our findings strongly suggest that the loss of butyrate-producing bacteria using the acetyl-CoA pathway is a significant pathogenic feature of ethanol-induced microbial dysbiosis and ALD and can be targeted for therapy.


Asunto(s)
Butiratos/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/fisiopatología , Coenzima A Transferasas/metabolismo , Disbiosis/inducido químicamente , Etanol/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Ruminococcus/metabolismo , Animales , Modelos Animales de Enfermedad , Disbiosis/fisiopatología , Humanos , Redes y Vías Metabólicas , Ratones
4.
Cell Mol Gastroenterol Hepatol ; 9(4): 569-585, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31654770

RESUMEN

Ethanol-mediated down-regulation of carnitine palmitoyltransferase-1 (CPT-1A) gene expression plays a major role in the development of hepatic steatosis; however, the underlying mechanisms are not completely elucidated. Tributyrin, a butyrate prodrug that can inhibit histone deacetylase (HDAC) activity, attenuates hepatic steatosis and injury. The present study examined the beneficial effect of tributyrin/butyrate in attenuating ethanol-induced pathogenic epigenetic mechanisms affecting CPT-1A promoter-histone modifications and gene expression and hepatic steatosis/injury. METHODS: Mice were fed a liquid Lieber-DeCarli diet (Research Diet Inc, New Brunswick, NJ) with or without ethanol for 4 weeks. In a subset of mice, tributyrin (2 g/kg) was administered orally by gavage. Primary rat hepatocytes were treated with 50 mmol/L ethanol and/or 2 mmol/L butyrate. Gene expression and epigenetic modifications at the CPT-1A promoter were analyzed by chromatin immunoprecipitation analysis. RESULTS: In vivo, ethanol induced hepatic CPT-1A promoter histone H3K9 deacetylation, which is indicative of a repressive chromatin state, and decreased CPT-1A gene expression. Our data identified HDAC1 as the predominant HDAC causing CPT-1A promoter histone H3K9 deacetylation and epigenetic down-regulation of gene expression. Significantly, Specificity Protein 1 (SP1) and Hepatocyte Nuclear Factor 4 Alpha (HNF4α) participated in the recruitment of HDAC1 to the proximal and distal regions of CPT-1A promoter, respectively, and mediated transcriptional repression. Importantly, butyrate, a dietary HDAC inhibitor, attenuated ethanol-induced recruitment of HDAC1 and facilitated p300-HAT binding by enabling SP1/p300 interaction at the proximal region and HNF4α/peroxisomal proliferator-activated receptor-γ coactivator-1α/p300 interactions at the distal region, leading to promoter histone acetylation and enhanced CPT-1A transcription. CONCLUSIONS: This study identifies HDAC1-mediated repressive epigenetic mechanisms that underlie an ethanol-mediated decrease in CPT-1A expression. Importantly, tributyrin/butyrate inhibits HDAC1, rescues CPT-1A expression, and attenuates ethanol-mediated hepatic steatosis and injury, suggesting its potential use in therapeutic strategies for alcoholic liver disease.


Asunto(s)
Carnitina O-Palmitoiltransferasa/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Hígado Graso Alcohólico/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/farmacología , Triglicéridos/farmacología , Acetilación/efectos de los fármacos , Administración Oral , Animales , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Represión Epigenética/efectos de los fármacos , Etanol/toxicidad , Hígado Graso Alcohólico/diagnóstico , Hígado Graso Alcohólico/patología , Hepatocitos , Inhibidores de Histona Desacetilasas/uso terapéutico , Histonas/metabolismo , Humanos , Hígado/citología , Hígado/efectos de los fármacos , Hígado/patología , Pruebas de Función Hepática , Masculino , Ratones , Cultivo Primario de Células , Regiones Promotoras Genéticas/genética , Triglicéridos/uso terapéutico
5.
Toxicol In Vitro ; 35: 66-76, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27238871

RESUMEN

Zidovudine (AZT) remains the mainstay of antiretroviral therapy against HIV in resource-poor countries; however, its use is frequently associated with hepatotoxicity. Not all HIV patients on AZT develop hepatotoxicity, and the determining factors are unclear. Alcohol consumption and cigarette smoking are known risk factors for HIV hepatotoxicity, and both are significant sources of acrolein, a highly reactive and toxic aldehyde. This study examines the potential hepatotoxic interactions between acrolein and AZT. Our data demonstrate that acrolein markedly enhanced AZT-induced transcriptionally permissive histone modifications (H3K9Ac and H3K9Me3) allowing the recruitment of transcription factor NF-kB and RNA polymerase II at the FasL gene promoter, resulting in FasL upregulation and apoptosis in hepatocytes. Notably, the acrolein scavenger, hydralazine prevented these promoter-associated epigenetic changes and inhibited FasL upregulation and apoptosis induced by the combination of AZT and acrolein, as well as AZT alone. Our data strongly suggest that acrolein enhancement of promoter histone modifications and FasL upregulation are major pathogenic mechanisms driving AZT-induced hepatotoxicity. Moreover, these data also indicate the therapeutic potential of hydralazine in mitigating AZT hepatotoxicity.


Asunto(s)
Acroleína/toxicidad , Fármacos Anti-VIH/toxicidad , Epigénesis Genética/efectos de los fármacos , Proteína Ligando Fas/genética , Hepatocitos/efectos de los fármacos , Zidovudina/toxicidad , Animales , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Fragmentación del ADN , Células Hep G2 , Hepatocitos/metabolismo , Histonas/genética , Humanos , Hidralazina/farmacología , ARN Polimerasa II/genética , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA