Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(8): 3974-3984, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38306233

RESUMEN

In contaminated water and soil, little is known about the role and mechanism of the biometabolic molecule siderophore desferrioxamine-B (DFO) in the biogeochemical cycle of uranium due to complicated coordination and reaction networks. Here, a joint experimental and quantum chemical investigation is carried out to probe the biomineralization of uranyl (UO22+, referred to as U(VI) hereafter) induced by Shewanella putrefaciens (abbreviated as S. putrefaciens) in the presence of DFO and Fe3+ ion. The results show that the production of mineralized solids {hydrogen-uranium mica [H2(UO2)2(PO4)2·8H2O]} via S. putrefaciens binding with UO22+ is inhibited by DFO, which can both chelate preferentially UO22+ to form a U(VI)-DFO complex in solution and seize it from U(VI)-biominerals upon solvation. However, with Fe3+ ion introduced, the strong specificity of DFO binding with Fe3+ causes re-emergence of biomineralization of UO22+ {bassetite [Fe(UO2)2(PO4)2·8(H2O)]} by S. putrefaciens, owing to competitive complexation between Fe3+ and UO22+ for DFO. As DFO possesses three hydroxamic functional groups, it forms hexadentate coordination with Fe3+ and UO22+ ions via these functional groups. The stability of the Fe3+-DFO complex is much higher than that of U(VI)-DFO, resulting in some DFO-released UO22+ to be remobilized by S. putrefaciens. Our finding not only adds to the understanding of the fate of toxic U(VI)-containing substances in the environment and biogeochemical cycles in the future but also suggests the promising potential of utilizing functionalized DFO ligands for uranium processing.


Asunto(s)
Shewanella putrefaciens , Uranio , Biomineralización , Deferoxamina/metabolismo , Deferoxamina/farmacología , Shewanella putrefaciens/metabolismo , Sideróforos/metabolismo , Sideróforos/farmacología , Uranio/química , Compuestos de Hierro/química
2.
Langmuir ; 38(38): 11529-11538, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36099550

RESUMEN

To safely dispose radioactive waste (including, e.g., thorium and radiostrontium), Ce4+ and Sr2+ were chosen as simulated surrogates of α and ß waste and were introduced into the Gd3+ site in Gd2Zr2O7 to maintain the average cationic radius and to compensate for charge. A series of Gd2-xSrx/2Cex/2Zr2O7 (0.00 ≤ x ≤ 0.25) compounds were examined by experimental and theoretical calculations to investigate the co-doping effects of α and ß waste in a Gd2Zr2O7-based matrix. The effects of Ce4+ and Sr2+ content on the phase, unit cell parameters, active modes, mechanical property, and microstructure were studied systematically. Moreover, the limit of incorporation of Ce4+ and Sr2+ in Gd2Zr2O7 pyrochlore and the lattice parameters were also calculated through virtual crystal approximation theory, and the results were found to well agree with experimental results.

3.
Anal Bioanal Chem ; 414(2): 1039-1048, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34676433

RESUMEN

The rapid development of nanozymes for ultrasensitive detection of contaminate has resulted in considerable attention. Herein, a carboxyl- and aminopropyl-functionalized copper organophyllosilicate (Cu-CAP) was synthesized by a facile, one-pot sol-gel method. The bifunctional groups endow it with superior catalytic activity than that of natural enzyme. Besides, it possesses outstanding catalytic stability under harsh conditions such as high temperature, extremely high or low pH, and high salinity. Apart from laccase-mimetic activity, Cu-CAP also shows oxidation of the peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) to the blue-colored TMBox in the presence of H2O2, which is similar to natural horseradish peroxidase (HRP). Interestingly, this colorimetric system was suppressed by hydroquinone (HQ) specifically. Inspired by this, Cu-CAP was used to develop a highly sensitive and selective colorimetric method for the determination of HQ. This assay displayed an extremely low detection limit of 23 nM and was applied for the detection of HQ in environmental water with high accuracy. This approach offers a new route for the rational design of high performance nanozymes for environmental and biosensing applications.


Asunto(s)
Cobre/química , Hidroquinonas/análisis , Nanoestructuras/química , Silicatos/química , Colorimetría/métodos , Cinética , Límite de Detección , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
4.
Ecotoxicol Environ Saf ; 241: 113719, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35691198

RESUMEN

The influence of extracellular polymeric substances (EPS) on the interaction between uranium [U(VI)] and Shewanella putrefaciens (S. putrefaciens), especially the U(VI) biomineralization process occurring on whole cells and cell components of S. putrefaciens was investigated in this study. The removal efficiency of U(VI) by S. putrefaciens was decreased by 22% after extraction of EPS. Proteins were identified as the main components of EPS by EEM analysis and were determined to play a major role in the biosorption of uranium. SEM-EDS results showed that U(VI) was distributed around the whole cell as 500-nanometer schistose structures, which consisted primarily of U and P. However, similar uranium lamellar crystal were wrapped only on the surface of EPS-free S. putrefaciens cells. FTIR and XPS analysis indicated that phosphorus- and nitrogen-containing groups played important roles in complexing U (VI). XRD and U LIII-edge EXAFS analyses demonstrated that the schistose structure consisted of hydrogen uranyl phosphate [H2(UO2)2(PO4)2•8H2O]. Our study provides new insight into the mechanisms of induced uranium crystallization by EPS and cell wall membranes of living bacterial cells under aerobic conditions.


Asunto(s)
Shewanella putrefaciens , Uranio , Biomineralización , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Fósforo , Shewanella putrefaciens/metabolismo , Uranio/metabolismo
5.
Langmuir ; 37(16): 4859-4868, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33851844

RESUMEN

The thermal-condensation method is widely used for the synthesis of K-doped g-C3N4 photocatalysts, but the presence of organic byproducts in the resultant products is often overlooked in previous reports. Here, we demonstrated the universal presence of organic byproducts in K-doped g-C3N4 synthesized by typical thermal condensation of KOH/melamine, KOH/dicyandiamide, or KOH/urea. Taking the K-doped g-C3N4 photocatalysis for the degradation of dimethyl phthalate as an example, the negative influence of the organic byproducts on K-doped g-C3N4 photocatalysis was confirmed. Specifically, the organic byproducts can be gradually dissolved into the photocatalytic system of K-doped g-C3N4 as new and stable pollutants. Based on the solubility investigations on the byproducts in several solvents, hot-water washing was demonstrated to be a relatively effective approach to remove the organic byproducts from K-doped g-C3N4. The formation of organic byproducts during the synthesis of K-doped g-C3N4 could be ascribed to the fact that the presence of K salts in melamine, dicyandiamide, or urea molecules results in their insufficient thermal condensation into expected g-C3N4. The present work provides objective information about the K-doped g-C3N4 photocatalysts and reminds researchers about the influence of the organic byproducts on the applications of the other impurity-doped g-C3N4 photocatalysts.

6.
Anal Bioanal Chem ; 413(23): 5695-5702, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34331553

RESUMEN

The Berthelot reaction is a classic method for detection of ammonium (NH4+) and atmospheric ammonia (NH3) by using salicylic acid (SA) as the chromogenic substrate. However, there lacks a method for improving the activity of the Berthelot reaction to enhance the analytical performance for detection of NH4+ and NH3. Here, five SA analogues with electron-withdrawing groups (-F) and electron-donating groups (-CH3 and -OCH3) at different positions of the aromatic ring have been chosen as the alternative to SA for Berthelot reaction. Among these analogues, 4-methoxysalicylic acid (4-OCH3-SA) shows the best colorimetric response and color change at a NH4+ concentration of 30 µM, and the sensitivity of 4-OCH3-SA-based colorimetric assay for NH4+ increases 1.75-fold compared with that of SA-based colorimetric method. This enhancement effect is attributed to the strong electron-donating property of 4-OCH3 group, activating the two-step electrophilic aromatic substitution reaction in the Berthelot reaction. Additionally, visual and sensitive detection of NH3 is realized, along with a low limit of detection down to 0.037 ppm. Furthermore, we demonstrate that this assay is reliable and practical for detection of NH4+ and NH3 in real water and air samples with good accuracy.

7.
Ecotoxicol Environ Saf ; 208: 111414, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33080424

RESUMEN

Fine atmospheric particles with a diameter of 2.5 µm or less (PM2.5) have a large specific surface area, and carry a variety of organic matter, heavy metals, minerals and bacteria. They are an important risk factor in human non-communicable disease. To explore the molecular regulatory mechanism of the airway inflammation caused by PM2.5, an in vitro human bronchial epithelial (16HBE) cells poisoning model was deployed. Results showed that PM2.5 had a strong inhibitory effect on cells viability, and induced cells to secrete high levels of IL-6 and CXCL 8. These two biomarkers of inflammation were significantly reduced in the presence of TAK 242. TLR4, MyD88, IKK, and p-p65 proteins were highly expressed on exposure to PM2.5. Pretreatment with TAK 242 interfered with the activation of the TLR4 signaling pathway. By detecting the presence of lipopolysaccharides (LPS) in PM2.5 which had been autoclaved, it was speculated that the activation of the TLR4/NF-κB signaling pathway may be mediated by LPS. It was demonstrated using gain- and loss- function experiments that miR-140-5p negatively regulated TLR4 to mediate inflammation in 16HBE cells. The dual-luciferase reporter assay confirmed that miR-140-5p directly binds to the 3' untranslated region (3' UTR) of TLR4 to initiate biological activity. In conclusion, this study revealed a new mechanism by which the miR-140-5p/TLR4 signaling pathway mediated the inflammatory response of 16HBE cells induced by PM2.5. Differential expression of miRNA, and the activation of the TLR4/NF-κB signaling pathway induced by PM2.5 implicates PM2.5 in the pathogenesis of airway inflammation.


Asunto(s)
FN-kappa B/metabolismo , Material Particulado/toxicidad , Células Cultivadas , Polvo , Humanos , Inflamación , Lipopolisacáridos , MicroARNs/genética , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Factor de Transcripción ReIA
8.
Anal Bioanal Chem ; 412(11): 2545-2550, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32072207

RESUMEN

Nitric oxide (NO) plays an important role in the generation of smog and ozone. Although great efforts have been made to determine NO by using o-phenylenediamine (OPD)-based fluorescent probes, more simple and reliable colorimetric assays for detection of NO are extremely scarce because a single OPD structure cannot produce enough optical absorption for chromogenesis. In this study, we report an innovative two-in-one visual colorimetric methodology. Commercially available 3,3'-diaminobenzidine (DAB) with two OPD structures in a single molecule is selected as the colorimetric probe, and it reacts with NO via diazo-coupling reaction to generate 1H,3'H-[5,5']bibenzotriazolyl because of the increase of conjugated double bonds, accompanying a distinct color change from colorless to brownish yellow. This two-in-one colorimetric assay can determine NO at a concentration as low as 3 ppm by the naked eye and 40 ppb by UV-vis spectrometry, which is the lowest limit of detection (LOD) among reported colorimetric assays for NO. Moreover, the present two-in-one visual colorimetric assay also has good selectivity toward NO over other common potential gas interferents such as CO2, NO2, NH3, N2, O2, and SO2. This present study provides a new insight for the design and development of assays for NO. Graphical abstract.

9.
Ecotoxicol Environ Saf ; 188: 109921, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-31711778

RESUMEN

The presence of pesticides in water has emerged as a momentous environmental issue over the past decades. Herein, a terbium doped Ti/PbO2 (denoted as Ti/PbO2-Tb) dimensionally stable Ti/PbO2-Tb anode has been successfully prepared by one-step electrodeposition path for electrocatalytic degradation of imidacloprid (IMD) wastewater with high efficiency. Ti/PbO2-Tb electrode presents higher oxygen evolution potential, lower charge transfer resistance, stronger stability, longer service lifetime and outstanding electrocatalytic activity than Ti/PbO2 electrode. The optimum condition for IMD oxidation is obtained by analyzing the effects of some critical operating parameters including temperature, initial pH, current density and electrolyte concentration. It is proved that 70.05% of chemical oxygen demand and 76.07% of IMD are removed after 2.5 h of degradation under current density of 8 mA cm-2, pH 9, temperature 30 °C and 7.0 g L-1 NaCl electrolyte. In addition, the electrode displays commendable energy saving property as well as favorable reusability. The degradation mechanism of IMD is proposed by analyzing the intermediates identified by LC-MS. The present research provides a feasible strategy to degrade IMD wastewater by Ti/PbO2-Tb electrode.


Asunto(s)
Técnicas Electroquímicas/métodos , Neonicotinoides/análisis , Nitrocompuestos/análisis , Terbio/química , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Análisis de la Demanda Biológica de Oxígeno , Técnicas Electroquímicas/instrumentación , Electrodos , Plomo/química , Oxidación-Reducción , Óxidos/química , Titanio/química
10.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 51(4): 488-493, 2020 Jul.
Artículo en Zh | MEDLINE | ID: mdl-32691555

RESUMEN

OBJECTIVE: To investigate the effect of phosphatidyl inositol 3-kinase/protein kinase B (PI3K/AKt) signaling pathway on the apoptosis of alveolar macrophages (AM) induced by nano-silica (NS) dust. METHODS: After exposure to different concentrations of NS suspension, CCK-8 assay was used to detect the AM viability; the cellular morphology of apoptotic AM was observed under fluorescence microscopy; the apoptosis rate and mitochondrial transmembrane potential of cells were detected by flow cytometry before and after pretreatment with phosphatidyl inositol 3-kinase (PI3K) inhibitor LY294002; Western blot was used to detect the expression of apoptosis-related proteins Bax, Bcl-2, p-PI3K and p-AKt. RESLUTS: The survival rate of AM was decreased in a time-dose relationship after NS exposure. With LY294002 pretreatment, the mitochondrial transmembrane potential level and the expressions of p-PI3K, p-AKt and Bcl-2 were decreased, the expression of Bax and the apoptosis rate were increased. CONCLUSION: Our data suggested that the activation of PI3K/AKt signaling pathway played an important role in NS-induced apoptosis in alveolar macrophages.


Asunto(s)
Apoptosis , Macrófagos Alveolares , Fosfatidilinositol 3-Quinasa , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Dióxido de Silicio , Apoptosis/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Humanos , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/enzimología , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Dióxido de Silicio/toxicidad
11.
Anal Chem ; 91(9): 6155-6161, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30990015

RESUMEN

o-Phenylenediamine (OPD)-based chromogenic reactions are worthy tools for the development of visual colorimetric assays. The chromogenic reactions are usually triggered by various oxidants, which is not easily tunable and incompatible with some analytes. Herein, we report that direct blue light irradiation can induce the autocatalytic oxidation of OPD to generate 2,3-diaminophenazine (oxidized-state OPD, oxOPD). The autocatalytic photo-oxidation reaction mechanism of OPD is mainly ascribed to the resonant energy transfer between ectronically excited oxOPD and dissolved oxygen to form singlet state oxygen with a high oxidation capacity, which accelerates the oxidation of OPD. We demonstrate that under neutral and alkaline environment, the photoinduced autocatalytic oxidation of OPD is able to be further enhanced by triaminotrinitrobenzene (TATB) explosive because of its inhibition effect on the aggregation caused quenching phenomenon of oxOPD. On this basis, a straightforward visual colorimetric assay for TATB with a tunable dynamic range is developed. This assay is capable of detecting TATB explosive concentrations as low as 2.7 nM. Notably, the obvious color change after addition of TATB enables a naked-eye readout with the lowest detectable TATB concentrations of 60 nM.


Asunto(s)
Luz , Fenilendiaminas/química , Trinitrobencenos/análisis , Catálisis , Colorimetría , Simulación de Dinámica Molecular , Oxidación-Reducción
12.
Anal Bioanal Chem ; 411(30): 8063-8071, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31768592

RESUMEN

There is great interest in detection of the level of 2,4,6-trinitrotoluene (TNT) explosive due to its importance in public security and environmental protection fields. The conventional chemical sensors do not simultaneously realize simple, rapid, sensitive, selective, and direct detection of TNT in different medium without sample pretreatment. Here we present a modified wood-based chemical sensor for visual colorimetric detection of TNT in water, air, and soil. The natural wood undergoes a delignified process, which is further functionalized by 3-aminopropyltriethoxysilane (APTES). When TNT solutions are introduced, the wood-based sensor shows a colorimetric transition from light yellow to brown for naked-eye readout because of the generation of Meisenheimer complex between APTES and TNT. The photographs are collected by smartphone camera, and the RGB components are extracted to calculate the adjusted intensity for qualitative detection of TNT. This visual colorimetric sensor for TNT solution displays a linearity in the range of 0.01-5 mM with a limit of detection of 3 µM. In addition, by taking advantage of its inherent mesostructure, the wood-based sensor can be employed for visual detection of TNT vapor as well. Furthermore, it is also able to directly detect TNT in wet soil samples based on capillary action, in which TNT carried by water transports upward along the wood microchannel, triggering the generation of Meisenheimer complex. Graphical Abstract.

13.
Biometals ; 32(4): 683-693, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31286331

RESUMEN

Prolonged exposure to gadolinium-based contrast agents has been reported to trigger nephrogenic systemic fibrosis in end stage renal disease patients. However, the exact molecular mechanisms are not fully understood, and no effective therapy is available to date. In the present study, we report that gadolinium chloride (Gd3+) concentration- and time-dependently promoted the proliferation of HEK293 human embryonic kidney cells by increasing DNA synthesis. Gd3+ treatment increased the protein levels of phosphorylated Akt and MAPKs. Inhibition of Akt and ERK by pharmacological inhibitors abolished the increased proliferation and cell cycle progression. Furthermore, Gd3+ activated EGFR signaling possibly by enhancing EGFR clustering on the cell membrane. Inhibition of EGFR by gefitinib blocked Gd3+-induced proliferation. Gd3+ exposure also upregulated the mRNA levels of TGFß-1, TGFßR1, TNFα, TIMP-1 and integrin αV, ß1 which could also be attenuated by the inhibition of Akt and ERK signaling. Our study provides new clues for the etiological role of Gd3+ in the pathogenesis of nephrogenic systemic fibrosis, and suggests the inhibition of EGFR/Akt/ERK signaling as a potential treatment strategy.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Gadolinio/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores ErbB/metabolismo , Células HEK293 , Humanos , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos
14.
Toxicol Ind Health ; 35(6): 431-444, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31131716

RESUMEN

Man-made mineral fibers (MMMFs) are substitutes for asbestos. MMMFs are widely used as insulation, but their molecular mechanisms underlying the tumorigenic effects in vivo have been poorly studied. For this reason, this work aimed to explore the properties and carcinogenic molecular mechanisms of MMMFs. The three MMMFs, rock wool (RW), glass fibers (GFs), and ceramic fibers (CFs), were prepared into respirable dust. Particle size, morphology, and chemical composition were analyzed by laser particle analyzer, scanning electron microscope, and X-ray fluorescence spectrometer, respectively. The Wistar rats were administered multiple intratracheal instillations of three MMMFs once a month. Then, several parameters (e.g. body mass, lung mass, and lung histology) were measured at 1, 3, and 6 months. After that, levels of P53, P16, C-JUN, and C-FOS mRNA and protein were measured by quantitative real-time reverse transcription polymerase chain reaction and Western blotting. This work found that exposure to MMMFs could influence the growth of body mass and increase lung mass. General conditions showed white nodules and irregular atrophy. In addition, MMMFs could lead to inactivation of anti-oncogene P16 and activation of proto-oncogenes (C-JUN and C-FOS) in the mRNA and protein levels, in which GF and CF were more obvious compared with RW. The effect of MMMFs was different, which may be related to the physical and chemical characteristics of different MMMFs. In conclusion, MMMFs (GF and CF) could induce an unbalanced expression of cancer-related genes in the lung tissues of rats. The understanding of the determinants of toxicity and carcinogenicity provides a scientific basis for developing and introducing new safer MMMF products, and the present study provides some useful insights into the carcinogenic mechanism of MMMFs.


Asunto(s)
Lesión Pulmonar/inducido químicamente , Fibras Minerales/toxicidad , Oncogenes/efectos de los fármacos , Animales , Genes fos/efectos de los fármacos , Genes jun/efectos de los fármacos , Genes p16/efectos de los fármacos , Genes p53/efectos de los fármacos , Pulmón , Lesión Pulmonar/patología , Masculino , ARN Mensajero/análisis , Ratas , Ratas Wistar
15.
Int J Mol Sci ; 20(7)2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30974785

RESUMEN

Two Bacillus atrophaeus strains, the first being a highly stress-resistant ATCC 9372 strain and the Ua strain identified from a chromium mine by our lab, differ in their abilities to tolerate and remove Uranium (VI) from contaminated water. An increase in U(VI) concentration in growth media led to a decrease in the tolerance and bio-remedial capacity of both strains. However, under high concentrations of U(VI) in the growth media, the ATCC 9372 strain demonstrated a higher tolerance and a higher removal capacity than the Ua strain. Two approaches, transcriptome sequencing and transgenic technology, were used to elucidate the relationship between particular genes within these two strains and their U(VI) removal capacity. Sequencing confirmed the expression of two genes unique to the Ua strain, previously designated ytiB and ythA. They encode putative proteins that show the highest levels of identity to carbonic anhydrase and cytochrome bd terminal oxidase I, respectively. Using the pBE-S DNA vector, ytiB and ythA were transformed into the ATCC 9372 strain of Bacillus atrophaeus. Under a U(VI) concentration of 120 mg/L, the removal rates of the transgenic ATCC 9372-ytiB and ATCC 9372-ythA strains decreased by 7.55% and 7.43%, respectively, compared to the removal rate of the control strain transformed with empty plasmid. The results suggest that both ythA and ytiB genes have a negative influence on the uranium removing capacity of Bacillus atrophaeus. This finding will help to elucidate the molecular mechanisms of uranium removal by bacteria.


Asunto(s)
Bacillus , Proteínas Bacterianas , Cromo/metabolismo , Microbiología del Suelo , Uranio/metabolismo , Bacillus/genética , Bacillus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
16.
Inorg Chem ; 57(24): 15280-15288, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30507184

RESUMEN

The crystal facet of the BiVO4 photoanode has potential influence on its charge-transfer and separation properties as well as water oxidation kinetics. In the present work, a BiVO4 polyhedral film with exposed {121}, {132}, {211}, and {251} high-index facets was synthesized by a facile Bi2O3 template-induced method and investigated as a photoanode for water oxidation. In comparison with the normal BiVO4 film with a {121} monohigh-index facet, the BiVO4 film with multihigh-index crystal facets shows higher activity and faster kinetics for photoelectrochemical water oxidation. Specifically, a higher photocurrent density of 1.21 mA/cm2 was achieved on the multihigh-index facet BiVO4 photoanode at 1.23 V versus reversible hydrogen electrode (RHE) in 0.1 M Na2SO4, which is about 200% improved over the normal BiVO4 photoanode (0.61 mA/cm2 at 1.23 V vs RHE). In addition, a negative shift of 300 mV onset potential for water oxidation was observed on the as-prepared BiVO4 photoanode (0.22 V vs RHE) relative to the normal BiVO4 photoanode (0.52 V vs RHE) in 0.1 M Na2SO4. Although the UV-vis absorbance property and water oxidation pathway not be changed, the charge-transfer and separation properties as well as the overall water oxidation kinetics on the multihigh-index facet BiVO4 film were boosted obviously. Theory calculations reveal that the adsorption of H2O molecules on BiVO4{121} and {132} high-index facets is energetically favorable for subsequent dissociation and oxidation relative to that on {010} and {110} low-index facets. Furthermore, the water oxidation limiting step on {121} and {132} high-index facets of BiVO4 is changed to the step of two protons reacting with •O to form •OOH species (•O + H2O(l) + 2H+ + 2e- → •OOH + 3H+ + 3e-), which is different from the limiting step on {010} and {110} low-index facets that corresponds to the dissociation of H2O to •OH (2H2O(l) + • → •OH + H2O(l) + H+ + e-). In addition, the overpotential of water oxidation limiting step on BiVO4{121} and {132} high-index facets is lower than that on {010} and {110} low-index facets.

17.
Mikrochim Acta ; 185(2): 107, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29594700

RESUMEN

A composite consisting of carbon quantum dots (CQDs) and overoxidized poly(2-aminopyridine) (PAPox) was deposited on a glassy carbon electrode (GCE) through electrochemical polymerization and electrochemical oxidation. The modified GCE was used for the simultaneous determination of guanine and adenine. Electrochemical responses to guanine and adenine were investigated by cyclic voltammetry and differential pulse voltammetry. Owing to the synergistic effect of CQDs and PAPox, two oxidation peaks can be observed, with peaks at 0.81 and 1.13 V (vs. SCE) for guanine and adenine, respectively. The current at the respective peaks has a linear dependence on the concentrations of guanine in the range from 1.0 to 65 µM, and of adenine in the range from 2.0 to 70 µM. The respective detection limits are 0.51 and 0.39 µM (at an S/N ratio of 3). The modified GCE is selective, reproducible and stable. Graphical abstract Schematic of the preparation of a glassy carbon electrode modified with carbon quantum dots and overoxidized poly(2-aminopyridine (CQD/PAPox/GCE), and its application for the simultaneous determination of guanine and adenine.

18.
Water Sci Technol ; 75(1-2): 220-227, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28067662

RESUMEN

Thermal decomposition method was employed to prepare a Ti/SnO2-RuO2 electrode, on which electrocatalytic degradation of bromocresol green (BCG) was investigated in detail. Scanning electron microscopy, an X-ray diffraction analyzer and an X-ray fluorescence spectrometer were adopted to characterize the morphology, crystal structure and element analysis of the as-prepared Ti/SnO2-RuO2 electrode. It was indicated that the Ti/SnO2-RuO2 electrode had a 'cracked-mud' structure and exhibited a superior specific surface area. The removal efficiency of BCG on the Ti/SnO2-RuO2 electrode was determined in terms of chemical oxygen demand and ultraviolet-visible absorption spectrometry. The results of the batch experiment indicated that the removal efficiency of BCG was influenced by the following factors in descending order: initial pH0, reaction temperature, current density and electrolysis time. The removal efficiency of BCG reached up to 91% at the optimal experiment conditions (initial concentration of 100 mg L-1, initial pH0 7, reaction temperature of 30 °C, current density of 12 mA cm-2 and electrolysis time of 150 min). As a result, it was concluded that BCG wastewater was efficiently removed by electrochemical oxidation on the Ti/SnO2-RuO2 electrode.


Asunto(s)
Verde de Bromocresol/química , Compuestos de Rutenio/química , Compuestos de Estaño/química , Titanio/química , Aguas Residuales/química , Electroquímica/métodos , Electrodos , Electrólisis , Oxidación-Reducción , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Difracción de Rayos X
19.
Small ; 12(14): 1920-7, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-26923794

RESUMEN

An aqueous-based microcompartmentalized model involving the integration of partially hydrophobic Fe(III)-rich montmorillonite (FeM) clay particles as structural and catalytic building blocks for colloidosome membrane assembly, self-directed membrane remodeling, and signal-induced protocell communication is described. The clay colloidosomes exhibit size- and charge-selective permeability, and show dual catalytic functions involving spatially confined enzyme-mediated dephosphorylation and peroxidase-like membrane activity. The latter is used for the colloidosome-mediated synthesis and assembly of a temperature-responsive poly(N-isopropylacrylamide)(PNIPAM)/clay-integrated hybrid membrane. In situ PNIPAM elaboration of the membrane is coupled to a glucose oxidase (GOx)-mediated signaling pathway to establish a primitive model of chemical communication and functional activation within a synthetic "protocell community" comprising a mixed population of GOx-containing silica colloidosomes and alkaline phosphatase (ALP)-containing FeM-clay colloidosomes. Triggering the enzyme reaction in the silica colloidosomes gives a hydrogen peroxide signal that induces polymer wall formation in a coexistent population of the FeM-clay colloidosomes, which in turn generates self-regulated membrane-gated ALP-activity within the clay microcompartments. The emergence of new functionalities in inorganic colloidosomes via chemical communication between different protocell populations provides a first step toward the realization of interacting communities of synthetic functional microcompartments.


Asunto(s)
Coloides , Transducción de Señal , Bentonita/química , Catálisis , Polímeros/química , Espectrometría por Rayos X
20.
Ecotoxicol Environ Saf ; 128: 133-42, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26921547

RESUMEN

The objectives of this study were to track the occurrence, bioaccumulation and sources of phenolic endocrine disrupting chemicals (EDCs) in a representative urban river (Panlong River) of Yunnan-Guizhou Plateau. It provided more comprehensive fundamental data for risk assessment and contamination control of phenolic EDCs in aquatic environments. Phenolic EDCs, such as nonylphenol-di-ethoxylate (NP2EO), nonylphenol-mono-ethoxylate (NP1EO), 4-nonylphenol (4-NP), bisphenol A (BPA), 4-cumylphenol (4-CP) and 4-tert-octylphenol (4-t-OP), were ubiquitously present in Panlong River. The distribution of phenolic EDCs in the water and sediment tended to assume a shape like an inverted letter "W". The residual levels of phenolic EDCs increased dramatically in certain areas. The concentrations of NP2EO, NP1EO, 4-NP, BPA, 4-CP, 4-t-OP and the total phenolic EDCs (ΣPEDCs) were up to 202, 154, 17, 79, 3.3, 4.6 and 429 ng/L in water, and were up to 352, 316, 124, 18, 14, 4.8 and 813 ng/g in sediment, respectively. However, the concentrations of 4-NP, BPA, 4-CP, 4-t-OP and ΣPEDCs in the three predominant fish species (Carassius auratus, Cyprinus carpio and Anabarilius alburnops) were up to 63, 113, 12, 14 and 201 ng/g, respectively. Distribution characteristics of phenolic EDCs in water were significantly similar to those found in sediment, but different in fish. Occurrence, bioaccumulation and sources of phenolic EDCs were mainly subjected to the distribution characteristics of industry, agriculture and residential areas in Panlong catchment. Moreover, the bioconcentration factors (BCFs) were closely related to the octanol-water partition coefficients (log K(ow)) of phenolic EDCs. Without direct input, the redissolution of phenolic EDCs from sediments seems conceivable. The concentrations of phenolic EDCs in the sections of urban areas were remarkably higher than those in suburban sections, since there could exist a potential risk to aquatic organisms and even to human.


Asunto(s)
Disruptores Endocrinos/análisis , Monitoreo del Ambiente/métodos , Fenoles/análisis , Ríos/química , Urbanización , Contaminantes Químicos del Agua/análisis , Animales , Compuestos de Bencidrilo/análisis , Compuestos de Bencidrilo/metabolismo , Carpas/metabolismo , China , Disruptores Endocrinos/metabolismo , Fenoles/metabolismo , Contaminantes Químicos del Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA