Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Biol Macromol ; 274(Pt 1): 133050, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38880451

RESUMEN

Practical employment of silicon (Si) electrodes in lithium-ion batteries (LIBs) is limited due to the severe volume changes suffered during charging-discharging process, causing serious capacity fading. Here, a composite polymer (CP-10) containing sodium carboxymethyl cellulose (CMC-Na) and poly-lysine (PL) is proposed for the binder of Si-based anodes, and a multifunctional strategy of "in-situ crosslinking" is achieved to alleviate the severe capacity degradation effectively. A cross-linked three-dimensional (3D) network is established through the strong hydrogen bonding interaction and reversible electrostatic interactions within CP-10, offering favorable mechanical tolerance for the extreme volume expansion of Si. Moreover, hydrogen bonding interaction along with ion-dipole interaction formed between CP-10 and Si surface enhance the bonding capability of Si-based anodes, promoting the maintenance of anodes' integrity. Consequently, over 800 cycles are achieved for the Si@CP-10 at 0.5C while maintaining a fixed discharge specific capacity of 1000 mAh g-1. Moreover, the Si/C@CP-10 can stably operate over 500 cycles with a capacity retention of 77.12 % at 1C. The prolonged cycling lifetime of Si/C and Si anodes suggests great potential for this strategy in promoting the implementation of high-capacity LIBs.


Asunto(s)
Carboximetilcelulosa de Sodio , Electrodos , Polilisina , Silicio , Carboximetilcelulosa de Sodio/química , Silicio/química , Polilisina/química , Suministros de Energía Eléctrica , Reactivos de Enlaces Cruzados/química , Litio/química
2.
Int J Biol Macromol ; 263(Pt 2): 130511, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423443

RESUMEN

The mechanical properties of ionic conductive hydrogels (ICHs) are generally inadequate, leading to their susceptibility to breakage under external forces and consequently resulting in the failure of flexible electronic devices. In this work, a simple and convenient strategy was proposed based on the synergistic effect of ion cross-linking and salting out, in which the hydrogels consisting of polyvinyl alcohol (PVA) and xanthan gum (XG) were immersed in zinc sulfate (ZnSO4) solution to obtain ICHs with exceptional mechanical properties. The salt-out effects between PVA chains and SO42- ions along with the cross-linked network of XG chains and Zn2+ ions contribute to the desirable mechanical properties of ICHs. Notably, the mechanical properties of ICHs can be adjusted by changing the concentration of ZnSO4 solution. Consequently, the optimum fracture stress and the fracture energy can reach 3.38 MPa and 12.13 KJ m-2, respectively. Moreover, the ICHs demonstrated a favorable sensitivity (up to 2.05) when utilized as a strain sensor, exhibiting an accurate detection of human body movements across various amplitudes.


Asunto(s)
Hidrogeles , Polisacáridos Bacterianos , Alcohol Polivinílico , Humanos , Etanol , Cloruro de Sodio , Conductividad Eléctrica , Iones , Poli A , Cloruro de Polivinilo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA