Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.096
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 184(8): 2212-2228.e12, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33713620

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause acute respiratory disease and multiorgan failure. Finding human host factors that are essential for SARS-CoV-2 infection could facilitate the formulation of treatment strategies. Using a human kidney cell line-HK-2-that is highly susceptible to SARS-CoV-2, we performed a genome-wide RNAi screen and identified virus dependency factors (VDFs), which play regulatory roles in biological pathways linked to clinical manifestations of SARS-CoV-2 infection. We found a role for a secretory form of SARS-CoV-2 receptor, soluble angiotensin converting enzyme 2 (sACE2), in SARS-CoV-2 infection. Further investigation revealed that SARS-CoV-2 exploits receptor-mediated endocytosis through interaction between its spike with sACE2 or sACE2-vasopressin via AT1 or AVPR1B, respectively. Our identification of VDFs and the regulatory effect of sACE2 on SARS-CoV-2 infection shed insight into pathogenesis and cell entry mechanisms of SARS-CoV-2 as well as potential treatment strategies for COVID-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2/inmunología , Interacciones Microbiota-Huesped/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vasopresinas/inmunología , Internalización del Virus , COVID-19/inmunología , COVID-19/virología , Línea Celular , Humanos , Unión Proteica
3.
Nature ; 609(7928): 785-792, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35922005

RESUMEN

Highly pathogenic coronaviruses, including severe acute respiratory syndrome coronavirus 2 (refs. 1,2) (SARS-CoV-2), Middle East respiratory syndrome coronavirus3 (MERS-CoV) and SARS-CoV-1 (ref. 4), vary in their transmissibility and pathogenicity. However, infection by all three viruses results in substantial apoptosis in cell culture5-7 and in patient tissues8-10, suggesting a potential link between apoptosis and pathogenesis of coronaviruses. Here we show that caspase-6, a cysteine-aspartic protease of the apoptosis cascade, serves as an important host factor for efficient coronavirus replication. We demonstrate that caspase-6 cleaves coronavirus nucleocapsid proteins, generating fragments that serve as interferon antagonists, thus facilitating virus replication. Inhibition of caspase-6 substantially attenuates lung pathology and body weight loss in golden Syrian hamsters infected with SARS-CoV-2 and improves the survival of mice expressing human DPP4 that are infected with mouse-adapted MERS-CoV. Our study reveals how coronaviruses exploit a component of the host apoptosis cascade to facilitate virus replication.


Asunto(s)
Ácido Aspártico , Caspasa 6 , Infecciones por Coronavirus , Coronavirus , Cisteína , Interacciones Huésped-Patógeno , Replicación Viral , Animales , Apoptosis , Ácido Aspártico/metabolismo , Caspasa 6/metabolismo , Coronavirus/crecimiento & desarrollo , Coronavirus/patogenicidad , Infecciones por Coronavirus/enzimología , Infecciones por Coronavirus/virología , Proteínas de la Nucleocápside de Coronavirus/inmunología , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Cricetinae , Cisteína/metabolismo , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , Humanos , Interferones/antagonistas & inhibidores , Interferones/inmunología , Pulmón/patología , Mesocricetus , Ratones , Coronavirus del Síndrome Respiratorio de Oriente Medio , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , SARS-CoV-2 , Tasa de Supervivencia , Pérdida de Peso
4.
Nature ; 593(7859): 418-423, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33727703

RESUMEN

The COVID-19 pandemic is the third outbreak this century of a zoonotic disease caused by a coronavirus, following the emergence of severe acute respiratory syndrome (SARS) in 20031 and Middle East respiratory syndrome (MERS) in 20122. Treatment options for coronaviruses are limited. Here we show that clofazimine-an anti-leprosy drug with a favourable safety profile3-possesses inhibitory activity against several coronaviruses, and can antagonize the replication of SARS-CoV-2 and MERS-CoV in a range of in vitro systems. We found that this molecule, which has been approved by the US Food and Drug Administration, inhibits cell fusion mediated by the viral spike glycoprotein, as well as activity of the viral helicase. Prophylactic or therapeutic administration of clofazimine in a hamster model of SARS-CoV-2 pathogenesis led to reduced viral loads in the lung and viral shedding in faeces, and also alleviated the inflammation associated with viral infection. Combinations of clofazimine and remdesivir exhibited antiviral synergy in vitro and in vivo, and restricted viral shedding from the upper respiratory tract. Clofazimine, which is orally bioavailable and comparatively cheap to manufacture, is an attractive clinical candidate for the treatment of outpatients and-when combined with remdesivir-in therapy for hospitalized patients with COVID-19, particularly in contexts in which costs are an important factor or specialized medical facilities are limited. Our data provide evidence that clofazimine may have a role in the control of the current pandemic of COVID-19 and-possibly more importantly-in dealing with coronavirus diseases that may emerge in the future.


Asunto(s)
Antivirales/farmacología , Clofazimina/farmacología , Coronavirus/clasificación , Coronavirus/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Adenosina Monofosfato/uso terapéutico , Alanina/análogos & derivados , Alanina/farmacología , Alanina/uso terapéutico , Animales , Antiinflamatorios/farmacocinética , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antivirales/farmacocinética , Antivirales/uso terapéutico , Disponibilidad Biológica , Fusión Celular , Línea Celular , Clofazimina/farmacocinética , Clofazimina/uso terapéutico , Coronavirus/crecimiento & desarrollo , Coronavirus/patogenicidad , Cricetinae , ADN Helicasas/antagonistas & inhibidores , Sinergismo Farmacológico , Femenino , Humanos , Estadios del Ciclo de Vida/efectos de los fármacos , Masculino , Mesocricetus , Profilaxis Pre-Exposición , SARS-CoV-2/crecimiento & desarrollo , Especificidad de la Especie , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Transcripción Genética/efectos de los fármacos , Transcripción Genética/genética
5.
Nucleic Acids Res ; 52(9): 5016-5032, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38471819

RESUMEN

Viruses are master remodelers of the host cell environment in support of infection and virus production. For example, viruses typically regulate cell gene expression through modulating canonical cell promoter activity. Here, we show that Epstein Barr virus (EBV) replication causes 'de novo' transcription initiation at 29674 new transcription start sites throughout the cell genome. De novo transcription initiation is facilitated in part by the unique properties of the viral pre-initiation complex (vPIC) that binds a TATT[T/A]AA, TATA box-like sequence and activates transcription with minimal support by additional transcription factors. Other de novo promoters are driven by the viral transcription factors, Zta and Rta and are influenced by directional proximity to existing canonical cell promoters, a configuration that fosters transcription through existing promoters and transcriptional interference. These studies reveal a new way that viruses interact with the host transcriptome to inhibit host gene expression and they shed light on primal features driving eukaryotic promoter function.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Iniciación de la Transcripción Genética , Replicación Viral , Humanos , Herpesvirus Humano 4/fisiología , Interacciones Huésped-Patógeno , Regiones Promotoras Genéticas , TATA Box , Factores de Transcripción/metabolismo , Sitio de Iniciación de la Transcripción , Transcripción Genética , Proteínas Virales/metabolismo , Proteínas Virales/genética , Infecciones por Virus de Epstein-Barr/metabolismo , Infecciones por Virus de Epstein-Barr/virología
6.
J Neurosci ; 44(23)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38637154

RESUMEN

Cocaine use disorder is a significant public health issue without an effective pharmacological treatment. Successful treatments are hindered in part by an incomplete understanding of the molecular mechanisms that underlie long-lasting maladaptive plasticity and addiction-like behaviors. Here, we leverage a large RNA sequencing dataset to generate gene coexpression networks across six interconnected regions of the brain's reward circuitry from mice that underwent saline or cocaine self-administration. We identify phosphodiesterase 1b (Pde1b), a Ca2+/calmodulin-dependent enzyme that increases cAMP and cGMP hydrolysis, as a central hub gene within a nucleus accumbens (NAc) gene module that was bioinformatically associated with addiction-like behavior. Chronic cocaine exposure increases Pde1b expression in NAc D2 medium spiny neurons (MSNs) in male but not female mice. Viral-mediated Pde1b overexpression in NAc reduces cocaine self-administration in female rats but increases seeking in both sexes. In female mice, overexpressing Pde1b in D1 MSNs attenuates the locomotor response to cocaine, with the opposite effect in D2 MSNs. Overexpressing Pde1b in D1/D2 MSNs had no effect on the locomotor response to cocaine in male mice. At the electrophysiological level, Pde1b overexpression reduces sEPSC frequency in D1 MSNs and regulates the excitability of NAc MSNs. Lastly, Pde1b overexpression significantly reduced the number of differentially expressed genes (DEGs) in NAc following chronic cocaine, with discordant effects on gene transcription between sexes. Together, we identify novel gene modules across the brain's reward circuitry associated with addiction-like behavior and explore the role of Pde1b in regulating the molecular, cellular, and behavioral responses to cocaine.


Asunto(s)
Trastornos Relacionados con Cocaína , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1 , Redes Reguladoras de Genes , Ratones Endogámicos C57BL , Núcleo Accumbens , Caracteres Sexuales , Animales , Masculino , Femenino , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/metabolismo , Ratones , Trastornos Relacionados con Cocaína/genética , Trastornos Relacionados con Cocaína/metabolismo , Redes Reguladoras de Genes/efectos de los fármacos , Redes Reguladoras de Genes/genética , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Ratas , Cocaína/farmacología , Recompensa
7.
Genome Res ; 32(2): 357-366, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34933938

RESUMEN

Nuclear organization and chromatin interactions are important for genome function, yet determining chromatin connections at high resolution remains a major challenge. To address this, we developed Accessible Region Conformation Capture (ARC-C), which profiles interactions between regulatory elements genome-wide without a capture step. Applied to Caenorhabditis elegans, ARC-C identifies approximately 15,000 significant interactions between regulatory elements at 500-bp resolution. Of 105 TFs or chromatin regulators tested, we find that the binding sites of 60 are enriched for interacting with each other, making them candidates for mediating interactions. These include cohesin and condensin II. Applying ARC-C to a mutant of transcription factor BLMP-1 detected changes in interactions between its targets. ARC-C simultaneously profiles domain-level architecture, and we observe that C. elegans chromatin domains defined by either active or repressive modifications form topologically associating domains (TADs) that interact with A/B (active/inactive) compartment-like structure. Furthermore, we discover that inactive compartment interactions are dependent on H3K9 methylation. ARC-C is a powerful new tool to interrogate genome architecture and regulatory interactions at high resolution.


Asunto(s)
Caenorhabditis elegans , Cromatina , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Cromatina/genética , Cromatina/metabolismo , Cromosomas/genética , Genoma
8.
PLoS Pathog ; 19(2): e1011186, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36802409

RESUMEN

Epstein-Barr virus (EBV) has developed effective strategies to evade host innate immune responses. Here we reported on mitigation of type I interferon (IFN) production by EBV deubiquitinase (DUB) BPLF1 through cGAS-STING and RIG-I-MAVS pathways. The two naturally occurring forms of BPLF1 exerted potent suppressive effect on cGAS-STING-, RIG-I- and TBK1-induced IFN production. The observed suppression was reversed when DUB domain of BPLF1 was rendered catalytically inactive. The DUB activity of BPLF1 also facilitated EBV infection by counteracting cGAS-STING- and TBK1-mediated antiviral defense. BPLF1 associated with STING to act as an effective DUB targeting its K63-, K48- and K27-linked ubiquitin moieties. BPLF1 also catalyzed removal of K63- and K48-linked ubiquitin chains on TBK1 kinase. The DUB activity of BPLF1 was required for its suppression of TBK1-induced IRF3 dimerization. Importantly, in cells stably carrying EBV genome that encodes a catalytically inactive BPLF1, the virus failed to suppress type I IFN production upon activation of cGAS and STING. This study demonstrated IFN antagonism of BPLF1 mediated through DUB-dependent deubiquitination of STING and TBK1 leading to suppression of cGAS-STING and RIG-I-MAVS signaling.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Humanos , Proteína 58 DEAD Box , Enzimas Desubicuitinizantes , Infecciones por Virus de Epstein-Barr/metabolismo , Herpesvirus Humano 4/metabolismo , Inmunidad Innata , Nucleotidiltransferasas/metabolismo , Ubiquitina
9.
Nucleic Acids Res ; 51(7): e42, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36864749

RESUMEN

As a fundamental aspect of normal cell signaling and disease states, there is great interest in determining alternative splicing (AS) changes in physiologic, pathologic, and pharmacologic settings. High throughput RNA sequencing and specialized software to detect AS has greatly enhanced our ability to determine transcriptome-wide splicing changes. Despite the richness of this data, deriving meaning from sometimes thousands of AS events is a substantial bottleneck for most investigators. We present SpliceTools, a suite of data processing modules that arms investigators with the ability to quickly produce summary statistics, mechanistic insights, and functional significance of AS changes through command line or through an online user interface. Utilizing RNA-seq datasets for 186 RNA binding protein knockdowns, nonsense mediated RNA decay inhibition, and pharmacologic splicing inhibition, we illustrate the utility of SpliceTools to distinguish splicing disruption from regulated transcript isoform changes, we show the broad transcriptome footprint of the pharmacologic splicing inhibitor, indisulam, we illustrate the utility in uncovering mechanistic underpinnings of splicing inhibition, we identify predicted neo-epitopes in pharmacologic splicing inhibition, and we show the impact of splicing alterations induced by indisulam on cell cycle progression. Together, SpliceTools puts rapid and easy downstream analysis at the fingertips of any investigator studying AS.


Asunto(s)
Empalme Alternativo , Empalme del ARN , Empalme Alternativo/genética , Sulfonamidas , Transcriptoma/genética , Análisis de Secuencia de ARN/métodos
10.
Proc Natl Acad Sci U S A ; 119(49): e2206737119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36442107

RESUMEN

Orphan nuclear receptor Nurr1 plays important roles in the progression of various diseases, including Parkinson's disease, neuroinflammation, Alzheimer's disease, and multiple sclerosis. It can recognize DNA as a monomer or heterodimer with retinoid X receptor α (RXRα). But the molecular mechanism of its transcriptional activity regulation is still largely unknown. Here we obtained a crystal structure of monomer Nurr1 (DNA- and ligand-binding domains, DBD and LBD) bound to NGFI-B response element. The structure exhibited two different forms with distinct DBD orientations, unveiling the conformational flexibility of nuclear receptor monomer. We then generated an integrative model of Nurr1-RXRα heterodimer. In the context of heterodimer, the structural flexibility of Nurr1 would contribute to its transcriptional activity modulation. We demonstrated that the DNA sequence may specifically modulate the transcriptional activity of Nurr1 in the absence of RXRα agonist, but the modulation can be superseded when the agonist binds to RXRα. Together, we propose a set of signaling pathways for the constitutive transcriptional activation of Nurr1 and provide molecular mechanisms for therapeutic discovery targeting Nurr1 and Nurr1-RXRα heterodimer.


Asunto(s)
Elementos de Respuesta , Receptor alfa X Retinoide , Activación Transcripcional , Receptor alfa X Retinoide/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Dominios Proteicos
11.
BMC Genomics ; 25(1): 74, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38233778

RESUMEN

BACKGROUND: Plant growth-regulating factors (GRFs) and GRF-interacting factors (GIFs) interact with each other and collectively have important regulatory roles in plant growth, development, and stress responses. Therefore, it is of great significance to explore the systematic evolution of GRF and GIF gene families. However, our knowledge and understanding of the role of GRF and GIF genes during plant evolution has been fragmentary. RESULTS: In this study, a large number of genomic and transcriptomic datasets of algae, mosses, ferns, gymnosperms and angiosperms were used to systematically analyze the evolution of GRF and GIF genes during the evolution of plants. The results showed that GRF gene first appeared in the charophyte Klebsormidium nitens, whereas the GIF genes originated relatively early, and these two gene families were mainly expanded by segmental duplication events after plant terrestrialization. During the process of evolution, the protein sequences and functions of GRF and GIF family genes are relatively conservative. As cooperative partner, GRF and GIF genes contain the similar types of cis-acting elements in their promoter regions, which enables them to have similar transcriptional response patterns, and both show higher levels of expression in reproductive organs and tissues and organs with strong capacity for cell division. Based on protein-protein interaction analysis and verification, we found that the GRF-GIF protein partnership began to be established in pteridophytes and is highly conserved across different terrestrial plants. CONCLUSIONS: These results provide a foundation for further exploration of the molecular evolution and biological functions of GRF and GIF genes.


Asunto(s)
Desarrollo de la Planta , Plantas , Evolución Molecular , Filogenia , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética
12.
Plant Mol Biol ; 114(3): 42, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630198

RESUMEN

Continuous cropping of faba bean (Vicia faba L.) has led to a high incidence of wilt disease. The implementation of an intercropping system involving wheat and faba bean can effectively control the propagation of faba bean wilt disease. To investigate the mechanisms of wheat in mitigating faba bean wilt disease in a wheat-faba bean intercropping system. A comprehensive investigation was conducted to assess the temporal variations in Fusarium oxysporum f. sp. fabae (FOF) on the chemotaxis of benzoxazinoids (BXs) and wheat root through indoor culture tests. The effects of BXs on FOF mycelial growth, spore germination, spore production, and electrical conductivity were examined. The influence of BXs on the ultrastructure of FOF was investigated through transmission electron microscopy. Eukaryotic mRNA sequencing was utilized to analyze the differentially expressed genes in FOF upon treatment with BXs. FOF exhibited a significant positive chemotactic effect on BXs in wheat roots and root secretions. BXs possessed the potential to exert significant allelopathic effects on the mycelial growth, spore germination, and sporulation of FOF. In addition, BXs demonstrated a remarkable ability to disrupt the structural integrity and stability of the membrane and cell wall of the FOF mycelia. BXs possessed the capability of posing threats to the integrity and stability of the cell membrane and cell wall. This ultimately resulted in physiological dysfunction, effectively inhibiting the regular growth and developmental processes of the FOF.


Asunto(s)
Benzoxazinas , Fusarium , Vicia faba , Pared Celular , Triticum , Crecimiento y Desarrollo
13.
BMC Plant Biol ; 24(1): 650, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38977959

RESUMEN

Modern intensive cropping systems often contribute to the accumulation of phenolic acids in the soil, which promotes the development of soilborne diseases. This can be suppressed by intercropping. This study analyzed the effects of intercropping on Fusarium wilt based on its effect on photosynthesis under stress by the combination of Fusarium commune and cinnamic acid. The control was not inoculated with F. commune, while the faba bean plants (Vicia faba L.) were inoculated with this pathogen in the other treatments. The infected plants were also treated with cinnamic acid. This study examined the development of Fusarium wilt together with its effects on the leaves, absorption of nutrients, chlorophyll fluorescence parameters, contents of photosynthetic pigments, activities of photosynthetic enzymes, gas exchange parameters, and the photosynthetic assimilates of faba bean from monocropping and intercropping systems. Under monocropping conditions, the leaves of the plants inoculated with F. commune grew significantly less, and there was enhanced occurrence of the Fusarium wilt compared with the control. Compared with the plants solely inoculated with F. commune, the exogenous addition of cinnamic acid to the infected plants significantly further reduced the growth of faba bean leaves and increased the occurrence of Fusarium wilt. A comparison of the combination of F. commune and cinnamic acid in intercropped wheat and faba bean compared with monocropping showed that intercropping improved the absorption of nutrients, increased photosynthetic pigments and its contents, electron transport, photosynthetic enzymes, and photosynthetic assimilates. The combination of these factors reduced the occurrence of Fusarium wilt in faba bean and increased the growth of its leaves. These results showed that intercropping improved the photosynthesis, which promoted the growth of faba bean, thus, reducing the development of Fusarium wilt following the stress of infection by F. commune and cinnamic acid. This research should provide more information to enhance sustainable agriculture.


Asunto(s)
Cinamatos , Fusarium , Fotosíntesis , Enfermedades de las Plantas , Vicia faba , Fusarium/fisiología , Vicia faba/microbiología , Vicia faba/fisiología , Cinamatos/metabolismo , Cinamatos/farmacología , Enfermedades de las Plantas/microbiología , Estrés Fisiológico , Hojas de la Planta/microbiología , Producción de Cultivos/métodos , Clorofila/metabolismo , Productos Agrícolas/microbiología
14.
Small ; 20(17): e2307283, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38109154

RESUMEN

Platinum (Pt)-based alloys have received considerable attention due to their compositional variability and unique electrochemical properties. However, homogeneous element distribution at the nanoscale, which is beneficial to various electrocatalytic reactions, is still a great challenge. Herein, a universal approach is proposed to synthesize homogeneously alloyed and size-tunable Pt-based nanoflowers utilizing high gravity technology. Owing to the significant intensification of micro-mixing and mass transfer in unique high gravity shearing surroundings, five typical binary/ternary Pt-based nanoflowers are instantaneously achieved at room temperature. As a proof-of-concept, as-synthesized Platinum-Silver nanoflowers (PtAg NFs) demonstrate excellent catalytic performance and anti-CO poisoning ability for anodic methanol oxidation reaction with high mass activity of 1830 mA mgPt -1, 3.5 and 3.2 times higher than those of conventional beaker products and commercial Pt/C, respectively. The experiment in combination with theory calculations suggest that the enhanced performance is due to additional electronic transmission and optimized d-band center of Pt caused by high alloying degree.

15.
Biol Reprod ; 111(1): 135-147, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38401166

RESUMEN

OBJECTIVE: This study aimed to explore the specific pathways by which HOX transcript antisense intergenic RNA contributes to the pathogenesis of unexplained recurrent spontaneous abortion. METHODS: Real-time quantitative PCR was employed to assess the differential expression levels of HOX transcript antisense intergenic RNA in chorionic villi tissues from unexplained recurrent spontaneous abortion patients and women with voluntarily terminated pregnancies. HTR-8/SVneo served as a cellular model. Knockdown and overexpression of HOX transcript antisense intergenic RNA in the cells were achieved through siRNA transfection and pcDNA3.1 transfection, respectively. Cell viability, migration, and invasion were evaluated using cell counting kit-8, scratch, and Transwell assays, respectively. The interaction among the HOX transcript antisense intergenic RNA /miR-1277-5p/fibrillin 2 axis was predicted through bioinformatics analysis and confirmed through in vitro experiments. Furthermore, the regulatory effects of the HOX transcript antisense intergenic RNA /miR-1277-5p/fibrillin 2 signaling axis on cellular behaviors were validated in HTR-8/SVneo cells. RESULTS: We found that HOX transcript antisense intergenic RNA was downregulated in chorionic villi tissues from unexplained recurrent spontaneous abortion patients. Overexpression of HOX transcript antisense intergenic RNA significantly enhanced the viability, migration, and invasion of HTR-8/SVneo cells, while knockdown of HOX transcript antisense intergenic RNA had the opposite effects. We further confirmed the regulatory effect of the HOX transcript antisense intergenic RNA /miR-1277-5p/fibrillin 2 signaling axis in unexplained recurrent spontaneous abortion. Specifically, HOX transcript antisense intergenic RNA and fibrillin 2 were found to reduce the risk of unexplained recurrent spontaneous abortion by enhancing cell viability, migration, and invasion, whereas miR-1277-5p exerted the opposite effects. CONCLUSION: HOX transcript antisense intergenic RNA promotes unexplained recurrent spontaneous abortion development by targeting inhibition of miR-1277-5p/fibrillin 2 axis.


Asunto(s)
Aborto Habitual , Movimiento Celular , MicroARNs , ARN Largo no Codificante , Transducción de Señal , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Femenino , Aborto Habitual/genética , Aborto Habitual/metabolismo , Aborto Habitual/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Embarazo , Fibrilina-2/genética , Fibrilina-2/metabolismo , Adulto , Proliferación Celular , Línea Celular , Trofoblastos/metabolismo , Trofoblastos/fisiología , Vellosidades Coriónicas/metabolismo
16.
RNA ; 28(4): 449-477, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35031583

RESUMEN

Sensing of pathogen-associated molecular patterns including viral RNA by innate immunity represents the first line of defense against viral infection. In addition to RIG-I-like receptors and NOD-like receptors, several other RNA sensors are known to mediate innate antiviral response in the cytoplasm. Double-stranded RNA-binding protein PACT interacts with prototypic RNA sensor RIG-I to facilitate its recognition of viral RNA and induction of host interferon response, but variations of this theme are seen when the functions of RNA sensors are modulated by other RNA-binding proteins to impinge on antiviral defense, proinflammatory cytokine production and cell death programs. Their discrete and coordinated actions are crucial to protect the host from infection. In this review, we will focus on cytoplasmic RNA sensors with an emphasis on their interplay with RNA-binding partners. Classical sensors such as RIG-I will be briefly reviewed. More attention will be brought to new insights on how RNA-binding partners of RNA sensors modulate innate RNA sensing and how viruses perturb the functions of RNA-binding partners.


Asunto(s)
Factores de Restricción Antivirales , Inmunidad Innata , Interferones , Proteínas de Unión al ARN , Factores de Restricción Antivirales/inmunología , Citoplasma , Proteína 58 DEAD Box/metabolismo , Interferones/metabolismo , ARN Viral/genética , Proteínas de Unión al ARN/metabolismo
17.
Opt Express ; 32(12): 21724-21738, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38859520

RESUMEN

Recently a new family of partially coherent fields incorporating generalized inseparable cross-coupled phases named generalized higher-order twisted partially coherent beams (GHTPCBs) have been introduced. The twist factor u is a key parameter that not only quantifies the strength of the generalized cross-coupled phase for a given order, but also determines the amount of the concomitant orbital angular momentum (OAM). In this paper, we propose a simple and reliable method to measure the factor u using a two-pinhole mask. Without need of complicated optical system, it only requires to capture the far-field diffraction intensity distribution of the GHTPCB passing through the mask. By analyzing the Fourier spectrum of the intensity distribution, the value of twist factor can be derived nearly in real time. The influence of the separation distance between two pinholes and the pinholes' diameter and position on the measurement accuracy are thoroughly studied both in theory and experiment. The experimental results agree well with the theoretical results. Our methodology can also be extended to measure the sole factor of similar position dependent phases such as the topological charge of a vortex phase.

18.
Chemistry ; 30(30): e202400121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38538538

RESUMEN

It is vital to develop highly efficient non-doped blue organic light-emitting diodes (OLEDs) with high color purity and low-efficiency roll-off for applications in display and lighting. Herein, two blue D-A fluorophores TPA-PO and TPA-DPO are designed and synthesized, in which phenanthro[9,10-d]oxazole (PO) acts as the acceptor and triphenylamine as the donor. TPA-PO and TPA-DPO display good thermal stability and efficient luminescence efficiency in neat film. Results based on photophysical property and theoretical calculation demonstrate that TPA-PO and TPA-DPO possess the hybridized local and charge-transfer (HLCT) feature, which can utilize the triplet exciton to achieve highly efficient electroluminance (EL). The non-doped OLEDs with TPA-PO/TPA-DPO as pure emissive layer show the uniform EL emission peak at 468 nm, corresponding to CIE coordinates of (0.168, 0.187) and (0.167, 0.167), respectively. The TPA-DPO-based non-doped OLEDs provide the maximum external quantum efficiency (EQE) of 7.99 % and high exciton utility efficiency of 48.4 %~72.6 %. Moreover, the TPA-DPO-based device exhibits low-efficiency roll-off, still maintaining the EQE of 6.03 % at the high luminance of 5000 cd m-2. Those findings state clearly that PO is a promising building block of blue fluorophore with a potential HLCT feature to be applied in non-doped OLEDs.

19.
Theor Appl Genet ; 137(7): 148, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836887

RESUMEN

KEY MESSAGE: Three stable QTL for grain zinc concentration were identified in wheat landrace Chinese Spring. Favorable alleles were more frequent in landraces than in modern wheat cultivars. Wheat is a major source of dietary energy for the growing world population. Developing cultivars with enriched zinc and iron can potentially alleviate human micronutrient deficiency. In this study, a recombinant inbred line (RIL) population with 245 lines derived from cross Zhou 8425B/Chinese Spring was used to detect quantitative trait loci (QTL) for grain zinc concentration (GZnC) and grain iron concentration (GFeC) across four environments. Three stable QTL for GZnC with all favorable alleles from Chinese Spring were identified on chromosomes 3BL, 5AL, and 5BL. These QTL explaining maxima of 8.7%, 5.8%, and 7.1% of phenotypic variances were validated in 125 resequenced wheat accessions encompassing both landraces and modern cultivars using six kompetitive allele specific PCR (KASP) assays. The frequencies of favorable alleles for QGZnCzc.caas-3BL, QGZnCzc.caas-5AL and QGZnCzc.caas-5BL were higher in landraces (90.4%, 68.0%, and 100.0%, respectively) compared to modern cultivars (45.9%, 35.4%, and 40.9%), suggesting they were not selected in breeding programs. Candidate gene association studies on GZnC in the cultivar panel further delimited the QTL into 8.5 Mb, 4.1 Mb, and 47.8 Mb regions containing 46, 4, and 199 candidate genes, respectively. The 5BL QTL located in a region where recombination was suppressed. Two stable and three less stable QTL for GFeC with favorable alleles also from Chinese Spring were identified on chromosomes 4BS (Rht-B1a), 4DS (Rht-D1a), 1DS, 3AS, and 6DS. This study sheds light on the genetic basis of GZnC and GFeC in Chinese Spring and provides useful molecular markers for wheat biofortification.


Asunto(s)
Alelos , Mapeo Cromosómico , Hierro , Fenotipo , Sitios de Carácter Cuantitativo , Triticum , Zinc , Triticum/genética , Zinc/metabolismo , Hierro/metabolismo , Grano Comestible/genética , Cromosomas de las Plantas/genética , Semillas/genética , Semillas/química , Genotipo
20.
Gynecol Oncol ; 181: 125-132, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38159362

RESUMEN

OBJECTIVE: To determine the maximum tolerated dose (MTD) of paclitaxel combined with a fixed dose of cisplatin (75 mg/m2) delivered via hyperthermic intraperitoneal chemotherapy (HIPEC) to patients with ovarian cancer. METHODS: This multicenter Phase I trial employed a Bayesian Optimal Interval (BOIN) design. The MTD was determined to have a target dose-limiting toxicity (DLT) rate of 25%. The starting dose was 175 mg/m2. The Data and Safety Monitoring Board made decisions regarding dose escalation or de-escalation in increments of 25 mg/m2 for subsequent patient cohorts, up to a maximum sample size of 30 or 12 patients treated at a given dose. RESULTS: Twenty-one patients participated in this study. Among the three evaluable patients who received 150 mg/m2 paclitaxel, no DLTs were observed. Among the 12 evaluable patients who received 175 mg/m2 paclitaxel, two reported DLTs: one had grade 4 neutropenia and one had grade 4 anemia, neutropenia, and leukopenia. Four of the six evaluable patients who received 200 mg/m2 paclitaxel reported DLTs: one patient had grade 4 diarrhea, one had grade 3 kidney injury, and two had grade 4 anemia. The isotonic estimate of the DLT rate in the 175 mg/m2 dose group was 0.17 (95% confidence interval, 0.02-0.42), and this dose was selected as the MTD. CONCLUSION: Paclitaxel, when combined with a fixed dose of cisplatin (75 mg/m2), can be safely administered intraperitoneally at a dose of 175 mg/m2 in patients with ovarian cancer who received HIPEC (43 °C, 90 min) following cytoreductive surgery.


Asunto(s)
Anemia , Neutropenia , Neoplasias Ováricas , Humanos , Femenino , Cisplatino , Paclitaxel , Quimioterapia Intraperitoneal Hipertérmica , Dosis Máxima Tolerada , Teorema de Bayes , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Ováricas/terapia , Neutropenia/inducido químicamente , Anemia/etiología , Relación Dosis-Respuesta a Droga
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA