Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Dairy Sci ; 105(4): 3064-3077, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35151485

RESUMEN

The objective of these studies was to determine the effects of feeding a novel rumen-protected Lys (RP-Lys) product on plasma AA, lactational performance, and Lys bioavailability. To evaluate RP-Lys on lactation performance a corn-based diet (42.5% of corn silage and 21.9% of corn and corn by-products, on DM basis) was formulated to be Lys deficient but adequate in Met, energy, and metabolizable protein. Thirty-six lactating Holstein cows were fed either a Lys-deficient control diet (CON) with no added RP-Lys, or diets containing 0.3% of RP-Lys (0.3RP-Lys) or 0.6% of RP-Lys (0.6RP-Lys) for 8 wk. There were no effects on dry matter intake (mean ± SD; 26.1 ± 0.58 kg/d), milk yield (37.9 ± 0.72 kg/d), or milk composition to the RP-Lys supplementation. No effect was observed on plasma AA concentrations except for His. Plasma His was linearly reduced by Lys feeding (42.6, 41.2, 30.0 ± 4.09 µM, for CON, 0.3RP-Lys, and 0.6RP-Lys, respectively). Calculated efficiency of Lys utilization decreased linearly with RP-Lys supplementation. In the companion study, 3 rumen-cannulated lactating dairy cows were used in a 3 × 3 Latin square design to assess the bioavailability of the RP-Lys. Free Lys (HCl-Lys), RP-Lys, and water were administered separately by postruminal bolus dosing. The Lys bioavailability was assessed by the ratio of area under the curve of Lys plasma concentration for RP-Lys compared with HCl-Lys and discounted for the area under the curve for water bolus dose. The estimated bioavailability of the RP-Lys was 24.4% ± 4.61. In summary, increased supplemental doses of Lys had no effect on Lys plasma concentration and lactational performance when fed to dairy cows on a corn-based diet, although altered Lys as % of essential AA was observed. However, the lack of effects should be considered in light of the lower-than-expected bioavailability of the RP-Lys.


Asunto(s)
Lisina , Rumen , Aminoácidos/metabolismo , Animales , Bovinos , Dieta/veterinaria , Femenino , Lactancia , Leche/química , Proteínas de la Leche/análisis , Rumen/metabolismo , Ensilaje , Zea mays/metabolismo
2.
J Dairy Sci ; 104(6): 7252-7261, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33741163

RESUMEN

Cytosolic phosphoenolpyruvate carboxykinase (PCK1) is a key enzyme for gluconeogenesis that is positively regulated by propionate in bovines at the transcription level. The specific elements that determine propionate responsiveness within the bovine PCK1 promoter are unknown. In silico promoter analysis of the bovine PCK1 gene revealed several clusters of transcription factor binding sites. In the present study, we determined the essentiality of the putative cyclic AMP response element (CRE) at -94 through -87 bp and the 2 putative hepatic nuclear factor 4α (HNF4α) binding elements at +68 through +72 and -1,078 through -1,074, respectively, in mediating bovine PCK1 promoter responses to propionate and other regulators, including butyrate, cyclic AMP (cAMP), and glucocorticoids. The wild-type bovine PCK1 promoter [PCK1(WT)] was ligated to a luciferase reporter gene and transfected into rat hepatoma (H4IIE) cells. Activities of PCK1(WT) were induced by approximately 2-, 2-, 4-, 8-, 9-, 18-, and 16-fold respectively when exposed to cAMP (as 1.0 mM 8-Br-cAMP), 5.0 µM dexamethasone, cAMP + dexamethasone, 2.5 mM propionate, cAMP + propionate, cAMP + dexamethasone + propionate, and 2.5 mM butyrate. Seven mutants lacking either one single site, 2 of the 3 sites, or all 3 sites, generated by site-directed mutagenesis, were tested. Responses to propionate and all other treatments were completely abolished when CRE at -94 through -87 bp and HNF4α at +68 through +72 bp were both deleted. Our data indicate that these 2 regulatory elements act synergistically to mediate the bovine PCK1 promoter responses to propionate as well as butyrate, cAMP, and dexamethasone. The activation of PCK1 through these regulatory elements serves to activate the metabolic potential of bovine toward gluconeogenesis when the primary substrate for gluconeogenesis, propionate, is also present.


Asunto(s)
Fosfoenolpiruvato Carboxiquinasa (GTP) , Propionatos , Animales , Secuencia de Bases , Bovinos , Fosfoenolpiruvato , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Ratas , Elementos de Respuesta , Transcripción Genética
3.
J Dairy Sci ; 104(2): 2308-2317, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33309342

RESUMEN

An increase in bovine pyruvate carboxylase (PC; EC 6.4.1.1) at calving and during feed restriction corresponds with increased circulating nonesterified fatty acids as a consequence of negative energy balance. Regulation of PC mRNA and effect of specific combinations of saturated and unsaturated fatty acid profiles has yet to be explored. Our objective was to determine the effects of chain length, degree of saturation, and copresence of saturated and unsaturated fatty acids on activity of bovine PC promoter 1 (PCP1). For these experiments, Madin-Darby bovine kidney cells were transfected with a full-length bovine PCP1 construct from -1002 to +3 bp relative to the bovine PC gene transcription start site (bovine PCP1(-1002_+3)) ligated to a Firefly luciferase reporter, or with one of a series of nested 5' serial truncations (bovine PCP1(-773_+3), bovine PCP1(-494_+3), or bovine PCP1(-222_+3)). Cells were exposed for 23 h to either individual fatty acids (C16:0, C18:0, or C18:3n-3 cis) bound to BSA or to fatty acid mixtures in ratios of 90:10, 75:25, 50:50, or 25:75, corresponding to combinations of C16:0: C18:3n-3 cis or C18:0: C18:3n-3 cis. Total fatty acid concentration was 1.00 mM. Exposure to either C16:0 or C18:3n-3 cis alone elicited a significant increase in capacity to drive bovine PCP1(-1002_+3) activity compared with 1% BSA in Dulbecco's Modified Eagle's Medium control treatment (2.29, 2.89, and 1.00 ± 0.26 fold of promoter induction for C16:0, C18:3n-3 cis, and control, respectively). Treatment with C18:3n-3 cis alone caused a greater increase in promoter activity compared with C16:0 alone, indicating a lesser response to C16:0 alone for bovine PCP1(-1002_+3). Interestingly, inclusion of C18:3n-3 cis, at any level of fatty acid ratios examined, in combination with C16:0 increased promoter activity of bovine PCP1(-773_+3) or bovine PCP1(-222_+3) compared with treatment with C16:0 alone or control. Data from the bovine PCP1 truncation and fatty acid copresence experiments reveal the potential for response elements of unsaturated fatty acids or fatty acid ligands in several bovine PCP1 promoter regions. In silico analysis of bovine PCP1 identified putative peroxisome proliferator-activated receptor α and sterol regulatory element binding protein binding sites which may be implicated in fatty acid signaling to alter bovine PCP1 activity. Pyruvate carboxylase promoter 1 activity that is mediated by unsaturated fatty acids acting through elements within -1002 and -222 bp of bovine PCPI may determine PC response during periods of negative energy balance in dairy cows.


Asunto(s)
Ácidos Grasos Insaturados/fisiología , Ácidos Grasos/fisiología , Regulación de la Expresión Génica , Regiones Promotoras Genéticas , Piruvato Carboxilasa/genética , Animales , Bovinos , Línea Celular , Células Epiteliales/metabolismo , Ácidos Grasos/química , Ácidos Grasos Insaturados/química , Riñón , PPAR alfa/genética , Regiones Promotoras Genéticas/efectos de los fármacos , Piruvato Carboxilasa/metabolismo , Relación Estructura-Actividad
4.
J Dairy Sci ; 104(4): 4251-4259, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33485684

RESUMEN

Metabolizable protein supply is a limiting factor for milk production in dairy cows, and the availability of AA is a function of the quantity of the metabolizable protein available and of hepatic AA catabolism. This study aimed to evaluate the effect of postruminal protein infusion on key genes for ureagenesis and AA catabolism. Six multiparous Holstein cows in early lactation were used in a replicated crossover design. Cows were fed a TMR and infused postruminally with either 0 or 600 g/d of milk protein isolate. Periods were 21 d long, consisting of 14 d of adjustment to surroundings, followed by 7 d of protein infusion. On the last day of each infusion, liver samples were collected for mRNA analysis and explant culture, milk samples were collected for mRNA analysis, and blood samples were collected for plasma metabolite analysis. Postruminal infusion of protein increased milk yield by 10.5%, milk fat yield by 12.5%, milk protein yield by 20%, milk lactose yield by 11%, and total solids yield by 15.5%. Postruminal infusion of protein increased milk urea N by 23.5%, blood urea N by 18.6%, and the abundance of hepatic ornithine transcarbamoylase mRNA by 52.8%. Postruminal infusion of protein did not alter the mRNA abundance of hepatic argininosuccinate synthase, α-aminoadipate semialdehyde synthase, cysteine sulfinic acid decarboxylase, or cystathionase. The abundance of RNA for milk proteins was unchanged with postruminal protein infusion. Metabolism of l-[U 14C] Lys to CO2 was increased by 127% (0.143 vs. 0.063 ± 0.04 nmol product·mg tissue-1·h-1), and the metabolism of l-[U 14C] Ala to CO2 increased by 40.5% (0.52 vs. 0.37 ± 0.06 nmol product·mg tissue-1·h-1) with postruminal protein infusion. The rate of l-[1-14C] Met oxidation did not differ. These data indicate increased ureagenesis matched by upregulation of nonessential AA catabolism and a disproportional increase in Lys oxidation in response to increased postruminal protein infusion.


Asunto(s)
Lactancia , Lisina , Animales , Bovinos , Dieta , Femenino , Hígado , Proteínas de la Leche , Ornitina , Rumen
5.
Physiol Genomics ; 52(9): 435-450, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32744883

RESUMEN

A more complete understanding of the molecular mechanisms that support milk synthesis is needed to develop strategies to efficiently and sustainably meet the growing global demand for dairy products. With the postulate that coding gene transcript abundance reflects relative importance in supporting milk synthesis, we analyzed the global transcriptome of early lactation cows across magnitudes of normalized RNA-Seq read counts. Total RNA was isolated from milk samples collected from early-lactation cows (n = 6) following two treatment periods of postruminal lysine infusion of 0 or 63 g/day. Twelve libraries were prepared and sequenced on an Illumina NovaSeq6000 platform using paired end reads. Normalized read counts were averaged across both treatments, because EBseq analysis found no significant effect of lysine infusion. Approximately 10% of the total reads corresponded to 12,730 protein coding transcripts with a normalized read count mean ≥5. For functional annotation analysis, the protein coding transcripts were divided into nine categories by magnitude of reads. The 13 most abundant transcripts (≥50K reads) accounted for 67% of the 23M coding reads and included casein and whey proteins, regulators of fat synthesis and secretion, a ubiquitinating protein, and a tRNA transporter. Mammalian target of rapamycin, JAK/STAT, peroxisome proliferator-activated receptor alpha, and ubiquitin proteasome pathways were enriched with normalized reads ≥100 counts. Genes with ≤100 reads regulated tissue homeostasis and immune response. Enrichment in ontologies that reflect maintenance of translation, protein turnover, and amino acid recycling indicated that proteostatic mechanisms are central to supporting mammary function and primary milk component synthesis.


Asunto(s)
Lactancia/metabolismo , Glándulas Mamarias Animales/metabolismo , Proteínas de la Leche/metabolismo , Leche/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Bovinos , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Lactancia/genética , Biosíntesis de Proteínas , Serina-Treonina Quinasas TOR/genética , Transcriptoma
6.
J Dairy Sci ; 103(10): 8841-8852, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32828504

RESUMEN

Metabolic fates of fatty acids in tissue may be influenced by extracellular concentration and profile of fatty acids. Previous work has demonstrated the ability of C18:3n-3 cis to ameliorate the effects of C16:0- or C18:0-induced depression of pyruvate carboxylase (PC) mRNA expression. Pyruvate carboxylase catalyzes oxaloacetate synthesis and connects gluconeogenesis from lactate and fatty acid metabolism. Our objective was to determine the effects of co-presence of saturated and unsaturated fatty acids on cellular partitioning of [1-14C]C16:0 metabolism to CO2 or acid-soluble products (ASP) in Madin-Darby bovine kidney cells and the role of PC in this relationship. We hypothesized that the ratio of saturated to unsaturated fatty acid pretreatments regulates [1-14C]C16:0 partitioning to CO2 or ASP. Cells were exposed for 21 h to either individual fatty acids, C16:0, C18:0, C18:1n-9 cis, or C18:3n-3 cis, or to fatty acid combinations in 10:90, 25:75, 50:50, 75:25, or 90:10 ratios for 3 combinations: C16:0/C18:3n-3 cis, C18:0/C18:3n-3 cis, or C18:1n-9 cis/C18:3n-3 cis. Total fatty acid concentration was 1.0 mM during the 21-h pretreatment phase. Following the 21-h incubation phase with fatty acid combinations, cells were incubated in the presence of 1.0 mM [1-14C]C16:0 for 3 h to determine the rate of metabolism to CO2 and ASP collection (per µg DNA-1·h-1). Pretreatment with either C16:0 or C18:0 alone significantly depressed subsequent oxidation of [1-14C]C16:0 to ASP by 62.7 and 41.2%, respectively, compared with C18:3n-3 cis pretreatment. Similar patterns were observed for [1-14C]C16:0 oxidation to CO2. Expression of PC mRNA was significantly decreased with exposure to either C16:0 or C18:0 compared with expression after exposure to either C18:3n-3 cis or control 1% BSA in Dulbecco's modified Eagle's medium. Expression of cytosolic phosphoenolpyruvate carboxykinase (PCK1) mRNA followed a similar pattern. Fatty acid treatments containing C18:1n-9 cis did not alter PC or PCK1 expression from control or C18:3n-3 cis results. Pearson coefficient correlations were determined for PC mRNA expression and rate of [1-14C]C16:0 metabolism to CO2 or ASP, including ketones, and for PCK1 mRNA expression and rate of [1-14C]C16:0 metabolism to CO2 or ASP. Production of CO2 from [1-14C]C16:0 was positively correlated (r = 0.63) with PC expression, whereas ASP production from [1-14C]C16:0 only tended to positively correlate (r = 0.51) with PC mRNA expression. Production of CO2 or ASP from [1-14C]C16:0 were both positively correlated (r = 0.80 and r = 0.69, respectively) with PCK1 expression. Results show a regulation of ketone production by Madin-Darby bovine kidney cells in response to saturated and unsaturated fatty acid pretreatments.


Asunto(s)
Ácidos Grasos Insaturados/administración & dosificación , Ácidos Grasos/administración & dosificación , Ácidos Grasos/metabolismo , Riñón/metabolismo , Animales , Bovinos , Perros , Células Epiteliales/metabolismo , Ácidos Grasos Insaturados/metabolismo , Expresión Génica/efectos de los fármacos , Gluconeogénesis , Riñón/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Células de Riñón Canino Madin Darby , Oxidación-Reducción , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Piruvato Carboxilasa/genética , Piruvato Carboxilasa/metabolismo
7.
J Dairy Sci ; 103(8): 7547-7554, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32475657

RESUMEN

The objective for this study was to determine the effect of glucose dose and days following peak milk yield on plasma glucose, serum insulin, and plasma nonesterified fatty acids (NEFA) kinetics during an intravenous glucose tolerance test (IVGTT) in lactating dairy cattle. Six lactating Holstein dairy cows (3 primiparous and 3 multiparous) were assigned to 2 squares and received 0.092, 0.15, or 0.3 g of glucose/kg of body weight (BW) during an IVGTT at 74 and 221 d in milk (DIM), representing early (post-peak) lactation and mid lactation, respectively. Treatments were applied in a replicated Latin square design using contiguous 7-d periods within each stage of lactation. Milk production and dry matter intake were determined daily during the first 6 d of each period. The IVGTT was performed on d 7. For the IVGTT, cows were prepared with indwelling catheters in each jugular vein, and blood samples were collected at -15, -10, 5, 10, 15, 20, 30, 45, 60, 90, and 120 min relative to the glucose infusion. Samples were analyzed for plasma glucose, serum insulin, and plasma NEFA concentrations. Increasing the glucose dose during the IVGTT increased plasma glucose area under the curve (AUC), decreased glucose half-life, and increased maximal plasma glucose concentrations in plasma during the IVGTT. Greater glucose dose during the IVGTT elevated serum insulin AUC and increased nadir NEFA concentrations. Maximal plasma glucose concentration during the IVGTT was lower, whereas maximum NEFA concentration, NEFA AUC, and NEFA clearance rate were greater at 74 than at 221 DIM. Only glucose half-life was responsive to stage of lactation × glucose dose effects during the IVGTT, and the decrease in glucose half-life with increasing glucose dose was greater at 74 than at 221 DIM. Glucose AUC was greater and NEFA AUC lower for cows at 74 than at 221 DIM. For the doses tested, a glucose dose greater than 0.092 g/kg of BW resulted in peak blood glucose concentration that exceeded the previously reported renal glucose excretion threshold of 8.3 mM. There is a need for accompanying data to determine if this is the case for the glucose doses evaluated in this experiment. Based on maximal peak glucose concentrations and effects on glucose half-life, we identify 0.092 g of glucose/kg of BW (0.46 g/kg of metabolic body weight) as the preferred dose for the IVGTT for cows at 74 and 221 DIM in this study.


Asunto(s)
Prueba de Tolerancia a la Glucosa/veterinaria , Glucosa/farmacología , Lactancia , Animales , Glucemia/metabolismo , Peso Corporal , Bovinos , Dieta/veterinaria , Ácidos Grasos no Esterificados/sangre , Femenino , Insulina/sangre , Cinética , Leche/química
8.
J Dairy Sci ; 100(2): 1009-1018, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28012632

RESUMEN

Lysine supply is potentially limiting for milk production in dairy cows. The availability of Lys to the mammary gland and other tissues is a function of the quantity of metabolizable Lys supplied and Lys catabolism by the liver. Likewise, Lys catabolism may be influenced by Lys supply. This study evaluated the effect of increased postruminal Lys supply on the expression of aminoadipate semialdehyde synthase (AASS, a committing step in Lys catabolism in the liver) and ornithine transcarbamoylase and argininosuccinate synthase (key urea cycle enzymes that are responsive to protein supply). Eight multiparous peak Holstein cows were used in a replicated 4 × 4 Latin square. Cows were fed a Lys-limiting ration and infused postruminally with 0, 9, 27, or 63 g/d of Lys. The study consisted of 10 d of pretreatment followed by 10 d of Lys infusion. On the last day of each period, liver and milk samples were collected for mRNA analysis, and blood samples were collected for analysis of amino acids and Lys metabolites. Milk protein percent increased by 5.9%, plasma Lys increased by 74%, and α-aminoadipic acid increased by 51% with postruminal infusion of 63 g/d Lys compared with 0 g/d. Expression of AASS, ornithine transcarbamoylase, and argininosuccinate synthase mRNA in liver did not differ with postruminal infusion of Lys. Milk fat globule mRNA for major milk proteins and AASS were not affected by Lys infusion. Postruminal infusion of Lys resulted in an 86% greater increase in AASS mRNA in the liver compared with mammary mRNA. These changes suggest that hepatic Lys metabolism is not responsive to Lys supply at the transcription level, and that the availability of Lys to extrahepatic tissue may be determined by hepatic Lys metabolism.


Asunto(s)
Glucógeno Sintasa/metabolismo , Lisina/administración & dosificación , Animales , Bovinos , Dieta/veterinaria , Femenino , Lactancia , Leche/química , Proteínas de la Leche , Rumen/metabolismo
9.
J Dairy Sci ; 100(7): 5687-5700, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28456398

RESUMEN

The greatest risk of metabolic and infectious disease in dairy cows is during the transition from pregnancy to lactating (i.e., the transition period). The objective of this experiment was to determine the effects of extracellular vesicles (microvesicles involved in cell-to-cell signaling) isolated from transition cows on target cell function. We previously identified differences in the protein profiles of exosomes isolated from cows divergent in metabolic health status. Therefore, we hypothesized that these exosomes would affect target tissues differently. To investigate this, 2 groups of cows (n = 5/group) were selected based on the concentration of ß-hydroxybutyrate and fatty acids in plasma and triacylglycerol concentration in liver at wk 1 and 2 postcalving. Cows with high concentrations of ß-hydroxybutyrate, fatty acids, and triacylglycerol were considered at increased risk of clinical disease during the transition period (high-risk group; n = 5) and were compared with cows that had low concentrations of the selected health indicators (low-risk group; n = 5). At 2 time points during the transition period (postcalving at wk 1 and 4), blood was sampled and plasma exosomes were isolated from the high-risk and low-risk cows. The exosomes were applied at concentrations of 10 and 1 µg/mL to 5 × 103 Madin-Darby bovine kidney cells grown to 50% confluence in 96-well plates. Results indicate a numerical increase in cell proliferation when exosomes from high-risk cows were applied compared with those from low-risk cows. Consistent with an effect on cell proliferation, quantitative reverse transcriptase PCR indicated a trend for upregulation of 3 proinflammatory genes (granulocyte colony-stimulating factor, ciliary neurotrophic factor, and CD27 ligand) with the application of high-risk exosomes, which are involved in cellular growth and survival. Proteomic analysis indicated 2 proteins in the low-risk group that were not identified in the high-risk group (endoplasmin and catalase), which may also be indicative of the metabolic state of origin. It is likely that the metabolic state of the transition cow affects cellular function through exosomal messaging; however, more in-depth research into cross-talk between exosomes and target cells is required to determine whether exosomes influence Madin-Darby bovine kidney cells in this manner.


Asunto(s)
Ácido 3-Hidroxibutírico/sangre , Exosomas/fisiología , Ácidos Grasos no Esterificados/sangre , Hígado/química , Triglicéridos/análisis , Animales , Biomarcadores/análisis , Biomarcadores/sangre , Ligando CD27/metabolismo , Bovinos , Proliferación Celular , Factor Neurotrófico Ciliar/metabolismo , Femenino , Factor Estimulante de Colonias de Granulocitos/metabolismo , Lactancia , Leche , Especificidad de Órganos , Embarazo , Proteómica , Medición de Riesgo , Regulación hacia Arriba
10.
J Dairy Sci ; 99(1): 812-7, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26547649

RESUMEN

Nutritional status and glucose precursors are known regulators of gluconeogenic gene expression. Glycerol can replace corn in diets fed to dairy cows and use of glycerol is linked to increased rumen propionate production. The effect of dietary glycerol on the regulation of gluconeogenic enzymes is unknown. The objective of this study was to examine the effect of glycerol on expression of pyruvate carboxylase (PC), cytosolic and mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-C and PEPCK-M), and glucose-6-phosphatase. Twenty-six multiparous Holstein cows were fed either a control diet or a diet where high-moisture corn was replaced by glycerol from -28 through +56 d relative to calving (DRTC). Liver tissue was collected via percutaneous liver biopsy at -28, -14, +1, +14, +28, and +56 DRTC for RNA analysis. Expression of PC mRNA increased 6-fold at +1 and 4-fold at +14 DRTC relative to precalving levels. Dietary glycerol did not alter expression of PC mRNA expression. Expression of PEPCK-C increased 2.5-fold at +14 and 3-fold at +28 DRTC compared with +1 DRTC. Overall, dietary glycerol increased PEPCK-C expression compared with that of cows fed control diets. The ratio of PC to PEPCK-C was increased 6.3-fold at +1 DRTC compared with precalving and tended to be decreased in cows fed glycerol. We detected no effect of diet or DRTC on PEPCK-M or glucose-6-phosphatase mRNA, and there were no interactions of dietary treatment and DRTC for any transcript measured. Substituting corn with glycerol increased the expression of PEPCK-C mRNA during transition to lactation and suggests that dietary energy source alters hepatic expression. The observed increase in PEPCK-C expression with glycerol feeding may indicate regulation of hepatic gene expression by changes in rumen propionate production.


Asunto(s)
Glicerol/administración & dosificación , Hígado/enzimología , Alimentación Animal/análisis , Animales , Bovinos , Aceite de Semillas de Algodón , Dieta/veterinaria , Femenino , Regulación de la Expresión Génica , Gluconeogénesis , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo , Medicago sativa , Micronutrientes/administración & dosificación , Micronutrientes/análisis , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Piruvato Carboxilasa/genética , Piruvato Carboxilasa/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Rumen/metabolismo , Zea mays
11.
J Dairy Sci ; 99(7): 5820-5827, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27085418

RESUMEN

Hepatic gluconeogenesis is essential for maintenance of whole body glucose homeostasis and glucose supply for mammary lactose synthesis in the dairy cow. Upregulation of the gluconeogenic enzyme pyruvate carboxylase (PC) during the transition period is vital in the adaptation to the greater glucose demands associated with peripartum lactogenesis. The objective of this study was to determine if PC transcription in hepatocytes is regulated by DNA methylation and if treatment with a nonsteroidal anti-inflammatory drug (NSAID) alters methylation of an upstream DNA sequence defined as promoter 1. Dairy cows were left untreated (n=20), or treated with a NSAID during the first 5 d postcalving (n=20). Liver was biopsied at d 7 precalving and d 7, 14, and 28 postcalving. Total PC and transcript specific gene expression was quantified using quantitative PCR and DNA methylation of promoter 1 was quantified using bisulfite Sanger sequencing. Expression of PC changed over the transition period, with increased expression postcalving occurring concurrently with increased circulating concentration of nonesterified fatty acids. The DNA methylation percentage was variable at all sites quantified and ranged from 21 to 54% across the 15 CpG dinucleotides within promoter 1. The DNA methylation at wk 1 postcalving, however, was not correlated with gene expression of promoter 1-regulated transcripts and we did not detect an effect of NSAID treatment on DNA methylation or PC gene expression. Our results do not support a role for DNA methylation in regulating promoter 1-driven gene expression of PC at wk 1 postcalving. Further research is required to determine the mechanisms regulating increased PC expression over the transition period.


Asunto(s)
Lactancia , Piruvato Carboxilasa/metabolismo , Animales , Bovinos , Epigénesis Genética , Femenino , Expresión Génica , Regulación de la Expresión Génica , Hígado/metabolismo , Leche/metabolismo , Periodo Posparto/metabolismo
12.
J Dairy Sci ; 97(2): 838-50, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24342696

RESUMEN

Changes to milking frequency (MF) affect the metabolic and energetic status of dairy cows. However, the duration of altered MF necessary to modify hepatic transcription during early lactation is less clear. Additionally, long-term responses to short-term alterations in MF have not been established. Holstein-Friesian dairy cows (n = 120) were allocated to 3 or 6 wk of either once-daily (1 ×) or thrice-daily (3 ×) milking, immediately postpartum. Following treatment, cows were switched to twice-daily (2 ×) milking. These 4 treatment groups were compared with cows milked 2 × (n = 30) for the whole lactation. Liver tissue was collected by biopsy at 1, 3, 6, and 9 wk postpartum from 12 cows per treatment, RNA was extracted, and transcript abundance of genes involved in hepatic metabolism was quantified. Milking frequency altered the expression of most of the genes measured; however, we observed no effects caused by the length of time on the alternative milking frequency and no interactions between MF and length. During the MF treatment, mRNA expression of some, but not all, genes involved in gluconeogenesis (G6PC, PCK1), fatty acid ß-oxidation (CPT1A, CPT2), ketogenesis (HMGCS2), lipid transport (APOA1), and lipolysis (PNPLA2) were lower for cows milked 1 × and plasma glucose and insulin concentrations were greater. Cows milked 3 × had reduced mRNA expression for some of the genes involved in fatty acid synthesis (ACACA) and lipid transport (APOB) and had greater plasma NEFA concentrations at wk 1. At 9 wk postpartum, expression data indicated that cows previously milked 3 × had a greater capacity for gluconeogenesis (PCK1), ketogenesis (HMGCS2), and urea cycling (ASL, CPS1) and lower glucose concentrations than cows previously milked 1 ×, because some of the genes involved in these processes were still altered. Milking cows 1 × relative to 2 ×, however, did not result in significant carryover effects on the expression of the genes measured in this study, indicating that metabolic changes are not sustained beyond the period of reduced MF. Changes to MF altered the hepatic response during early lactation; however, this was not dependent on the duration of MF change. Although we observed only minimal carryover effects on hepatic metabolism from short periods of reduced MF postpartum, there may be long-term effects on urea cycling (ASL, CPS1) and ketogenesis (HMGCS2) when 3 × milking occurs immediately postpartum.


Asunto(s)
Bovinos/fisiología , Industria Lechera , Regulación de la Expresión Génica , Lactancia , Leche/metabolismo , Animales , Metabolismo Basal , Bovinos/genética , Femenino , Hígado/metabolismo , Distribución Aleatoria , Factores de Tiempo
13.
J Dairy Sci ; 96(12): 7830-43, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24140326

RESUMEN

This study investigated the effect of phytonutrients (PN) supplied postruminally on nutrient utilization, gut microbial ecology, immune response, and productivity of lactating dairy cows. Eight ruminally cannulated Holstein cows were used in a replicated 4×4 Latin square. Experimental periods lasted 23 d, including 14-d washout and 9-d treatment periods. Treatments were control (no PN) and daily doses of 2g/cow of either curcuma oleoresin (curcumin), garlic extract (garlic), or capsicum oleoresin (capsicum). Phytonutrients were pulse-dosed into the abomasum of the cows, through the rumen cannula, 2 h after feeding during the last 9 d of each experimental period. Dry matter intake was not affected by PN, although it tended to be lower for the garlic treatment compared with the control. Milk yield was decreased (2.2 kg/d) by capsicum treatment compared with the control. Feed efficiency, milk composition, milk fat and protein yields, milk N efficiency, and 4.0% fat-corrected milk yield were not affected by treatment. Rumen fermentation variables, apparent total-tract digestibility of nutrients, N excretion with feces and urine, and diversity of fecal bacteria were also not affected by treatment. Phytonutrients had no effect on blood chemistry, but the relative proportion of lymphocytes was increased by the capsicum treatment compared with the control. All PN increased the proportion of total CD4(+) cells and total CD4(+) cells that co-expressed the activation status signal and CD25 in blood. The percentage of peripheral blood mononuclear cells (PBMC) that proliferated in response to concanavalin A and viability of PBMC were not affected by treatment. Cytokine production by PBMC was not different between control and PN. Expression of mRNA in liver for key enzymes in gluconeogenesis, fatty acid oxidation, and response to reactive oxygen species were not affected by treatment. No difference was observed due to treatment in the oxygen radical absorbance capacity of blood plasma but, compared with the control, garlic treatment increased 8-isoprostane levels. Overall, the PN used in this study had subtle or no effects on blood cells and blood chemistry, nutrient digestibility, and fecal bacterial diversity, but appeared to have an immune-stimulatory effect by activating and inducing the expansion of CD4 cells in dairy cows. Capsicum treatment decreased milk yield, but this and other effects observed in this study should be interpreted with caution because of the short duration of treatment.


Asunto(s)
Alimentación Animal/análisis , Capsicum , Bovinos/inmunología , Curcumina , Suplementos Dietéticos , Ajo , Abomaso/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Bovinos/fisiología , Dieta/veterinaria , Heces/química , Femenino , Fermentación , Lactancia/fisiología , Leche/química , Rumen/fisiología
14.
J Dairy Sci ; 95(3): 1249-56, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22365208

RESUMEN

Expression of mRNA for pyruvate carboxylase (PC) is elevated at calving and during other physiological states when plasma NEFA concentrations are increased. The objective of this study was to determine the direct effects of fatty acids on expression of PC, cytosolic phosphoenolpyruvate carboxykinase (PEPCK-C), mitochondrial PEPCK (PEPCK-M), and glucose-6-phosphatase (G6Pase) mRNA in Madin-Darby bovine kidney (MDBK) cells. Combinations of C14:0, C16:0, C18:0, C18:1n-6 cis, C18:2n-6 cis, and C18:3n-3 cis were created to mimic the profiles and concentrations in serum from far-off dry cows and late postcalving intervals (PRPT), the profile at calving (CALV), and the profile observed in cows induced to express fatty liver at calving (IFL). The MDBK cells were exposed to fatty acid mixtures for 24h at the following concentrations: 0.25 and 0.5mM for PRPT; 0.25, 0.5, and 1.0mM for CALV; and 0.5 and 1.0mM for IFL. Cells exposed to PRPT had greater PEPCK-C and tended to have greater G6Pase mRNA than control cells. Exposure of cells to 0.25mM PRPT increased expression of PEPCK-C compared with cells exposed to 0.5mM PRPT. Expression of PC and PEPCK-M did not differ with exposure to PRPT. Expression of PEPCK-C was decreased and that of PEPCK-M and G6Pase mRNA increased linearly in response to CALV. The ratio of PC:PEPCK-C mRNA was increased by the IFL mixture and in response to increasing amounts of the CALV fatty acid mixture. Treatment of cells with CALV or IFL increased the sum of PC 5' untranslated region (UTR) variants A, B, C, and F but did not alter PC 5' UTR D and E expression. The changes in PEPCK-C, G6Pase, and PC mRNA and the ratio of PC:PEPCK-C observed in MDBK cells in response to fatty acids suggests a role for fatty acid concentration and profile in mediating the expression of key gluconeogenic enzymes.


Asunto(s)
Ácidos Grasos/farmacología , Glucosa-6-Fosfatasa/efectos de los fármacos , Riñón/enzimología , Fosfoenolpiruvato Carboxiquinasa (ATP)/efectos de los fármacos , Piruvato Carboxilasa/efectos de los fármacos , Animales , Bovinos , Células Cultivadas , Ácidos Grasos/administración & dosificación , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa-6-Fosfatasa/metabolismo , Riñón/efectos de los fármacos , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Piruvato Carboxilasa/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria
15.
J Dairy Sci ; 95(1): 455-9, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22192225

RESUMEN

Continuous selection of dairy cows for production traits may alter the regulation of metabolic pathways. High-producing North American (NA) cows produce more milk and have a larger degree of somatotropic axis uncoupling than less intensively selected New Zealand (NZ) cows. The objective of this study was to determine if production-based selection priorities (i.e., NA cows) have altered the regulation of the gluconeogenic pathway relative to selection priorities based on production traits (i.e., NZ cows). In this study conducted in New Zealand, NZ (n=27) and NA cows (n=27) were monitored from 1 wk before calving to 12 wk post-calving. Cows were pasture-fed and supplemented with 0, 3, or 6 kg of concentrate DM/d. Liver biopsy samples were collected at 0, +1, and +4 wk relative to calving (WRTC) for mRNA analysis. Milk production of NA cows was greater during wk 5 to 11 postpartum and concentrate supplementation increased milk production for both NA and NZ cows. No genotype (NA vs. NZ) by diet interaction occurred for blood glucose, NEFA, or insulin. Expression of pyruvate carboxylase (PC) mRNA was increased at +1 and +4 WRTC compared with 0 WRTC (3.04 and 2.42 vs. 1.25±0.13 arbitrary units, respectively: mean ± standard error of the means) and expression of cytosolic phosphoenolpyruvate carboxykinase mRNA was increased at +4 compared with calving and +1 WRTC (4.78 vs. 2.18 and 2.48±1.41 arbitrary units, respectively). Expression of PC mRNA tended to be greater in NZ cows and tended to decrease with concentrate supplementation in both NZ and NA cows. The responses of NZ and NA cows to the transition to lactation and concentrate supplementation appeared to be similar; however, NZ cattle had a higher basal expression of PC.


Asunto(s)
Bovinos/genética , Lactancia/genética , Fosfoenolpiruvato Carboxilasa/genética , Piruvato Carboxilasa/genética , Animales , Cruzamiento , Femenino , Expresión Génica/genética , Gluconeogénesis/genética , Hígado/enzimología , Nueva Zelanda , América del Norte , Fosfoenolpiruvato Carboxilasa/metabolismo , Piruvato Carboxilasa/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria
16.
J Dairy Sci ; 95(12): 7214-24, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23084887

RESUMEN

Feed sorting is a natural behavior of dairy cows that can result in inconsistencies in the nutritive value of a total mixed ration (TMR). The objective of this study was to determine the effects of replacing high-moisture corn with glycerol on feed sorting and the feed intake pattern of transition dairy cows. Multiparous Holstein cows (n=26) were paired by expected calving date, housed in individual tie stalls, and fed diets containing either glycerol or high-moisture corn once daily from d -28 to +56 relative to calving. Glycerol was included at 11.5 and 10.8% of the ration dry matter for the pre- and postpartum diets, respectively. The feed consumption pattern was determined by measuring TMR disappearance during the intervals from 0 to 4 h, 4 to 8 h, 8 to 12 h, and 12 to 24 h relative to feed delivery. Feed sorting was determined on d -16, -9, 9, 16, and 51 relative to calving at 4, 8, 12 and 24 h after feeding. The TMR particle size profile was determined at feed delivery and at 4, 8, 12, and 24 after feed delivery by using the Penn State Particle Separator (Nasco, Fort Atkinson, WI) to yield long (>19 mm), medium (<19 mm, >8 mm), short (<8 mm, >1.18 mm), and fine (<1.18 mm) particles. Overall feed intake did not differ between diets and was 14.7±0.4 and 20.2±0.5 kg/d for the pre- and postpartum intervals, respectively. During the prepartum period, glycerol decreased the amount of feed consumed during the first 4h after feed delivery (7.22 vs. 5.59±0.35 kg; control vs. glycerol, respectively) but increased feed consumed from 12 through 24 h after feed delivery (2.22 vs. 3.82±0.35 kg; control vs. glycerol, respectively). Similar effects on the feed consumption pattern were observed after calving. During the prepartum period, cows fed the control diet sorted against long particles, whereas cows fed glycerol did not sort against long particles (77.2 vs. 101.5±3.50% of expected intake for control vs. glycerol; significant treatment effect). The data indicate that addition of glycerol to the TMR alters the feed consumption pattern to increase feed consumption late in the day at the expense of feed consumed immediately after feeding, and it reduces sorting behavior against long particles. Together, these may reduce diurnal variations in the rumen environment to promote greater rumen health in transition cows.


Asunto(s)
Bovinos/fisiología , Conducta Alimentaria , Glicerol/farmacología , Alimentación Animal , Animales , Bovinos/psicología , Dieta/veterinaria , Ingestión de Alimentos/fisiología , Conducta Alimentaria/fisiología , Femenino
17.
J Dairy Sci ; 94(2): 727-45, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21257041

RESUMEN

Feeding rations with low dietary cation-anion difference (DCAD) to dairy cows during late gestation is a common strategy to prevent periparturient hypocalcemia. Although the efficacy of low-DCAD rations in reducing the incidence of clinical hypocalcemia is well documented, potentially deleterious effects have not been explored in detail. The objective of the study presented here was to determine the effect of fully compensated metabolic acidosis on calcium and phosphorus homeostasis, insulin responsiveness, and insulin sensitivity as well as on protein metabolism. Twenty multiparous Holstein-Friesian dairy cows were assigned to 1 of 2 treatment groups and fed a low-DCAD ration (DCAD = -9 mEq/100g, group L) or a control ration (DCAD = +11 mEq/100g, group C) for the last 3 wk before the expected calving date. Blood and urine samples were obtained periodically between 14 d before to 14 d after calving. Intravenous glucose tolerance tests and 24-h volumetric urine collection were conducted before calving as well as 7 and 14 d postpartum. Cows fed the low-DCAD ration had lower urine pH and higher net acid excretion, but unchanged blood pH and bicarbonate concentration before calving. Protein-corrected plasma Ca concentration 1 d postpartum was higher in cows on the low-DCAD diet when compared with control animals. Urinary Ca and P excretion was positively associated with urine net acid excretion and negatively associated with urine pH. Whereas metabolic acidosis resulted in a 6-fold increase in urinary Ca excretion, the effect on renal P excretion was negligible. A more pronounced decline of plasma protein and globulin concentration in the periparturient period was observed in cows on the low-DCAD diets resulting in significantly lower total protein and globulin concentrations after calving in cows on low-DCAD diets. Intravenous glucose tolerance tests conducted before and after calving did not reveal group differences in insulin response or insulin sensitivity. Our results indicate that fully compensated metabolic acidosis increased the Ca flux resulting in increased urinary calcium excretion before calving and increased plasma Ca concentration on the day after calving, whereas the effect on P homeostasis was unlikely to be clinically relevant. The clinical relevance of the effect of metabolic acidosis on the plasma protein and globulin concentration is unclear but warrants further investigation.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Aniones/análisis , Cationes/análisis , Bovinos/fisiología , Dieta/veterinaria , Homeostasis/fisiología , Periodo Periparto/fisiología , Equilibrio Ácido-Base/fisiología , Alimentación Animal/análisis , Animales , Calcio/sangre , Calcio/orina , Bovinos/sangre , Bovinos/orina , Femenino , Prueba de Tolerancia a la Glucosa/veterinaria , Lactancia/fisiología , Leche/metabolismo , Periodo Periparto/sangre , Periodo Periparto/orina , Fósforo/sangre , Fósforo/orina , Embarazo
18.
J Dairy Sci ; 94(7): 3428-36, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21700028

RESUMEN

Pyruvate carboxylase (PC) is a critical enzyme in supplying carbon for gluconeogenesis and oxaloacetate for the tricarboxylic acid cycle. The bovine PC (EC 6.4.1.1) gene contains 3 promoter sequences (P3, P2, and P1 from 5' to 3'). Physiological stressors, including the onset of calving and feed restriction, lead to elevated nonesterified fatty acids and glucocorticoid levels that coincide with an increase in PC mRNA expression. The effects of elevated fatty acids on bovine PC mRNA expression and promoter function have not been determined. The objective of this experiment was to determine the direct effects of stearic, oleic, and linoleic acids, dexamethasone, and Wy14643 (a peroxisome proliferator-activated receptor-α agonist) on bovine PC promoter activity. Promoter-luciferase constructs, containing 1,005 bp of P1, 1,079 bp of P2, or 1,010 bp of P3, were transiently transfected into rat hepatoma (H4IIE) cells. Cells were then treated with 1mM stearic, oleic, or linoleic acids, 1 µM dexamethasone, or 10 µM Wy14643 for 23 h. Activity of P1 was suppressed with exposure to stearic acid (1.58 vs. 6.19±0.81 arbitrary units for stearic vs. control, respectively) and enhanced with exposure to Wy14643 (9.26 vs. 6.19±0.81 arbitrary units for Wy14643 vs. control, respectively). Conversely, stearic acid enhanced P3 activity (2.55 vs. 0.40±0.33 arbitrary units for stearic vs. control, respectively). Dexamethasone, linoleic acid, and oleic acid failed to elicit a response from any of the promoters tested. These data demonstrate the direct role of fatty acids in regulating PC expression and indicate that fatty acids provide promoter-specific regulation of PC promoters.


Asunto(s)
Ácidos Grasos/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , PPAR alfa/agonistas , Regiones Promotoras Genéticas/efectos de los fármacos , Pirimidinas/farmacología , Piruvato Carboxilasa/genética , ARN Mensajero/metabolismo , Animales , Bovinos , Técnicas de Cultivo de Célula , Dexametasona/farmacología , Glucocorticoides/farmacología , Ácido Linoleico/farmacología , Hígado/metabolismo , Ácido Oléico/farmacología , Proliferadores de Peroxisomas/farmacología , Regiones Promotoras Genéticas/genética , Piruvato Carboxilasa/metabolismo , Ratas , Ácidos Esteáricos/farmacología
19.
J Dairy Sci ; 94(2): 908-16, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21257059

RESUMEN

Expansion of the biofuels industry has increased the availability of glycerol as an alternative feed for dairy cows. The objective of this study was to determine the effects of glycerol on feed intake, milk production, rumen volatile fatty acids, and metabolic parameters in transition dairy cows. Multiparous Holstein cows were fed diets containing either high-moisture corn (n=11) or glycerol (n=12) from -28 to +56 d relative to calving. Glycerol was included at 11.5 and 10.8% of the ration dry matter for the pre- and postpartum diets, respectively. Prepartum feed intake was not changed by glycerol feeding (14.9 vs. 14.6 kg/d, control vs. glycerol) nor did postpartum feed intake differ (19.8 vs. 20.7 kg/d, control vs. glycerol). Overall milk yield did not differ (35.8 vs. 37 kg/d, control vs. glycerol) and milk composition, milk urea nitrogen, somatic cells, and energy balance were not different with glycerol feeding. Blood glucose content was decreased in cows fed glycerol during the prepartum period (59.1 vs. 53.4 mg/dL), and ß-hydroxybutyrate concentration was increased (0.58 vs. 0.82 mmol/L, control vs. glycerol). Concentrations of blood nonesterified fatty acids did not differ between the treatment groups, and no response to glycerol for blood metabolites during the postpartum period was observed. Total rumen volatile fatty acid concentrations (mmol/L) did not differ between treatments, but proportions of rumen propionate and butyrate were greater for cows fed glycerol (22.7 vs. 28.6% of propionate, control vs. glycerol; and 11.5 vs. 15.3% of butyrate, control vs. glycerol) at the expense of acetate (61.4 vs. 51.5%, control vs. glycerol). These data indicate that glycerol is a suitable replacement for corn grain in diets for transition dairy cows.


Asunto(s)
Bovinos/fisiología , Dieta/veterinaria , Aditivos Alimentarios/farmacología , Glicerol/farmacología , Periodo Periparto/fisiología , Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Bovinos/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Ácidos Grasos Volátiles/análisis , Femenino , Aditivos Alimentarios/administración & dosificación , Glicerol/administración & dosificación , Lactancia/efectos de los fármacos , Lactancia/fisiología , Leche/metabolismo , Periodo Periparto/metabolismo , Embarazo , Rumen/química , Rumen/efectos de los fármacos , Zea mays/metabolismo
20.
J Dairy Sci ; 92(10): 5092-9, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19762827

RESUMEN

Exogenous glucagon increases hepatic glucose synthesis in part by increasing hepatic extraction of amino acids from blood for conversion to glucose. To examine the role of glucagon in orchestrating gene expression of gluconeogenic and ureagenic enzymes, we determined the mRNA concentrations of key hepatic ureagenic and gluconeogenic enzymes at d 11, 15, and 22 postpartum in multiparous Holstein cows that received 0 or 5 mg of glucagon in 60 mL of saline by subcutaneous injection every 8 h for 14 d starting on d 8 postpartum. On d 11 postpartum, glucagon increased the hepatic mRNA concentrations for all measured ureagenic enzymes (carbamoylphosphate synthetase I, ornithine transcarbamylase, and argininosuccinate synthetase) and gluconeogenic enzymes (pyruvate carboxylase and cytosolic and mitochondrial forms of phosphoenolpyruvate carboxykinase) and increased or tended to increase mRNA concentrations of gluconeogenic enzymes on d 15 postpartum but not on d 22. The effect of glucagon to increase mRNA concentrations of ureagenic and gluconeogenic enzymes was limited to times when concentrations of plasma insulin were not increased. Our results suggest that hepatic gene expression of key ureagenic and gluconeogenic enzymes in early-lactation dairy cows is responsive to hormonal regulation by glucagon.


Asunto(s)
Bovinos/metabolismo , Expresión Génica/efectos de los fármacos , Glucagón/administración & dosificación , Gluconeogénesis/genética , Hígado/enzimología , Urea/metabolismo , Animales , Argininosuccinato Sintasa/genética , Carbamoil-Fosfato Sintasa (Amoniaco)/genética , Femenino , Gluconeogénesis/efectos de los fármacos , Lactancia , Hígado/efectos de los fármacos , Ornitina Carbamoiltransferasa/genética , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Periodo Posparto , Piruvato Carboxilasa/genética , ARN Mensajero/análisis , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA