Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur Spine J ; 32(5): 1678-1687, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36922425

RESUMEN

PURPOSE: The sole determination of volumetric bone mineral density (vBMD) is insufficient to evaluate overall bone integrity. The accumulation of advanced glycation endproducts (AGEs) stiffens and embrittles collagen fibers. Despite the important role of AGEs in bone aging, the relationship between AGEs and vBMD is poorly understood. We hypothesized that an accumulation of AGEs, a marker of impaired bone quality, is related to decreased vBMD. METHODS: Prospectively collected data of 127 patients undergoing lumbar fusion were analyzed. Quantitative computed tomography (QCT) measurements were performed at the lumbar spine. Intraoperative bone biopsies were obtained and analyzed with confocal fluorescence microscopy for fluorescent AGEs, both trabecular and cortical. Spearman's correlation coefficients were calculated to examine relationships between vBMD and fAGEs, stratified by sex. Multivariable linear regression analysis with adjustments for age, sex, body mass index (BMI), race, diabetes mellitus and HbA1c was used to investigate associations between vBMD and fAGEs. RESULTS: One-hundred and twenty-seven patients (51.2% female, 61.2 years, BMI of 28.7 kg/m2) with 107 bone biopsies were included in the final analysis, excluding patients on anti-osteoporotic drug therapy. In the univariate analysis, cortical fAGEs increased with decreasing vBMD at (r = -0.301; p = 0.030), but only in men. In the multivariable analysis, trabecular fAGEs increased with decreasing vBMD after adjusting for age, sex, BMI, race, diabetes mellitus and HbA1c (ß = 0.99;95%CI=(0.994,1.000); p = 0.04). CONCLUSION: QCT-derived vBMD measurements were found to be inversely associated with trabecular fAGEs. Our results enhance the understanding of bone integrity by suggesting that spine surgery patients with decreased bone quantity may also have poorer bone quality.


Asunto(s)
Densidad Ósea , Vértebras Lumbares , Masculino , Humanos , Femenino , Hemoglobina Glucada , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/cirugía , Tomografía Computarizada por Rayos X/métodos , Envejecimiento
2.
Vet Surg ; 51(6): 952-962, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35672916

RESUMEN

OBJECTIVE: To determine whether proximal sesamoid bone (PSB) microdamage and fracture toughness differ between Thoroughbred racehorses sustaining PSB fracture and controls. STUDY DESIGN: Cadaveric case-control. ANIMALS: Twenty-four Thoroughbred racehorses (n = 12 PSB fracture, n = 12 control). METHODS: Proximal sesamoid bones were dissected, and gross pathological changes and morphological measurements were documented. High-speed exercise history data were evaluated. Microdamage was assessed in fracture, fracture-contralateral limb (FXCL) and control PSBs using whole bone lead uranyl acetate (LUA) staining with micro-CT imaging or basic fuchsin histological analysis. Fracture toughness mechanical testing was carried out in 3-point-bending of microbeams created from PSB flexor cortices. Data were analyzed using ordinal logistic and linear regression models. RESULTS: Microdamage was detected most commonly in the articular subchondral region of PSBs via LUA micro-CT and basic fuchsin histology. There were no differences in microdamage between FXCL and control PSBs. Fracture toughness values were similar for FXCL (1.31 MPa√m) and control (1.35 MPa√m) PSBs. Exercise histories were similar except that horses sustaining fracture spent a greater percentage of their careers in rest weeks. CONCLUSION: Microdamage was detected in the articular region of PSBs but was not greater in horses sustaining catastrophic PSB fracture. Fracture toughness of PSB flexor cortices did not differ between FXCL and control PSBs. CLINICAL SIGNIFICANCE: Although uncommon, microdamage is localized to the articular region of Thoroughbred racehorse PSBs. Catastrophic PSB failure is not associated with lower PSB flexor cortex fracture toughness.


Asunto(s)
Fracturas Óseas , Enfermedades de los Caballos , Huesos Sesamoideos , Animales , Estudios de Casos y Controles , Fracturas Óseas/patología , Fracturas Óseas/veterinaria , Enfermedades de los Caballos/patología , Caballos , Humanos , Huesos Sesamoideos/patología , Microtomografía por Rayos X/veterinaria
3.
Calcif Tissue Int ; 109(1): 77-91, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33710382

RESUMEN

Bone mineral carbonate content assessed by vibrational spectroscopy relates to fracture incidence, and mineral maturity/ crystallinity (MMC) relates to tissue age. As FT-IR and Raman spectroscopy become more widely used to characterize the chemical composition of bone in pre-clinical and translational studies, their bone mineral outcomes require improved validation to inform interpretation of spectroscopic data. In this study, our objectives were (1) to relate Raman and FT-IR carbonate:phosphate ratios calculated through direct integration of peaks to gold-standard analytical measures of carbonate content and underlying subband ratios; (2) to relate Raman and FT-IR MMC measures to gold-standard analytical measures of crystal size in chemical standards and native bone powders. Raman and FT-IR direct integration carbonate:phosphate ratios increased with carbonate content (Raman: p < 0.01, R2 = 0.87; FT-IR: p < 0.01, R2 = 0.96) and Raman was more sensitive to carbonate content than the FT-IR (Raman slope + 95% vs FT-IR slope, p < 0.01). MMC increased with crystal size for both Raman and FT-IR (Raman: p < 0.01, R2 = 0.76; FT-IR p < 0.01, R2 = 0.73) and FT-IR was more sensitive to crystal size than Raman (c-axis length: slope FT-IR MMC + 111% vs Raman MMC, p < 0.01). Additionally, FT-IR but not Raman spectroscopy detected differences in the relationship between MMC and crystal size of carbonated hydroxyapatite (CHA) vs poorly crystalline hydroxyapatites (HA) (slope CHA + 87% vs HA, p < 0.01). Combined, these results contribute to the ability of future studies to elucidate the relationships between carbonate content and fracture and provide insight to the strengths and limitations of FT-IR and Raman spectroscopy of native bone mineral.


Asunto(s)
Durapatita , Espectrometría Raman , Carbonatos , Hidroxiapatitas , Espectroscopía Infrarroja por Transformada de Fourier
4.
Calcif Tissue Int ; 106(3): 303-314, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31784772

RESUMEN

Anti-resorptive and anabolic treatments can be used sequentially to treat osteoporosis, but their effects on bone composition are incompletely understood. Osteocytes may influence bone tissue composition with sequential therapies because bisphosphonates diffuse into the canalicular network and anabolic treatments increase osteocyte lacunar size. Cortical bone composition of osteopenic, ovariectomized (OVX) rats was compared to that of Sham-operated rats and OVX rats given monotherapy or sequential regimens of single approved anti-osteoporosis medications. Adult female Sprague-Dawley rats were OVX (N = 37) or Sham-OVXd (N = 6). After 2 months, seven groups of OVX rats were given three consecutive 3-month periods of treatment with vehicle (V), h-PTH (1-34) (P), alendronate (A), or raloxifene (R), using the following orders: VVV, PVV, RRR, RPR, AAA, AVA, and APA. Compositional properties around osteocyte lacunae of the left tibial cortex were assessed from Raman spectra in perilacunar and non-perilacunar bone matrix regions. Sequential treatments involving parathyroid hormone (PTH) caused lower mean collagen maturity relative to monotherapies. Mean mineral:matrix ratio was 2.2% greater, mean collagen maturity was 1.4% greater, and mean carbonate:phosphate ratio was 2.2% lower in the perilacunar than in the non-perilacunar bone matrix region (all P < 0.05). These data demonstrate cortical bone tissue composition differences around osteocytes caused by sequential treatment with anti-osteoporosis medications. We speculate that the region-specific differences demonstrate the ability of osteocytes to alter bone tissue composition adjacent to lacunae.


Asunto(s)
Alendronato/farmacología , Conservadores de la Densidad Ósea/farmacología , Enfermedades Óseas Metabólicas/tratamiento farmacológico , Hueso Cortical/efectos de los fármacos , Clorhidrato de Raloxifeno/farmacología , Teriparatido/farmacología , Alendronato/uso terapéutico , Animales , Conservadores de la Densidad Ósea/uso terapéutico , Enfermedades Óseas Metabólicas/metabolismo , Calcificación Fisiológica/efectos de los fármacos , Colágeno/análisis , Hueso Cortical/química , Estrógenos/fisiología , Femenino , Osteocitos/efectos de los fármacos , Ovariectomía , Clorhidrato de Raloxifeno/uso terapéutico , Ratas Sprague-Dawley , Teriparatido/uso terapéutico
5.
Proc Natl Acad Sci U S A ; 114(33): 8722-8727, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28760963

RESUMEN

Bisphosphonates are the most widely prescribed pharmacologic treatment for osteoporosis and reduce fracture risk in postmenopausal women by up to 50%. However, in the past decade these drugs have been associated with atypical femoral fractures (AFFs), rare fractures with a transverse, brittle morphology. The unusual fracture morphology suggests that bisphosphonate treatment may impair toughening mechanisms in cortical bone. The objective of this study was to compare the compositional and mechanical properties of bone biopsies from bisphosphonate-treated patients with AFFs to those from patients with typical osteoporotic fractures with and without bisphosphonate treatment. Biopsies of proximal femoral cortical bone adjacent to the fracture site were obtained from postmenopausal women during fracture repair surgery (fracture groups, n = 33) or total hip arthroplasty (nonfracture groups, n = 17). Patients were allocated to five groups based on fracture morphology and history of bisphosphonate treatment [+BIS Atypical: n = 12, BIS duration: 8.2 (3.0) y; +BIS Typical: n = 10, 7.7 (5.0) y; +BIS Nonfx: n = 5, 6.4 (3.5) y; -BIS Typical: n = 11; -BIS Nonfx: n = 12]. Vibrational spectroscopy and nanoindentation showed that tissue from bisphosphonate-treated women with atypical fractures was harder and more mineralized than that from bisphosphonate-treated women with typical osteoporotic fractures. In addition, fracture mechanics measurements showed that tissue from patients treated with bisphosphonates had deficits in fracture toughness, with lower crack-initiation toughness and less crack deflection at osteonal boundaries than that of bisphosphonate-naïve patients. Together, these results suggest a deficit in intrinsic and extrinsic toughening mechanisms, which contribute to AFFs in patients treated with long-term bisphosphonates.


Asunto(s)
Conservadores de la Densidad Ósea/uso terapéutico , Difosfonatos/uso terapéutico , Fémur/efectos de los fármacos , Fracturas Osteoporóticas/tratamiento farmacológico , Anciano , Anciano de 80 o más Años , Densidad Ósea/efectos de los fármacos , Femenino , Humanos , Osteoporosis/tratamiento farmacológico , Posmenopausia/efectos de los fármacos
6.
Curr Osteoporos Rep ; 17(6): 455-464, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31713179

RESUMEN

PURPOSE OF REVIEW: Individuals with type 1 and type 2 diabetes mellitus (T1DM, T2DM) have an increased risk of bone fracture compared to non-diabetic controls that is not explained by differences in BMD, BMI, or falls. Thus, bone tissue fracture resistance may be reduced in individuals with DM. The purpose of this review is to summarize work that analyzes the effects of T1DM and T2DM on bone tissue compositional and mechanical properties. RECENT FINDINGS: Studies of clinical T2DM specimens revealed increased mineralization and advanced glycation endproduct (AGE) concentrations and significant relationships between mechanical performance and composition of cancellous bone. Specifically, in femoral cancellous tissue, compressive stiffness and strength increased with mineral content; and post-yield properties decreased with AGE concentration. In addition, cortical resistance to in vivo indentation (bone material strength index) was lower in patients with T2DM vs. age-matched non-diabetic controls, and this resistance decreased with worsening glycemic control. Recent studies on patients with T1DM and history of a prior fragility fracture found greater mineral content and concentrations of AGEs in iliac trabecular bone and correspondingly stiffer, harder bone at the nanosacle. Recent observational data showed greater AGE and mineral content in surgically retrieved bone from patients with T2DM vs. non-DM controls, consistent with reduced bone remodeling. Limited data on human T1DM bone tissue also showed higher mineral and AGE content in patients with prior fragility fractures compared to non-DM and non-fracture controls.


Asunto(s)
Remodelación Ósea , Huesos/fisiopatología , Diabetes Mellitus Tipo 1/fisiopatología , Diabetes Mellitus Tipo 2/fisiopatología , Animales , Fenómenos Biomecánicos , Glucemia/metabolismo , Densidad Ósea , Huesos/diagnóstico por imagen , Huesos/metabolismo , Hueso Esponjoso/diagnóstico por imagen , Hueso Esponjoso/metabolismo , Hueso Esponjoso/fisiopatología , Hueso Cortical/diagnóstico por imagen , Hueso Cortical/metabolismo , Hueso Cortical/fisiopatología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 1/epidemiología , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/metabolismo , Fracturas Óseas/epidemiología , Productos Finales de Glicación Avanzada/metabolismo , Humanos
7.
Reproduction ; 156(1): 71-79, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29712877

RESUMEN

The cervix shortens and softens as its collagen microstructure remodels in preparation for birth. Altered cervical tissue collagen microstructure can contribute to a mechanically weak cervix and premature cervical dilation and delivery. To investigate the local microstructural changes associated with anatomic location and pregnancy, we used second-harmonic generation microscopy to quantify the orientation and spatial distribution of collagen throughout cervical tissue from 4 pregnant and 14 non-pregnant women. Across patients, the alignment and concentration of collagen within the cervix was more variable near the internal os and less variable near the external os. Across anatomic locations, the spatial distribution of collagen within a radial zone adjacent to the inner canal of the cervix was more homogeneous than that of a region comprising the middle and outer radial zones. Two regions with different collagen distribution characteristics were found. The anterior and posterior sections in the outer radial zone were characterized by greater spatial heterogeneity of collagen than that of the rest of the sections. Our findings suggest that the microstructural alignment and distribution of collagen varies with anatomic location within the human cervix. These observed differences in collagen microstructural alignment may reflect local anatomic differences in cervical mechanical loading and function. Our study deepens the understanding of specific microstructural cervical changes in pregnancy and informs investigations of potential mechanisms for normal and premature cervical remodeling.


Asunto(s)
Cuello del Útero/diagnóstico por imagen , Cuello del Útero/metabolismo , Colágeno/metabolismo , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Persona de Mediana Edad , Nacimiento Prematuro , Tomografía de Coherencia Óptica , Adulto Joven
8.
Clin Rev Bone Miner Metab ; 14(3): 133-149, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28936129

RESUMEN

This review presents an overview of the characterization techniques available to experimentally evaluate bone quality, defined as the geometric and material factors that contribute to fracture resistance independently of areal bone mineral density (aBMD) assessed by dual energy x-ray absorptiometry. The methods available for characterization of the geometric, compositional, and mechanical properties of bone across multiple length scales are summarized, along with their outcomes and their advantages and disadvantages. Examples of how each technique is used are discussed, as well as practical concerns such as sample preparation and whether or not each testing method is destructive. Techniques that can be used in vivo and those that have been recently improved or developed are emphasized, including high resolution peripheral quantitative computed tomography to evaluate geometric properties and reference point indentation to evaluate material properties. Because no single method can completely characterize bone quality, we provide a framework for how multiple characterization methods can be used together to generate a more comprehensive analysis of bone quality to complement aBMD in fracture risk assessment.

9.
J Biomech Eng ; 137(1)2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25383615

RESUMEN

Heterogeneity of material properties is an important potential contributor to bone fracture resistance because of its putative contribution to toughness, but establishing the contribution of heterogeneity to fracture risk is still in an incipient stage. Experimental studies have demonstrated changes in distributions of compositional and nanomechanical properties with fragility fracture history, disease, and pharmacologic treatment. Computational studies have demonstrated that models with heterogeneous material properties predict apparent stiffness moderately better than homogeneous models and show greater energy dissipation. Collectively, these results suggest that microscale material heterogeneity affects not only microscale mechanics but also structural performance at larger length scales.


Asunto(s)
Huesos/citología , Fenómenos Mecánicos , Fenómenos Biomecánicos , Enfermedades Óseas/metabolismo , Enfermedades Óseas/patología , Huesos/metabolismo , Huesos/patología , Simulación por Computador , Humanos
10.
PLoS One ; 18(7): e0287825, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37418415

RESUMEN

Individuals with type 2 diabetes mellitus (T2DM) have a higher fracture risk compared to those without T2DM despite having higher bone mineral density (BMD). Thus, T2DM may alter other aspects of resistance to fracture beyond BMD such as bone geometry, microarchitecture, and tissue material properties. We characterized the skeletal phenotype and assessed the effects of hyperglycemia on bone tissue mechanical and compositional properties in the TallyHO mouse model of early-onset T2DM using nanoindentation and Raman spectroscopy. Femurs and tibias were harvested from male TallyHO and C57Bl/6J mice at 26 weeks of age. The minimum moment of inertia assessed by micro-computed tomography was smaller (-26%) and cortical porosity was greater (+490%) in TallyHO femora compared to controls. In three-point bending tests to failure, the femoral ultimate moment and stiffness did not differ but post-yield displacement was lower (-35%) in the TallyHO mice relative to that in C57Bl/6J age-matched controls after adjusting for body mass. The cortical bone in the tibia of TallyHO mice was stiffer and harder, as indicated by greater mean tissue nanoindentation modulus (+22%) and hardness (+22%) compared to controls. Raman spectroscopic mineral:matrix ratio and crystallinity were greater in TallyHO tibiae than in C57Bl/6J tibiae (mineral:matrix +10%, p < 0.05; crystallinity +0.41%, p < 0.10). Our regression model indicated that greater values of crystallinity and collagen maturity were associated with reduced ductility observed in the femora of the TallyHO mice. The maintenance of structural stiffness and strength of TallyHO mouse femora despite reduced geometric resistance to bending could potentially be explained by increased tissue modulus and hardness, as observed at the tibia. Finally, with worsening glycemic control, tissue hardness and crystallinity increased, and bone ductility decreased in TallyHO mice. Our study suggests that these material factors may be sentinels of bone embrittlement in adolescents with T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Fracturas Óseas , Ratones , Masculino , Animales , Densidad Ósea/genética , Microtomografía por Rayos X , Dureza , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
11.
J Mech Behav Biomed Mater ; 145: 106034, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37494816

RESUMEN

Microstructural and compositional changes that occur due to aging, pathological conditions, or pharmacological treatments alter cortical bone fracture resistance. However, the relative importance of these changes to the fracture resistance of cortical bone has not been quantified in detail. In this technical note, we developed an integrated experimental-computational framework utilizing human femoral cortical bone biopsies to advance the understanding of how fracture resistance of cortical bone is modulated due to modifications in its microstructure and material properties. Four human biopsy samples from individuals with varying fragility fracture history and osteoporosis treatment status were converted to finite element models incorporating specimen-specific material properties and were analyzed using fracture mechanics-based modeling. The results showed that cement line density and osteonal volume had a significant effect on crack volume. The removal of cement lines substantially increased the crack volume in the osteons and interstitial bone, representing straight crack growth, compared to models with cement lines due to the lack of crack deflection in the models without cement lines. Crack volume in the osteons and interstitial bone increased when mean elastic modulus and ultimate strength increased and mean fracture toughness decreased. Crack volume in the osteons and interstitial bone was reduced when material property heterogeneity was incorporated in the models. Although both the microstructure and the heterogeneity of the material properties of the cortical bone independently increased the fracture toughness, the relative contribution of the microstructure was more significant. The integrated experimental-computational framework developed here can identify the most critical microscale features of cortical bone modulated by pathological processes or pharmacological treatments that drive changes in fracture resistance and improve our understanding of the relative influence of microstructure and material properties on fracture resistance of cortical bone.


Asunto(s)
Fracturas Óseas , Modelos Biológicos , Humanos , Análisis de Elementos Finitos , Hueso Cortical/patología , Huesos/patología , Fracturas Óseas/patología
12.
J Bone Miner Res ; 38(2): 261-277, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36478472

RESUMEN

Individuals with type 2 diabetes mellitus (T2DM) have a greater risk of bone fracture compared with those with normal glucose tolerance (NGT). In contrast, individuals with impaired glucose tolerance (IGT) have a lower or similar risk of fracture. Our objective was to understand how progressive glycemic derangement affects advanced glycation endproduct (AGE) content, composition, and mechanical properties of iliac bone from postmenopausal women with NGT (n = 35, age = 65 ± 7 years, HbA1c = 5.8% ± 0.3%), IGT (n = 26, age = 64 ± 5 years, HbA1c = 6.0% ± 0.4%), and T2DM on insulin (n = 25, age = 64 ± 6 years, HbA1c = 9.1% ± 2.2%). AGEs were assessed in all samples using high-performance liquid chromatography to measure pentosidine and in NGT/T2DM samples using multiphoton microscopy to spatially resolve the density of fluorescent AGEs (fAGEs). A subset of samples (n = 14 NGT, n = 14 T2DM) was analyzed with nanoindentation and Raman microscopy. Bone tissue from the T2DM group had greater concentrations of (i) pentosidine versus IGT (cortical +24%, p = 0.087; trabecular +35%, p = 0.007) and versus NGT (cortical +40%, p = 0.003; trabecular +35%, p = 0.004) and (ii) fAGE cross-link density versus NGT (cortical +71%, p < 0.001; trabecular +44%, p < 0.001). Bone pentosidine content in the IGT group was lower than in the T2DM group and did not differ from the NGT group, indicating that the greater AGE content observed in T2DM occurs with progressive diabetes. Individuals with T2DM on metformin had lower cortical bone pentosidine compared with individuals not on metformin (-35%, p = 0.017). Cortical bone from the T2DM group was stiffer (+9%, p = 0.021) and harder (+8%, p = 0.039) versus the NGT group. Bone tissue AGEs, which embrittle bone, increased with worsening glycemic control assessed by HbA1c (Pen: R2  = 0.28, p < 0.001; fAGE density: R2  = 0.30, p < 0.001). These relationships suggest a potential mechanism by which bone fragility may increase despite greater tissue stiffness and hardness in individuals with T2DM; our results suggest that it occurs in the transition from IGT to overt T2DM. © 2022 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Diabetes Mellitus Tipo 2 , Fracturas Óseas , Intolerancia a la Glucosa , Metformina , Humanos , Femenino , Persona de Mediana Edad , Anciano , Diabetes Mellitus Tipo 2/complicaciones , Insulina , Hemoglobina Glucada , Ilion , Dureza , Posmenopausia , Glucosa , Glucemia
13.
J Orthop Res ; 41(2): 345-354, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35470915

RESUMEN

Bone quality is increasingly being recognized in the assessment of fracture risk. Nonenzymatic collagen cross-linking with the accumulation of advanced glycation end products stiffens and embrittles collagen fibers thus increasing bone fragility. Echogenicity is an ultrasound (US) parameter that provides information regarding the skin collagen structure. We hypothesized that both skin and bone collagen degrade in parallel fashion. Prospectively collected data of 110 patients undergoing posterior lumbar fusion was analyzed. Preoperative skin US measurements were performed in the lumbar region to assess dermal thickness and echogenicity. Intraoperative bone biopsies from the posterior superior iliac spine were obtained and analyzed with confocal fluorescence microscopy for fluorescent advanced glycation endproducts (fAGEs). Pearson's correlation was calculated to examine relationships between  (1) US and fAGEs, and (2) age and fAGEs stratified by sex. Multivariable linear regression analysis with adjustments for age, sex, body mass index (BMI), diabetes mellitus, and hemoglobin A1c (HbA1c) was used to investigate associations between US and fAGEs. One hundred and ten patients (51.9% female, 61.6 years, BMI 29.8 kg/m2 ) were included in the analysis. In the univariate analysis cortical and trabecular fAGEs decreased with age, but only in women (cortical: r = -0.32, p = 0.031; trabecular: r = -0.32; p = 0.031). After adjusting for age, sex, BMI, diabetes mellitus, and HbA1c, lower dermal (ß = 1.01; p = 0.012) and subcutaneous (ß = 1.01; p = 0.021) echogenicity increased with increasing cortical fAGEs and lower dermal echogenicity increased with increasing trabecular fAGEs (ß = 1.01; p = 0.021). This is the first study demonstrating significant associations between skin US measurements and in vivo bone quality parameters in lumbar fusion patients. As a noninvasive assessment tool, skin US measurements might be incorporated into future practice to investigate bone quality in spine surgery patients.


Asunto(s)
Colágeno , Productos Finales de Glicación Avanzada , Humanos , Femenino , Masculino , Productos Finales de Glicación Avanzada/metabolismo , Hemoglobina Glucada , Colágeno/metabolismo , Ultrasonografía , Microscopía Fluorescente , Densidad Ósea
14.
Bone ; 169: 116678, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36646265

RESUMEN

Spine fusion surgery is one of the most common orthopedic procedures, with over 400,000 performed annually to correct deformities and pain. However, complications occur in approximately one third of cases. While many of these complications may be related to poor bone quality, it is difficult to detect bone abnormalities prior to surgery. Areal BMD (aBMD) assessed by DXA may be artifactually high in patients with spine pathology, leading to missed diagnosis of deficits. In this study, we related preoperative imaging characteristics of both central and peripheral sites to direct measurements of bone quality in vertebral biopsies. We hypothesized that pre-operative imaging outcomes would relate to vertebral bone mineralization and collagen properties. Pre-operative assessments included DXA measurements of aBMD of the spine, hip, and forearm, central quantitative computed tomography (QCT) of volumetric BMD (vBMD) at the lumbar spine, and high resolution peripheral quantitative computed tomography (HRpQCT; Xtreme CT2) measurements of vBMD and microarchitecture at the distal radius and tibia. Bone samples were collected intraoperatively from the lumbar vertebrae and analyzed using Fourier-transform Infrared (FTIR) spectroscopy. Bone samples were obtained from 23 postmenopausal women (mean age 67 ± 7 years, BMI 28 ± 8 kg/m2). We found that patients with more mature bone by FTIR, measured as lower acid phosphate content and carbonate to phosphate ratio, and greater collagen maturity and mineral maturity/crystallinity (MMC), had greater cortical vBMD at the tibia and greater aBMD at the lumbar spine and one-third radius. Our data suggests that bone quality at peripheral sites may predict bone quality at the spine. As bone quality at the spine is challenging to assess prior to surgery, there is a great need for additional screening tools. Pre-operative peripheral bone imaging may provide important insight into vertebral bone quality and may foster identification of patients with bone quality deficits.


Asunto(s)
Densidad Ósea , Huesos , Humanos , Femenino , Persona de Mediana Edad , Anciano , Absorciometría de Fotón/métodos , Hueso Cortical , Vértebras Lumbares , Radio (Anatomía)
15.
Spine (Phila Pa 1976) ; 48(14): 984-993, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37036285

RESUMEN

STUDY DESIGN: Prospective cross-sectional study. OBJECTIVE: To determine if an accumulation of advanced glycation endproducts (AGEs) is associated with impaired paraspinal muscle composition. BACKGROUND: Impaired bone integrity and muscle function are described as osteosarcopenia. Osteosarcopenia is associated with falls, fragility fractures, and reduced quality of life. Bone integrity is influenced by bone quantity (bone mineral density) and quality (microarchitecture and collagen). The accumulation of AGEs stiffens collagen fibers and increases bone fragility. The relationship between paraspinal muscle composition and bone collagen properties has not been evaluated. METHODS: Intraoperative bone biopsies from the posterior superior iliac spine were obtained and evaluated with multiphoton microscopy for fluorescent AGE cross-link density (fAGEs). Preoperative magnetic resonance imaging measurements at level L4 included the musculus (m.) psoas and combined m. multifidus and m. erector spinae (posterior paraspinal musculature, PPM). Muscle segmentation on axial images (cross-sectional area, CSA) and calculation of a pixel intensity threshold method to differentiate muscle (functional cross-sectional area, fCSA) and intramuscular fat (FAT). Quantitative computed tomography was performed at the lumbar spine. Univariate and multivariable regression models were used to investigate associations between fAGEs and paraspinal musculature. RESULTS: One hundred seven prospectively enrolled patients (50.5% female, age 60.7 y, BMI 28.9 kg/m 2 ) were analyzed. In all, 41.1% and 15.0% of the patients demonstrated osteopenia and osteoporosis, respectively. Univariate linear regression analysis demonstrated a significant association between cortical fAGEs and CSA in the psoas (ρ=0.220, P =0.039) but not in the PPM. Trabecular fAGEs revealed no significant associations to PPM or psoas musculature. In the multivariable analysis, higher cortical fAGEs were associated with increased FAT (ß=1.556; P =0.002) and CSA (ß=1.305; P =0.005) in the PPM after adjusting for covariates. CONCLUSION: This is the first investigation demonstrating that an accumulation of nonenzymatic collagen cross-linking product fAGEs in cortical bone is associated with increased intramuscular fat in the lumbar paraspinal musculature.


Asunto(s)
Densidad Ósea , Dolor de la Región Lumbar , Humanos , Femenino , Persona de Mediana Edad , Masculino , Músculos Paraespinales/diagnóstico por imagen , Músculos Paraespinales/patología , Estudios Prospectivos , Calidad de Vida , Estudios Transversales , Dolor de la Región Lumbar/patología , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/patología , Imagen por Resonancia Magnética/métodos , Productos Finales de Glicación Avanzada
16.
Animals (Basel) ; 13(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36899684

RESUMEN

Proximal sesamoid bone (PSB) fracture is the leading cause of fatal musculoskeletal injury in Thoroughbred racehorses in Hong Kong and the US. Efforts are underway to investigate diagnostic modalities that could help identify racehorses at increased risk of fracture; however, features associated with PSB fracture risk are still poorly understood. The objectives of this study were to (1) investigate third metacarpal (MC3) and PSB density and mineral content using dual-energy X-ray absorptiometry (DXA), computed tomography (CT), Raman spectroscopy, and ash fraction measurements, and (2) investigate PSB quality and metacarpophalangeal joint (MCPJ) pathology using Raman spectroscopy and CT. Forelimbs were collected from 29 Thoroughbred racehorse cadavers (n = 14 PSB fracture, n = 15 control) for DXA and CT imaging, and PSBs were sectioned for Raman spectroscopy and ash fraction measurements. Bone mineral density (BMD) was greater in MC3 condyles and PSBs of horses with more high-speed furlongs. MCPJ pathology, including palmar osteochondral disease (POD), MC3 condylar sclerosis, and MC3 subchondral lysis were greater in horses with more high-speed furlongs. There were no differences in BMD or Raman parameters between fracture and control groups; however, Raman spectroscopy and ash fraction measurements revealed regional differences in PSB BMD and tissue composition. Many parameters, including MC3 and PSB bone mineral density, were strongly correlated with total high-speed furlongs.

17.
J Bone Miner Res ; 37(4): 740-752, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35064941

RESUMEN

Individuals with type 2 diabetes mellitus (T2DM) have an increased risk of fragility fracture despite exhibiting normal to high bone mineral density (BMD). Conditions arising from T2DM, such as reduced bone turnover and alterations in microarchitecture, may contribute to skeletal fragility by influencing bone morphology and microdamage accumulation. The objectives of this study were (i) to characterize the effect of T2DM on microdamage quantity and morphology in cancellous bone, and (ii) relate the accumulation of microdamage to the cancellous microarchitecture. Cancellous specimens from the femoral neck were collected during total hip arthroplasty (T2DM: n = 22, age = 65 ± 9 years, glycated hemoglobin [HbA1c] = 7.00% ± 0.98%; non-diabetic [non-DM]: n = 25, age = 61 ± 8 years, HbA1c = 5.50% ± 0.4%), compressed to 3% strain, stained with lead uranyl acetate to isolate microdamage, and scanned with micro-computed tomography (µCT). Individual trabeculae segmentation was used to isolate rod-like and plate-like trabeculae and their orientations with respect to the loading axis. The T2DM group trended toward a greater BV/TV (+27%, p = 0.07) and had a more plate-like trabecular architecture (+8% BVplates , p = 0.046) versus non-DM specimens. Rods were more damaged relative to their volume compared to plates in the non-DM group (DVrods /BVrods versus DVplates /BVplates : +49%, p < 0.0001), but this difference was absent in T2DM specimens. Longitudinal rods were more damaged in the non-DM group (DVlongitudinal rods /BVlongitudinal rods : +73% non-DM versus T2DM, p = 0.027). Total damage accumulation (DV/BV) and morphology (DS/DV) did not differ in T2DM versus non-DM specimens. These results provide evidence that cancellous microarchitecture does not explain fracture risk in T2DM, pointing to alterations in material matrix properties. In particular, cancellous bone from men with T2DM may have an attenuated ability to mitigate microdamage accumulation through sacrificial rods. © 2022 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Hueso Esponjoso , Diabetes Mellitus Tipo 2 , Anciano , Densidad Ósea , Hueso Esponjoso/diagnóstico por imagen , Diabetes Mellitus Tipo 2/complicaciones , Cuello Femoral/diagnóstico por imagen , Hemoglobina Glucada , Humanos , Masculino , Persona de Mediana Edad , Microtomografía por Rayos X
18.
Calcif Tissue Int ; 89(1): 1-9, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21533960

RESUMEN

Transcriptional regulation of the postnatal skeleton is incompletely understood. Here, we determined the consequence of loss of early growth response gene 1 (EGR-1) on bone properties. Analyses were performed on both the microscopic and molecular levels utilizing micro-computed tomography (micro-CT) and Fourier transform infrared imaging (FTIRI), respectively. Mice deficient in EGR-1 (Egr-1 (-/-)) were studied and compared to sex- and age-matched wild-type (wt) control animals. Femoral trabecular bone in male Egr-1 (-/-) mice demonstrated osteopenic characteristics marked by reductions in both bone volume fraction (BV/TV) and bone mineral density (BMD). Morphological analysis revealed fewer trabeculae in these animals. In contrast, female Egr-1 (-/-) animals had thinner trabeculae, but BV/TV and BMD were not significantly reduced. Analysis of femoral cortical bone at the mid-diaphysis did not show significant osteopenic characteristics but detected changes in cross-sectional geometry in both male and female Egr-1 (-/-) animals. Functionally, this resulted in decreased resistance to three-point bending as indicated by a reduction in maximum load, failure load, and stiffness. Assessment of compositional bone properties, including mineral-to-matrix ratio, carbonate-to-phosphate ratio, crystallinity, and cross-linking, in femurs by FTIRI did not show any significant differences or an appreciable trend between Egr-1 (-/-) and wt mice of either sex. Unexpectedly, rib bone from Egr-1 (-/-) animals displayed distinct osteopenic traits that were particularly pronounced in female mice. This study provides genetic evidence that both sex and skeletal site are critical determinants of EGR-1 activity in vivo and that its site-specific action may contribute to the mechanical properties of bone.


Asunto(s)
Huesos/diagnóstico por imagen , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Animales , Densidad Ósea/genética , Densidad Ósea/fisiología , Huesos/química , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Femenino , Masculino , Ratones , Ratones Transgénicos , Tomografía Computarizada por Rayos X
19.
Clin Orthop Relat Res ; 469(8): 2128-38, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21116752

RESUMEN

BACKGROUND: Bone mass, geometry, and tissue material properties contribute to bone structural integrity. Thus, bone strength arises from both bone quantity and quality. Bone quality encompasses the geometric and material factors that contribute to fracture resistance. QUESTIONS/PURPOSES: This review presents an overview of the methods for assessing bone quality across multiple length scales, their outcomes, and their relative advantages and disadvantages. METHODS: A PubMed search was conducted to identify methods related to bone mechanical testing, imaging, and compositional analysis. Using various exclusion criteria, articles were selected for inclusion. RESULTS: Methods for assessing mechanical properties include whole-bone, bulk tissue, microbeam, and micro- and nanoindentation testing techniques. Outcomes include structural strength and material modulus. Advantages include direct assessment of bone strength; disadvantages include specimen destruction during testing. Methods for characterizing bone geometry and microarchitecture include quantitative CT, high-resolution peripheral quantitative CT, high-resolution MRI, and micro-CT. Outcomes include three-dimensional whole-bone geometry, trabecular morphology, and tissue mineral density. The primary advantage is the ability to image noninvasively; disadvantages include the lack of a direct measure of bone strength. Methods for measuring tissue composition include scanning electron microscopy, vibrational spectroscopy, nuclear magnetic resonance imaging, and chemical and physical analytical techniques. Outcomes include mineral density and crystallinity, elemental composition, and collagen crosslink composition. Advantages include the detailed material characterization; disadvantages include the need for a biopsy. CONCLUSIONS: Although no single method can completely characterize bone quality, current noninvasive imaging techniques can be combined with ex vivo mechanical and compositional techniques to provide a comprehensive understanding of bone quality.


Asunto(s)
Huesos/fisiopatología , Densidad Ósea/fisiología , Huesos/anatomía & histología , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Espectroscopía Infrarroja por Transformada de Fourier , Resistencia a la Tracción , Tomografía Computarizada por Rayos X
20.
Adv Eng Mater ; 23(7)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34456625

RESUMEN

Advances in additive manufacturing techniques have enabled the development of micro-architectured materials displaying a combination of low-density and lightweight structures with high specific strength and toughness. The mechanical performance of micro-architectured materials can be assessed using standard techniques; however, when studying low- and ultralow density micro-architectured materials, standard characterization techniques can be subject to experimental artifacts. Additionally, quantitative assessment and comparisons of microarchitectures with distinct lattice patterns is not always straightforward. Cancellous bone is a natural, ultralow density (porosity often exceeding 90%), irregular, cellular solid that has been thoroughly characterized in terms of micro-architecture and mechanical performance over the past 30 years. However, most the literature on cancellous bone mechanical properties and micro-structure-function relationships is in the medical literature and is not immediately accessible to materials designers. Here we provide a brief review of state-of-the-art approaches for characterizing the micro-architecture and mechanical performance of ultralow density cancellous bone, including methods of addressing experimental artifacts during mechanical characterization of ultralow density cellular solids, methods of quantifying microarchitecture, and currently understood structure-function relationships.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA