Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Theor Biol ; 588: 111835, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38643962

RESUMEN

Obesity is a contributing factor to asthma severity; while it has long been understood that obesity is related to greater asthma burden, the mechanisms though which this occurs have not been fully elucidated. One common explanation is that obesity mechanically reduces lung volume through accumulation of adipose tissue external to the thoracic cavity. However, it has been recently demonstrated that there is substantial adipose tissue within the airway wall itself, and that the presence of adipose tissue within the airway wall is related to body mass index. This suggests the possibility of an additional mechanism by which obesity may worsen asthma, namely by altering the behaviour of the airways themselves. To this end, we modify Anafi & Wilson's classic model of the bistable terminal airway to incorporate adipose tissue within the airway wall in order to answer the question of how much adipose tissue would be required in order to drive substantive functional changes. This analysis suggests that adipose tissue within the airway wall on the order of 1%-2% of total airway cross-sectional area could be sufficient to drive meaningful changes, and further that these changes may interact with volume effects to magnify the overall burden.


Asunto(s)
Tejido Adiposo , Asma , Modelos Biológicos , Obesidad , Tejido Adiposo/metabolismo , Humanos , Asma/fisiopatología , Obesidad/fisiopatología , Obesidad/metabolismo , Pulmón/fisiología
2.
Am J Respir Crit Care Med ; 207(4): 452-460, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36399661

RESUMEN

Rationale: Ventilatory defects in asthma are heterogeneous and may represent the distribution of airway smooth muscle (ASM) remodeling. Objectives: To determine the distribution of ASM remodeling in mild-severe asthma. Methods: The ASM area was measured in nine airway levels in three bronchial pathways in cases of nonfatal (n = 30) and fatal asthma (n = 20) and compared with control cases without asthma (n = 30). Correlations of ASM area within and between bronchial pathways were calculated. Asthma cases with 12 large and 12 small airways available (n = 42) were classified on the basis of the presence or absence of ASM remodeling (more than two SD of mean ASM area of control cases, n = 86) in the large or small airway or both. Measurements and Main Results: ASM remodeling varied widely within and between cases of nonfatal asthma and was more widespread and confluent and more marked in fatal cases. There were weak correlations of ASM between levels within the same or separate bronchial pathways; however, predictable patterns of remodeling were not observed. Using mean data, 44% of all asthma cases were classified as having no ASM remodeling in either the large or small airway despite a three- to 10-fold increase in the number of airways with ASM remodeling and 81% of asthma cases having ASM remodeling in at least one large and small airway. Conclusions: ASM remodeling is related to asthma severity but is heterogeneous within and between individuals and may contribute to the heterogeneous functional defects observed in asthma. These findings support the need for patient-specific targeting of ASM remodeling.


Asunto(s)
Asma , Humanos , Bronquios/metabolismo , Músculo Liso , Tórax/metabolismo , Remodelación de las Vías Aéreas (Respiratorias)
3.
Respirology ; 27(7): 493-500, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35266251

RESUMEN

BACKGROUND AND OBJECTIVE: The airway smooth muscle (ASM) layer thickens during development. Identifying the mechanism(s) for normal structural maturation of the ASM reveals pathways susceptible to disease processes. This study characterized thickening of the ASM layer from foetal life to childhood and elucidated the underlying mechanism in terms of hypertrophy, hyperplasia and extracellular matrix (ECM) deposition. METHODS: Airways from post-mortem cases were examined from seven different age groups: 22-24 weeks gestation, 25-31 weeks gestation, term (37-41 weeks gestation), <0.5 year, 0.5-1 year, 2-5 years and 6-10 years. The ASM layer area (thickness), the number and size of ASM cells and the volume fraction of ECM were assessed by planimetry and stereology. RESULTS: From late gestation to the first year of life, normalized ASM thickness more than doubled as a result of ASM hypertrophy. Thereafter, until childhood, the ASM layer grew in proportion to airway size, which was mediated by ASM hyperplasia. Hypertrophy and hyperplasia of ASM were accompanied by a proportional change in ECM such that the broad composition of the ASM layer was constant across age groups. CONCLUSION: These data suggest that the mechanisms of ASM growth from late gestation to childhood are temporally decoupled, with early hypertrophy and subsequent proliferation. We speculate that the developing airway is highly susceptible to ASM thickening in the first year of life and that the timing of an adverse event will determine structural phenotype.


Asunto(s)
Asma , Músculo Liso , Asma/metabolismo , Niño , Femenino , Humanos , Hiperplasia/metabolismo , Hiperplasia/patología , Hipertrofia/metabolismo , Hipertrofia/patología , Músculo Liso/metabolismo , Miocitos del Músculo Liso/metabolismo , Embarazo , Sistema Respiratorio/patología
4.
J Theor Biol ; 501: 110337, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32511977

RESUMEN

Theoretical models can help to overcome experimental limitations to better our understanding of lung physiology and disease. While such efforts often begin in broad terms by determining the effect of a disease process on a relevant biological output, more narrowly defined simulations may inform clinical practice. Two such examples are phenotype-specific and patient-specific models, the former being specific to a group of patients with common characteristics, and the latter to an individual patient, in view of likely differences (heterogeneity) between patients. However, in order for such models to be useful, they must be sufficiently accurate, given the available data about the specific characteristics of the patient. We show that, for asthma in particular, this approach is promising: phenotype-specific targeting may be an effective way of selecting patients for treatment based on their airway remodelling phenotype, and patient-specific targeting may be viable with the use of a clinically-plausible dataset. Specifically we consider asthma and its treatment by bronchial thermoplasty, in which the airway smooth muscle layer is directly targeted by thermal energy. Patient-specific and phenotype-specific models in this context are considered using a combination of biobank data from ex vivo tissue samples, CT imaging, and optical coherence tomography which allows more detailed resolution of the airway wall structures.


Asunto(s)
Asma , Termoplastia Bronquial , Asma/terapia , Bronquios/cirugía , Humanos , Modelación Específica para el Paciente , Fenotipo , Incertidumbre
5.
Eur Respir J ; 54(6)2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31624112

RESUMEN

Epidemiological studies report that overweight or obese asthmatic subjects have more severe disease than those of a healthy weight. We postulated that accumulation of adipose tissue within the airway wall may occur in overweight patients and contribute to airway pathology. Our aim was to determine the relationship between adipose tissue within the airway wall and body mass index (BMI) in individuals with and without asthma.Transverse airway sections were sampled in a stratified manner from post mortem lungs of control subjects (n=15) and cases of nonfatal (n=21) and fatal (n=16) asthma. The relationship between airway adipose tissue, remodelling and inflammation was assessed. The areas of the airway wall and adipose tissue were estimated by point count and expressed as area per mm of basement membrane perimeter (Pbm). The number of eosinophils and neutrophils were expressed as area densities.BMI ranged from 15 to 45 kg·m-2 and was greater in nonfatal asthma cases (p<0.05). Adipose tissue was identified in the outer wall of large airways (Pbm >6 mm), but was rarely seen in small airways (Pbm <6 mm). Adipose tissue area correlated positively with eosinophils and neutrophils in fatal asthma (Pbm >12 mm, p<0.01), and with neutrophils in control subjects (Pbm >6 mm, p=0.04).These data show that adipose tissue is present within the airway wall and is related to BMI, wall thickness and the number of inflammatory cells. Therefore, the accumulation of airway adipose tissue in overweight individuals may contribute to airway pathophysiology.


Asunto(s)
Tejido Adiposo/patología , Asma/patología , Membrana Basal/patología , Índice de Masa Corporal , Bronquios/patología , Adulto , Asma/fisiopatología , Estudios de Casos y Controles , Eosinófilos/patología , Femenino , Humanos , Inflamación/patología , Recuento de Leucocitos , Modelos Lineales , Masculino , Persona de Mediana Edad , Neutrófilos/patología , Obesidad/complicaciones , Sobrepeso/complicaciones , Adulto Joven
6.
Biophys J ; 114(2): 493-501, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29401446

RESUMEN

Asthma is fundamentally a disease of airway constriction. Due to a variety of experimental challenges, the dynamics of airways are poorly understood. Of specific interest is the narrowing of the airway due to forces produced by the airway smooth muscle wrapped around each airway. The interaction between the muscle and the airway wall is crucial for the airway constriction that occurs during an asthma attack. Although cross-bridge theory is a well-studied representation of complex smooth muscle dynamics, and these dynamics can be coupled to the airway wall, this comes at significant computational cost-even for isolated airways. Because many phenomena of interest in pulmonary physiology cannot be adequately understood by studying isolated airways, this presents a significant limitation. We present a distribution-moment approximation of this coupled system and study the validity of the approximation throughout the physiological range. We show that the distribution-moment approximation is valid in most conditions, and we explore the region of breakdown. These results show that in many situations, the distribution-moment approximation is a viable option that provides an orders-of-magnitude reduction in computational complexity; not only is this valuable for isolated airway studies, but it moreover offers the prospect that rich ASM dynamics might be incorporated into interacting airway models where previously this was precluded by computational cost.


Asunto(s)
Fenómenos Mecánicos , Modelos Biológicos , Músculo Liso/fisiología , Fenómenos Fisiológicos Respiratorios , Fenómenos Biomecánicos , Presión
7.
Am J Respir Cell Mol Biol ; 59(3): 355-362, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29668295

RESUMEN

Bronchial thermoplasty is a relatively new but seemingly effective treatment in subjects with asthma who do not respond to conventional therapy. Although the favored mechanism is ablation of the airway smooth muscle layer, because bronchial thermoplasty treats only a small number of central airways, there is ongoing debate regarding its precise method of action. Our aim in the present study was to elucidate the underlying method of action behind bronchial thermoplasty. We employed a combination of extensive human lung specimens and novel computational methods. Whole left lungs were acquired from the Prairie Provinces Fatal Asthma Study. Subjects were classified as control (n = 31), nonfatal asthma (n = 32), or fatal asthma (n = 25). Simulated lungs for each group were constructed stochastically, and flow distributions and functional indicators (e.g., resistance) were quantified both before and after a 75% reduction in airway smooth muscle in the "thermoplasty-treated" airways. Bronchial thermoplasty triggered global redistribution of clustered flow patterns wherein structural changes to the treated central airways led to a reopening cascade in the small airways and significant improvement in lung function via reduced spatial heterogeneity of flow patterns. This mechanism accounted for progressively greater efficacy of thermoplasty with both severity of asthma and degree of muscle activation, broadly consistent with existing clinical findings. We report a probable mechanism of action for bronchial thermoplasty: alteration of lung-wide flow patterns in response to structural alteration of the treated central airways. This insight could lead to improved therapy via patient-specific, tailored versions of the treatment-as well as to implications for more conventional asthma therapies.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias)/fisiología , Asma/patología , Asma/terapia , Termoplastia Bronquial , Músculo Liso/patología , Biopsia , Bronquios/patología , Humanos
10.
12.
Am J Physiol Lung Cell Mol Physiol ; 312(3): L425-L431, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28062484

RESUMEN

Airway remodeling, a key feature of asthma, alters every layer of the airway wall but most strikingly the airway smooth muscle (ASM) layer. Airway remodeling in asthmatics contributes to fixed airflow obstruction and can amplify airway narrowing caused by ASM activation. Previous modeling studies have shown that the increase in ASM mass has the largest effect on increasing maximal airway narrowing. Simulated heterogeneity in the dimensions and properties of the airway wall can further amplify airway narrowing. Using measurements made on histological sections from donor lungs, we show for the first time that there is profound heterogeneity of ASM area and wall area in both nonasthmatics and asthmatics. Using a mathematical model, we found that this heterogeneity, together with changes in the mean values, contributes to an increased baseline resistance and elastance in asthmatics as well as a leftward shift in the responsiveness of the airways to a simulated agonist in both nonasthmatics and asthmatics. The ability of heterogeneous wall dimensions to shift the dose-response curve is largely due to an increased susceptibility for the small airways to close. This research confirms that heterogeneity of airway wall dimensions can contribute to exaggerated airway narrowing and provides an actual assessment of the magnitude of these effects.


Asunto(s)
Asma/fisiopatología , Pulmón/fisiopatología , Adolescente , Adulto , Fenómenos Biomecánicos/efectos de los fármacos , Niño , Preescolar , Demografía , Impedancia Eléctrica , Femenino , Humanos , Masculino , Cloruro de Metacolina/farmacología , Persona de Mediana Edad , Pruebas de Función Respiratoria , Adulto Joven
13.
Respirology ; 22(7): 1329-1335, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28516728

RESUMEN

BACKGROUND AND OBJECTIVE: Intrauterine growth restriction (IUGR) is associated with asthma development. We hypothesized that IUGR disrupts airway development leading to postnatal structural abnormalities of the airway that predispose to disease. This study therefore examined structural changes to the airway and lung in a rat model of maternal hypoxia-induced IUGR. METHODS: Pregnant rats were housed under hypoxic conditions (11.5% O2 ) from gestational days (GDs) 13 to 20 (pseudoglandular-canalicular stages, i.e. period of airway development) and then returned to normoxic conditions (21% O2 ). A control group of pregnant rats was housed under normoxic conditions throughout pregnancy. Weights of male offspring were recorded at birth and 7 weeks of age (adulthood), at which point lungs were fixed for morphometry and stereology (n = 6/group), or bronchoalveolar lavage fluid (BALF) was collected for cell counts (n = 6/group). RESULTS: IUGR offspring were lighter at birth compared with control, but not at 7 weeks. While there was no difference in mean airway dimensions or lung volume, there was greater anatomical variation in airway lumen area in the IUGR group. A mathematical model of the human lung was used to show that greater heterogeneity in lumen area in IUGR-affected individuals increases bronchoconstriction during simulated bronchial challenge. More macrophages were identified in the BALF of IUGR offspring. CONCLUSION: The rat model demonstrates that IUGR leads to a more heterogeneous distribution of airway lumen calibre in adulthood with potential implications for bronchoconstriction in human subjects. Together with increased lung macrophages, these findings support a phenotypic shift after IUGR that may impact disease susceptibility.


Asunto(s)
Asma/etiología , Retardo del Crecimiento Fetal/etiología , Retardo del Crecimiento Fetal/patología , Hipoxia Fetal/complicaciones , Pulmón/patología , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Embarazo , Ratas , Ratas Sprague-Dawley
14.
Biophys J ; 111(10): 2327-2335, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27851954

RESUMEN

Airway closure has important implications for lung disease, especially asthma; in particular, the prospect of bistability between open and closed (or effectively closed) airway states has been thought to play a prominent role in airway closure associated with the formation of clustered ventilation defects in asthma. However, many existing analyses of closure consider only static airway equilibria; here we construct, to our knowledge, a new model wherein airway narrowing and closure dynamics are modulated by coupling the airway to cross-bridge models of airway smooth muscle dynamics and force generation. Using this model, we show that important qualitative features of airway pressure-radius hysteresis loops are highly dependent on both airway smooth muscle dynamics, and the length-tension relationship. Furthermore, we show that two recent experimental results from intact bronchial segments are both expressions of the same phenomenon: that a monotonically increasing length-tension relationship, with sharply higher tension at longer lengths, is needed to drive the observed changes in low-compliance regions of the baseline pressure-radius curve. We also explore the potential implications of this finding for airway closure in coupled airway models.


Asunto(s)
Modelos Biológicos , Músculo Liso/fisiología , Fenómenos Fisiológicos Respiratorios , Presión
15.
J Theor Biol ; 406: 166-75, 2016 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-27374171

RESUMEN

Imaging studies of asthmatics typically reveal clustered ventilation patterns, rather than homogeneous ventilation; furthermore, the variation of these clusters suggests that the causes are at least partially dynamic, rather than structural. Theoretical studies have indicated dynamic mechanisms by which homogeneous ventilation solutions lose stability and clustered solutions emerge. At the same time, it has been demonstrated experimentally that respiratory reactance characteristically has a bilinear relationship with lung volume, and that changes to this relationship are indicative of various aspects of disease progression and control. Moreover, the transition point in the bilinear reactance relationship is thought to relate to reopening/recruitment of airway units, and thus may be connected to the bifurcation via which clustered ventilation solutions emerge. In order to investigate this possibility we develop a new model, including both airway-airway coupling and airway-parenchymal coupling, which exhibits both clustered ventilation defects and also a bilinear reactance relationship. Studying this model reveals that (1) the reactance breakpoint is not coincident with the bifurcation; (2) numerous changes to underlying behaviour can alter the reactance breakpoint in ways which mimic the experimental data; and (3) the location of ventilation defects can be a combination of both structural and dynamic factors.


Asunto(s)
Asma/fisiopatología , Ventilación Pulmonar/fisiología , Análisis por Conglomerados , Simulación por Computador , Humanos , Modelos Biológicos , Análisis Numérico Asistido por Computador
16.
J Theor Biol ; 395: 211-220, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-26874227

RESUMEN

Fibroblastic reticular cells (FRC) are arranged on a network in the T cell zone of lymph nodes, forming a scaffold for T cell migration, and providing survival factors, especially interleukin-7 (IL-7). Conversely, CD4(+) T cells are the major producers of lymphotoxin-ß (LT-ß), necessary for the construction and maintenance of the FRC network. This interdependence creates the possibility of a vicious cycle, perpetuating loss of both FRC and T cells. Furthermore, evidence that HIV infection is responsible for collagenation of the network suggests that long term loss of network function might be responsible for the attenuated recovery in T cell count seen in HIV patients undergoing antiretroviral therapy (ART). We present computational and mathematical models of this interaction mechanism and subsequent naive CD4(+) T-cell depletion in which (1) collagen deposition impedes access of naive T cells to IL-7 on the FRC and loss of IL-7 production by loss of FRC network itself, leading to the depletion of naive T cells through increased apoptosis; and (2) depletion of naive T cells as the source of LT-ß on which the FRC depend for survival leads to loss of the network, thereby amplifying and perpetuating the cycle of depletion of both naive T cells and stromal cells. Our computational model explicitly includes an FRC network and its cytokine exchange with a heterogeneous T-cell population. We also derive lumped models, in terms of partial differential equations and reduced to ordinary differential equations, that provide additional insight into the mechanisms at work. The central conclusions are that (1) damage to the reticular network, caused by HIV infection is a plausible mechanism for attenuated recovery post-ART; (2) within this, the production of T cell survival factors by FRCs may be the key rate-limiting step; and (3) the methods of model reduction and analysis presented are useful for both immunological studies and other contexts in which agent-based models are severely limited by computational cost.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Fibroblastos/inmunología , Infecciones por VIH/inmunología , Ganglios Linfáticos/inmunología , Modelos Inmunológicos , Antirretrovirales/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Humanos , Interleucina-7/inmunología , Linfotoxina beta/inmunología
17.
Am J Physiol Lung Cell Mol Physiol ; 308(1): L1-10, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25305246

RESUMEN

Smooth muscle contraction can be divided into two phases: the initial contraction determines the amount of developed force and the second phase determines how well the force is maintained. The initial phase is primarily due to activation of actomyosin interaction and is relatively well understood, whereas the second phase remains poorly understood. Force maintenance in the sustained phase can be disrupted by strains applied to the muscle; the strain causes actomyosin cross-bridges to detach and also the cytoskeletal structure to disassemble in a process known as fluidization, for which the underlying mechanism is largely unknown. In the present study we investigated the ability of airway smooth muscle to maintain force after the initial phase of contraction. Specifically, we examined the roles of Rho-kinase and protein kinase C (PKC) in force maintenance. We found that for the same degree of initial force inhibition, Rho-kinase substantially reduced the muscle's ability to sustain force under static conditions, whereas inhibition of PKC had a minimal effect on sustaining force. Under oscillatory strain, Rho-kinase inhibition caused further decline in force, but again, PKC inhibition had a minimal effect. We also found that Rho-kinase inhibition led to a decrease in the myosin filament mass in the muscle cells, suggesting that one of the functions of Rho-kinase is to stabilize myosin filaments. The results also suggest that dissolution of myosin filaments may be one of the mechanisms underlying the phenomenon of fluidization. These findings can shed light on the mechanism underlying deep inspiration induced bronchodilation.


Asunto(s)
Contracción Muscular/fisiología , Fuerza Muscular/fisiología , Músculo Liso/fisiología , Miosinas/metabolismo , Tráquea/fisiología , Quinasas Asociadas a rho/metabolismo , Actomiosina/metabolismo , Animales , Inhalación/fisiología , Proteína Quinasa C/metabolismo , Ovinos
18.
J Math Biol ; 70(5): 1119-49, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24810407

RESUMEN

Clustered ventilation defects are a hallmark of asthma, typically seen via imaging studies during asthma attacks. The mechanisms underlying the formation of these clusters is of great interest in understanding asthma. Because the clusters vary from event to event, many researchers believe they occur due to dynamic, rather than structural, causes. To study the formation of these clusters, we formulate and analyze a lattice-based model of the lung, considering both the role of airway bistability and a mechanism for organizing the spatial structure. Within this model we show how and why the homogeneous ventilation solution becomes unstable, and under what circumstances the resulting heterogeneous solution is a clustered solution. The size of the resulting clusters is shown to arise from structure of the eigenvalues and eigenvectors of the system, admitting not only clustered solutions but also (aphysical) checkerboard solutions. We also consider the breathing efficiency of clustered solutions in severely constricted lungs, showing that stabilizing the homogeneous solution may be advantageous in some circumstances. Extensions to hexagonal and cubic lattices are also studied.


Asunto(s)
Pulmón/anatomía & histología , Pulmón/fisiología , Modelos Biológicos , Asma/patología , Asma/fisiopatología , Análisis por Conglomerados , Humanos , Imagen por Resonancia Magnética , Conceptos Matemáticos , Modelos Anatómicos , Hipersensibilidad Respiratoria , Mecánica Respiratoria , Fenómenos Fisiológicos Respiratorios
19.
Artículo en Inglés | MEDLINE | ID: mdl-26744596

RESUMEN

Understanding and treatment of asthma is significantly complicated by the heterogeneous spectrum of phenotypes associated with the disease. Recent advances in phenotype classification promise more targeted therapies, but these categories are based on constellations of largely external measurements and are not necessarily indicative of underlying pathophysiology. We propose that computational modelling is a valuable tool that allows the disease spectrum to be decomposed not into phenotypes but rather into groups organized by underlying dysfunction, referred to by some authors as endotypes. By breaking down the asthmatic spectrum in this way, therapies can be targeted more directly to the underlying defects. This would be not only an important improvement in its own right, but also an important step toward the ultimate goal of patient-specific modelling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA