Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Craniofac Surg ; 28(5): e422-e431, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28570402

RESUMEN

Mandibular prognathism is defined as an abnormal forward projection of the mandible beyond the standard relation to the cranial base and it is usually categorized as both a skeletal Class III pattern and Angle Class III malocclusion. The etiology of mandibular prognathism is still uncertain, with various genetic, epigenetic, and environmental factors possibly involved. However, many reports on its coexistence in both twins and segregation in families suggest the importance of genetic influences. A multifactorial and polygenic background with a threshold for expression or an autosomal dominant mode with incomplete penetrance and variable expressivity are the most probable inheritance patterns. Linkage analyses have, thus far, shown the statistical significance of such loci as 1p22.1, 1p22.3, 1p32.2, 1p36, 3q26.2, 4p16.1, 6q25, 11q22, 12pter-p12.3, 12q13.13, 12q23, 12q24.11, 14q24.3 to 31.2, and 19p13.2. The following appear among candidate genes: MATN1, EPB41, growth hormone receptor, COL2A1, COL1A1, MYO1H, DUSP6, ARHGAP21, ADAMTS1, FGF23, FGFR2, TBX5, ALPL, HSPG2, EVC, EVC2, the HoxC gene cluster, insulin-like growth factor 1, PLXNA2, SSX2IP, TGFB3, LTBP2, MMP13/CLG3, KRT7, and FBN3. On the other hand, MYH1, MYH2, MYH3, MYH7, MYH8, FOXO3, NFATC1, PTGS2, KAT6B, HDAC4, and RUNX2 expression is suspected to be involved in the epigenetic regulations behind the mandibular prognathism phenotype.


Asunto(s)
Maloclusión de Angle Clase III/genética , Mandíbula , Prognatismo/genética , Cefalometría/métodos , Proteínas del Citoesqueleto/genética , Factor-23 de Crecimiento de Fibroblastos , Ligamiento Genético , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Maloclusión de Angle Clase III/diagnóstico , Mandíbula/anomalías , Mandíbula/diagnóstico por imagen , Prognatismo/diagnóstico
2.
Ginekol Pol ; 86(9): 694-9, 2015 Sep.
Artículo en Polaco | MEDLINE | ID: mdl-26665572

RESUMEN

UNLABELLED: The aim of the study was to assess whether commercial kit QF-PCR can be used as the only method for rapic prenatal dia gnosis of chromosomes 13, 18, 21, X and Y aneuploidies, omitting cell culture and complete cyt6genetik analysis of fetal chromosomes. MATERIAL AND METHODS: DNA from amniocytes (94 cases) and trophoblast cells (6 cases) was analyzed witt QF-PCR according to the manufacturer's protocol. The obtained products were separated using ABI 310 Genetic Analyzer and the resulting data were analyzed using GeneMarker software. RESULTS: The results of QF-PCR were obtained in 95 out of 100 cases (95%). Abnormalities were found in 28 casea (29.5%). All these results were confirmed in subsequent cytogenetic analysis. Normal results were obtained in 62 patients (70.5%). However in that group, we found three chromosomal aberrations other than those analyzed b3 QF-PCR. Additionally two abnormal and three normal karyotypes were found in patients with inconclusive QF-POF results. CONCLUSIONS: QF-PCR is a fast and reliable tool for chromosomal aneuploidy analysis and can be used as the only method without a full analysis of the karyotype, but only in cases of suspected fetal 13, 18, 21 trisomy or numerica aberrations of X chromosome. In other cases, fetal karyotype analysis from cells obtained after cell culture should be offered to the patient.


Asunto(s)
Aneuploidia , Trastornos de los Cromosomas/diagnóstico , Reacción en Cadena de la Polimerasa/métodos , Diagnóstico Prenatal/métodos , Trastornos de los Cromosomas/genética , Cromosomas Humanos 21-22 e Y , Cromosomas Humanos Par 13 , Cromosomas Humanos Par 18 , ADN/análisis , Femenino , Humanos , Cariotipificación/métodos , Embarazo , Trastornos de los Cromosomas Sexuales/diagnóstico , Factores de Tiempo , Trisomía/diagnóstico , Síndrome de la Trisomía 13
3.
Front Genet ; 13: 941375, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36171877

RESUMEN

Breast and ovarian cancers are among the most common malignancies in the female population, with approximately 5-10% of cases being hereditary. BRCA1 and BRCA2 with other homologous recombination genes are the most tested genes in hereditary breast and ovarian cancer (HBOC) patients. As next-generation sequencing (NGS) has become a standard and popular technique, such as for HBOC, it has greatly simplified and accelerated molecular diagnosis of cancer. The study group included 3,458 HBOC patients or their relatives from Lower Silesia (Poland) (a voivodeship located in south-west Poland inhabited by 2.9 million people). All patients were tested according to the recommendations from the National Cancer Control Programme of the Ministry of Health for the years 2018-21. We tested 3,400 patients for recurrent pathogenic variants for the Polish population: five BRCA1 founder variants (c.5266dup, c.181T>G, c.4035del, c.3700_3704del, and c.68_69del), two PALB2 variants (c.509_510del, c.172_175del) and three CHEK2 variants [c.1100del, c.444+1G>A, g.27417113-27422508del (del5395)]. Next 260 patients from the study group were chosen for the BRCA1/2 NGS panel, and additionally selected marker pathogenic variants were tested using Sanger sequencing and MLPA methods in 45 and 13 individuals, respectively. The analysis of BRCA1/2 in the 3,458 patients with HBOC or their relatives revealed 144 carriers of 37 different pathogenic variants (22 in BRCA1 and 15 in BRCA2). Among all detected variants, 71.53% constituted founder pathogenic BRCA1 variants. Our study has revealed that for the Lower Silesian population, the first-line BRCA1/2 molecular test may be limited to only three variants in BRCA1-c.5266dup, c.181T>G, and c.4035del-but the aim should be to provide a full screening test of HBOC critical genes. The key and still growing role of molecular diagnostics of neoplasms, which includes HBOC, is undeniable. Therefore, it is necessary to provide complete and optimal therapeutic and prophylactic algorithms in line with current medical knowledge.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA