Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Mol Cell Cardiol ; 193: 25-35, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38768805

RESUMEN

The YTH-domain family (YTHDF) of RNA binding proteins can control gene expression at the post-transcriptional level by regulating mRNAs with N6-methyladenosine (m6A) modifications. Despite the established importance of m6A in the heart, the cardiac role of specific m6A-binding proteins remains unclear. Here, we characterized the function of YTHDF1 in cardiomyocytes using a newly generated cardiac-restricted mouse model. Deletion of YTHDF1 in adult cardiomyocytes led to hypertrophy, fibrosis, and dysfunction. Using mass spectrometry, we identified the necessity of YTHDF1 for the expression of cardiomyocyte membrane raft proteins. Specifically, YTHDF1 bound to m6A-modified Caveolin 1 (Cav1) mRNA and favored its translation. We further demonstrated that YTHDF1 regulates downstream ERK signaling. Altogether, our findings highlight a novel role for YTHDF1 as a post-transcriptional regulator of caveolar proteins which is necessary for the maintenance of cardiac function.

2.
PLoS Pathog ; 18(2): e1010342, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35192678

RESUMEN

Viral infection of the heart is a common but underappreciated cause of heart failure. Viruses can cause direct cardiac damage by lysing infected cardiomyocytes. Inflammatory immune responses that limit viral replication can also indirectly cause damage during infection, making regulatory factors that fine-tune these responses particularly important. Identifying and understanding these factors that regulate cardiac immune responses during infection will be essential for developing targeted treatments for virus-associated heart failure. Our laboratory has discovered Brain Expressed X-linked protein 1 (BEX1) as a novel stress-regulated pro-inflammatory factor in the heart. Here we report that BEX1 plays a cardioprotective role in the heart during viral infection. Specifically, we adopted genetic gain- and loss-of-function strategies to modulate BEX1 expression in the heart in the context of coxsackievirus B3 (CVB3)-induced cardiomyopathy and found that BEX1 limits viral replication in cardiomyocytes. Interestingly, despite the greater viral load observed in mice lacking BEX1, inflammatory immune cell recruitment in the mouse heart was profoundly impaired in the absence of BEX1. Overall, the absence of BEX1 accelerated CVB3-driven heart failure and pathologic heart remodeling. This result suggests that limiting inflammatory cell recruitment has detrimental consequences for the heart during viral infections. Conversely, transgenic mice overexpressing BEX1 in cardiomyocytes revealed the efficacy of BEX1 for counteracting viral replication in the heart in vivo. We also found that BEX1 retains its antiviral role in isolated cells. Indeed, BEX1 was necessary and sufficient to counteract viral replication in both isolated primary cardiomyocytes and mouse embryonic fibroblasts suggesting a broader applicability of BEX1 as antiviral agent that extended to viruses other than CVB3, including Influenza A and Sendai virus. Mechanistically, BEX1 regulated interferon beta (IFN-ß) expression in infected cells. Overall, our study suggests a multifaceted role of BEX1 in the cardiac antiviral immune response.


Asunto(s)
Infecciones por Coxsackievirus , Insuficiencia Cardíaca , Miocarditis , Virosis , Animales , Antivirales/farmacología , Enterovirus Humano B , Fibroblastos , Ratones , Miocitos Cardíacos , Virosis/genética , Replicación Viral
4.
Proc Natl Acad Sci U S A ; 116(37): 18607-18612, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31451661

RESUMEN

Influenza virus can disseminate from the lungs to the heart in severe infections and can induce cardiac pathology, but this has been difficult to study due to a lack of small animal models. In humans, polymorphisms in the gene encoding the antiviral restriction factor IFN-induced transmembrane protein 3 (IFITM3) are associated with susceptibility to severe influenza, but whether IFITM3 deficiencies contribute to cardiac dysfunction during infection is unclear. We show that IFITM3 deficiency in a new knockout (KO) mouse model increases weight loss and mortality following influenza virus infections. We investigated this enhanced pathogenesis with the A/PR/8/34 (H1N1) (PR8) influenza virus strain, which is lethal in KO mice even at low doses, and observed increased replication of virus in the lungs, spleens, and hearts of KO mice compared with wild-type (WT) mice. Infected IFITM3 KO mice developed aberrant cardiac electrical activity, including decreased heart rate and irregular, arrhythmic RR (interbeat) intervals, whereas WT mice exhibited a mild decrease in heart rate without irregular RR intervals. Cardiac electrical dysfunction in PR8-infected KO mice was accompanied by increased activation of fibrotic pathways and fibrotic lesions in the heart. Infection with a sublethal dose of a less virulent influenza virus strain (A/WSN/33 [H1N1]) resulted in a milder cardiac electrical dysfunction in KO mice that subsided as the mice recovered. Our findings reveal an essential role for IFITM3 in limiting influenza virus replication and pathogenesis in heart tissue and establish IFITM3 KO mice as a powerful model for studying mild and severe influenza virus-induced cardiac dysfunction.


Asunto(s)
Cardiopatías/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Gripe Humana/genética , Proteínas de la Membrana/genética , Miocardio/patología , Animales , Modelos Animales de Enfermedad , Ecocardiografía , Electrocardiografía , Fibrosis , Predisposición Genética a la Enfermedad , Corazón/diagnóstico por imagen , Corazón/virología , Cardiopatías/diagnóstico , Cardiopatías/patología , Cardiopatías/virología , Humanos , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Gripe Humana/complicaciones , Gripe Humana/inmunología , Gripe Humana/virología , Proteínas de la Membrana/inmunología , Ratones , Ratones Noqueados , Índice de Severidad de la Enfermedad , Replicación Viral/genética , Replicación Viral/inmunología
5.
J Mol Cell Cardiol ; 151: 46-55, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33188779

RESUMEN

Regulation of gene expression plays a fundamental role in cardiac stress-responses. Modification of coding transcripts by adenosine methylation (m6A) has recently emerged as a critical post-transcriptional mechanism underlying heart disease. Thousands of mammalian mRNAs are known to be m6A-modified, suggesting that remodeling of the m6A landscape may play an important role in cardiac pathophysiology. Here we found an increase in m6A content in human heart failure samples. We then adopted genome-wide analysis to define all m6A-regulated sites in human failing compared to non-failing hearts and identified targeted transcripts involved in histone modification as enriched in heart failure. Further, we compared all m6A sites regulated in human hearts with the ones occurring in isolated rat hypertrophic cardiomyocytes to define cardiomyocyte-specific m6A events conserved across species. Our results identified 38 shared transcripts targeted by m6A during stress conditions, and 11 events that are unique to unstressed cardiomyocytes. Of these, further evaluation of select mRNA and protein abundances demonstrates the potential impact of m6A on post-transcriptional regulation of gene expression in the heart.


Asunto(s)
Adenosina/análogos & derivados , Cardiomegalia/genética , Miocardio/metabolismo , Transcripción Genética , Adenosina/metabolismo , Animales , Animales Recién Nacidos , Secuencia de Bases , Biocatálisis , Insuficiencia Cardíaca/genética , Humanos , Miocitos Cardíacos/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Estrés Fisiológico/genética
6.
J Cell Mol Med ; 25(10): 4637-4648, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33755308

RESUMEN

Heart failure (HF) is characterized by asymmetrical autonomic balance. Treatments to restore parasympathetic activity in human heart failure trials have shown beneficial effects. However, mechanisms of parasympathetic-mediated improvement in cardiac function remain unclear. The present study examined the effects and underpinning mechanisms of chronic treatment with the cholinesterase inhibitor, pyridostigmine (PYR), in pressure overload HF induced by transverse aortic constriction (TAC) in mice. TAC mice exhibited characteristic adverse structural (left ventricular hypertrophy) and functional remodelling (reduced ejection fraction, altered myocyte calcium (Ca) handling, increased arrhythmogenesis) with enhanced predisposition to arrhythmogenic aberrant sarcoplasmic reticulum (SR) Ca release, cardiac ryanodine receptor (RyR2) hyper-phosphorylation and up-regulated store-operated Ca entry (SOCE). PYR treatment resulted in improved cardiac contractile performance and rhythmic activity relative to untreated TAC mice. Chronic PYR treatment inhibited altered intracellular Ca handling by alleviating aberrant Ca release and diminishing pathologically enhanced SOCE in TAC myocytes. At the molecular level, these PYR-induced changes in Ca handling were associated with reductions of pathologically enhanced phosphorylation of RyR2 serine-2814 and STIM1 expression in HF myocytes. These results suggest that chronic cholinergic augmentation alleviates HF via normalization of both canonical RyR2-mediated SR Ca release and non-canonical hypertrophic Ca signaling via STIM1-dependent SOCE.


Asunto(s)
Arritmias Cardíacas/tratamiento farmacológico , Calcio/metabolismo , Inhibidores de la Colinesterasa/farmacología , Insuficiencia Cardíaca/tratamiento farmacológico , Bromuro de Piridostigmina/farmacología , Canal Liberador de Calcio Receptor de Rianodina/química , Molécula de Interacción Estromal 1/antagonistas & inhibidores , Animales , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Masculino , Ratones , Ratones Endogámicos C57BL
7.
Circulation ; 139(4): 533-545, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30586742

RESUMEN

BACKGROUND: N6-Methyladenosine (m6A) methylation is the most prevalent internal posttranscriptional modification on mammalian mRNA. The role of m6A mRNA methylation in the heart is not known. METHODS: To determine the role of m6A methylation in the heart, we isolated primary cardiomyocytes and performed m6A immunoprecipitation followed by RNA sequencing. We then generated genetic tools to modulate m6A levels in cardiomyocytes by manipulating the levels of the m6A RNA methylase methyltransferase-like 3 (METTL3) both in culture and in vivo. We generated cardiac-restricted gain- and loss-of-function mouse models to allow assessment of the METTL3-m6A pathway in cardiac homeostasis and function. RESULTS: We measured the level of m6A methylation on cardiomyocyte mRNA, and found a significant increase in response to hypertrophic stimulation, suggesting a potential role for m6A methylation in the development of cardiomyocyte hypertrophy. Analysis of m6A methylation showed significant enrichment in genes that regulate kinases and intracellular signaling pathways. Inhibition of METTL3 completely abrogated the ability of cardiomyocytes to undergo hypertrophy when stimulated to grow, whereas increased expression of the m6A RNA methylase METTL3 was sufficient to promote cardiomyocyte hypertrophy both in vitro and in vivo. Finally, cardiac-specific METTL3 knockout mice exhibit morphological and functional signs of heart failure with aging and stress, showing the necessity of RNA methylation for the maintenance of cardiac homeostasis. CONCLUSIONS: Our study identified METTL3-mediated methylation of mRNA on N6-adenosines as a dynamic modification that is enhanced in response to hypertrophic stimuli and is necessary for a normal hypertrophic response in cardiomyocytes. Enhanced m6A RNA methylation results in compensated cardiac hypertrophy, whereas diminished m6A drives eccentric cardiomyocyte remodeling and dysfunction, highlighting the critical importance of this novel stress-response mechanism in the heart for maintaining normal cardiac function.


Asunto(s)
Adenosina/análogos & derivados , Hipertrofia Ventricular Izquierda/enzimología , Metiltransferasas/metabolismo , Miocitos Cardíacos/enzimología , Función Ventricular Izquierda , Remodelación Ventricular , Adenosina/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Metiltransferasas/deficiencia , Metiltransferasas/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/patología , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Transducción de Señal
8.
J Mol Cell Cardiol ; 129: 272-280, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30880252

RESUMEN

Cardiovascular disease (CVD) remains the leading cause of death in the Western world. Despite advances in the prevention and in the management of CVD, the role of RNA epigenetics in the cardiovascular system has been until recently unexplored. The rapidly expanding research field of RNA modifications has introduced a novel layer of gene regulation in mammalian cells. RNA modifications may control all aspects of RNA metabolism, and their study reveals previously unrecognized regulatory pathways that may determine gene expression at a post-transcriptional level. Understanding the role of RNA modifications in CVD may lead towards a better understanding of disease mechanisms and the development of novel biomarkers or therapeutic strategies. In this review, we highlight the most recent and major reports in the field of RNA methylation and adenosine to inosine RNA editing related to the cardiovascular field and we discuss how this breakthrough will advance the field of precision medicine.


Asunto(s)
Enfermedades Cardiovasculares/genética , Epigénesis Genética , ARN/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Animales , Metilación de ADN/genética , Humanos , ARN/metabolismo , Edición de ARN/genética
9.
J Mol Cell Cardiol ; 121: 205-211, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30040954

RESUMEN

Cardiac fibrosis is a common pathologic consequence of stress insult to the heart and is characterized by abnormal deposition of fibrotic extracellular matrix that compromises cardiac function. Cardiac fibroblasts are key mediators of fibrotic remodeling and are regulated by secreted stress-response proteins. The matricellular protein connective tissue growth factor (CTGF), or CCN2, is strongly produced by injured cardiomyocytes and although it is considered a pro-fibrotic factor in many organ systems, its role in cardiac fibrosis is controversial. Here we adopted a cell-specific genetic approach to conditionally delete CCN2 in either cardiomyocytes or activated fibroblasts. Fibrosis was induced by angiotensin II-based neurohumoral stimulation, an insult that strongly induces CCN2 expression from cardiomyocytes and to a lesser extent in fibroblasts. Remarkably, only CCN2 deletion from activated fibroblasts inhibited the fibrotic remodeling while deletion from cardiomyocytes (the main source of CCN2 in the heart) had no effects. In vitro experiments revealed that although efficiently secreted by both fibroblasts and cardiomyocytes, only fibroblast-derived CCN2 is proficient in its ability to fully activate fibroblasts. These results overall indicate that although secreted into the extracellular matrix, CCN2 acts in an autocrine fashion. Secretion of CCN2 by cardiomyocytes is not pro-fibrotic, while fibroblast-derived CCN2 can modulate fibrosis in the heart. In conclusion we found that cardiomyocyte-derived CCN2 is dispensable for cardiac fibrosis, while inhibiting CCN2 induction in activated fibroblasts is sufficient to abrogate the cardiac fibrotic response to angiotensin II. Hence, CCN2 is an autocrine factor in the heart.


Asunto(s)
Angiotensina II/genética , Factor de Crecimiento del Tejido Conjuntivo/genética , Fibrosis/genética , Insuficiencia Cardíaca/genética , Angiotensina II/metabolismo , Animales , Comunicación Autocrina/genética , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Fibrosis/patología , Insuficiencia Cardíaca/patología , Humanos , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miofibroblastos/metabolismo , Miofibroblastos/patología , Remodelación Ventricular/genética
10.
Circulation ; 136(6): 549-561, 2017 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-28356446

RESUMEN

BACKGROUND: In the heart, acute injury induces a fibrotic healing response that generates collagen-rich scarring that is at first protective but if inappropriately sustained can worsen heart disease. The fibrotic process is initiated by cytokines, neuroendocrine effectors, and mechanical strain that promote resident fibroblast differentiation into contractile and extracellular matrix-producing myofibroblasts. The mitogen-activated protein kinase p38α (Mapk14 gene) is known to influence the cardiac injury response, but its direct role in orchestrating programmed fibroblast differentiation and fibrosis in vivo is unknown. METHODS: A conditional Mapk14 allele was used to delete the p38α encoding gene specifically in cardiac fibroblasts or myofibroblasts with 2 different tamoxifen-inducible Cre recombinase-expressing gene-targeted mouse lines. Mice were subjected to ischemic injury or chronic neurohumoral stimulation and monitored for survival, cardiac function, and fibrotic remodeling. Antithetically, mice with fibroblast-specific transgenic overexpression of activated mitogen-activated protein kinase kinase 6, a direct inducer of p38, were generated to investigate whether this pathway can directly drive myofibroblast formation and the cardiac fibrotic response. RESULTS: In mice, loss of Mapk14 blocked cardiac fibroblast differentiation into myofibroblasts and ensuing fibrosis in response to ischemic injury or chronic neurohumoral stimulation. A similar inhibition of myofibroblast formation and healing was also observed in a dermal wounding model with deletion of Mapk14. Transgenic mice with fibroblast-specific activation of mitogen-activated protein kinase kinase 6-p38 developed interstitial and perivascular fibrosis in the heart, lung, and kidney as a result of enhanced myofibroblast numbers. Mechanistic experiments show that p38 transduces cytokine and mechanical signals into myofibroblast differentiation through the transcription factor serum response factor and the signaling effector calcineurin. CONCLUSIONS: These findings suggest that signals from diverse modes of injury converge on p38α mitogen-activated protein kinase within the fibroblast to program the fibrotic response and myofibroblast formation in vivo, suggesting a novel therapeutic approach with p38 inhibitors for future clinical application.


Asunto(s)
Fibroblastos/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/genética , Actinas/metabolismo , Alelos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Células Cultivadas , Citocinas/metabolismo , Fibroblastos/citología , Fibrosis , Ventrículos Cardíacos/diagnóstico por imagen , Isquemia/etiología , Isquemia/metabolismo , Isquemia/patología , Riñón/metabolismo , Riñón/patología , Pulmón/metabolismo , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína Quinasa 14 Activada por Mitógenos/deficiencia , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Miocardio/metabolismo , Miocardio/patología , Miofibroblastos/citología , Miofibroblastos/metabolismo , Transducción de Señal
11.
Am J Physiol Heart Circ Physiol ; 310(11): H1583-91, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27106045

RESUMEN

ß2-Spectrin is critical for integrating membrane and cytoskeletal domains in excitable and nonexcitable cells. The role of ß2-spectrin for vertebrate function is illustrated by dysfunction of ß2-spectrin-based pathways in disease. Recently, defects in ß2-spectrin association with protein partner ankyrin-B were identified in congenital forms of human arrhythmia. However, the role of ß2-spectrin in common forms of acquired heart failure and arrhythmia is unknown. We report that ß2-spectrin protein levels are significantly altered in human cardiovascular disease as well as in large and small animal cardiovascular disease models. Specifically, ß2-spectrin levels were decreased in atrial samples of patients with atrial fibrillation compared with tissue from patients in sinus rhythm. Furthermore, compared with left ventricular samples from nonfailing hearts, ß2-spectrin levels were significantly decreased in left ventricle of ischemic- and nonischemic heart failure patients. Left ventricle samples of canine and murine heart failure models confirm reduced ß2-spectrin protein levels. Mechanistically, we identify that ß2-spectrin levels are tightly regulated by posttranslational mechanisms, namely Ca(2+)- and calpain-dependent proteases. Furthermore, consistent with this data, we observed Ca(2+)- and calpain-dependent loss of ß2-spectrin downstream effector proteins, including ankyrin-B in heart. In summary, our findings illustrate that ß2-spectrin and downstream molecules are regulated in multiple forms of cardiovascular disease via Ca(2+)- and calpain-dependent proteolysis.


Asunto(s)
Fibrilación Atrial/metabolismo , Insuficiencia Cardíaca/metabolismo , Ventrículos Cardíacos/metabolismo , Espectrina/metabolismo , Adulto , Anciano , Animales , Ancirinas/metabolismo , Fibrilación Atrial/fisiopatología , Calcio/metabolismo , Calpaína/metabolismo , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Perros , Regulación hacia Abajo , Femenino , Insuficiencia Cardíaca/fisiopatología , Ventrículos Cardíacos/fisiopatología , Humanos , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Proteolisis , Transducción de Señal , Volumen Sistólico , Función Ventricular Izquierda
12.
Circ Res ; 111(5): 521-31, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22752967

RESUMEN

RATIONALE: MicroRNA-499 and other members of the myomiR family regulate myosin isoforms in pressure-overload hypertrophy. miR-499 expression varies in human disease, but results of mouse cardiac miR-499 overexpression are inconsistent, either protecting against ischemic damage or aggravating cardiomyopathy after pressure overload. Likewise, there is disagreement over direct and indirect cardiac mRNAs targeted in vivo by miR-499. OBJECTIVE: To define the associations between regulated miR-499 level in clinical and experimental heart disease and modulation of its predicted mRNA targets and to determine the consequences of increased cardiac miR-499 on direct mRNA targeting, indirect mRNA modulation, and on myocardial protein content and posttranslational modification. METHODS AND RESULTS: miR-499 levels were increased in failing and hypertrophied human hearts and associated with decreased levels of predicted target mRNAs. Likewise, miR-499 is increased in Gq-mediated murine cardiomyopathy. Forced cardiomyocyte expression of miR-499 at levels comparable to human cardiomyopathy induced progressive murine heart failure and exacerbated cardiac remodeling after pressure overloading. Genome-wide RNA-induced silencing complex and RNA sequencing identified 67 direct, and numerous indirect, cardiac mRNA targets, including Akt and MAPKs. Myocardial proteomics identified alterations in protein phosphorylation linked to the miR-499 cardiomyopathy phenotype, including of heat shock protein 90 and protein serine/threonine phosphatase 1-α. CONCLUSIONS: miR-499 is increased in human and murine cardiac hypertrophy and cardiomyopathy, is sufficient to cause murine heart failure, and accelerates maladaptation to pressure overloading. The deleterious effects of miR-499 reflect the cumulative consequences of direct and indirect mRNA regulation, modulation of cardiac kinase and phosphatase pathways, and higher-order effects on posttranslational modification of myocardial proteins.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Sistema de Señalización de MAP Quinasas/genética , MicroARNs/fisiología , Envejecimiento/fisiología , Animales , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatología , Cardiomiopatías/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/fisiopatología , Modelos Animales de Enfermedad , Regulación hacia Abajo/fisiología , Perfilación de la Expresión Génica , Proteínas HSP90 de Choque Térmico/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Transgénicos , Fosforilación/fisiología , Proteína Fosfatasa 1/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Proteómica , Transgenes/fisiología
13.
JACC Basic Transl Sci ; 8(9): 1180-1194, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37791304

RESUMEN

How post-transcriptional regulation of gene expression, such as through N6-methyladenosine (m6A) messenger RNA methylation, impacts heart function is not well understood. We found that loss of the m6A binding protein YTHDF2 in cardiomyocytes of adult mice drove cardiac dysfunction. By proteomics, we found myocardial zonula adherens protein (MYZAP) within the top up-regulated proteins in knockout cardiomyocytes. We further demonstrated that YTHDF2 binds m6A-modified Myzap messenger RNA and controls its stability. Cardiac overexpression of MYZAP has been associated with cardiomyopathy. Thus, our findings provide an important new mechanism for the YTHDF2-dependent regulation of this target and therein its novel role in the maintenance of cardiac homeostasis.

14.
Mol Ther Methods Clin Dev ; 28: 344-354, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36874243

RESUMEN

Micro-dystrophin gene replacement therapies for Duchenne muscular dystrophy (DMD) are currently in clinical trials, but have not been thoroughly investigated for their efficacy on cardiomyopathy progression to heart failure. We previously validated Fiona/dystrophin-utrophin-deficient (dko) mice as a DMD cardiomyopathy model that progresses to reduced ejection fraction indicative of heart failure. Adeno-associated viral (AAV) vector delivery of an early generation micro-dystrophin prevented cardiac pathology and functional decline through 1 year of age in this new model. We now show that gene therapy using a micro-dystrophin optimized for skeletal muscle efficacy (AAV-µDys5), and which is currently in a clinical trial, is able to fully prevent cardiac pathology and cardiac strain abnormalities and maintain normal (>45%) ejection fraction through 18 months of age in Fiona/dko mice. Early treatment with AAV-µDys5 prevents inflammation and fibrosis in Fiona/dko hearts. Collagen in cardiac fibrotic scars becomes more tightly packed from 12 to 18 months in Fiona/dko mice, but the area of fibrosis containing tenascin C does not change. Increased tight collagen correlates with unexpected improvements in Fiona/dko whole-heart function that maintain impaired cardiac strain and strain rate. This study supports micro-dystrophin gene therapy as a promising intervention for preventing DMD cardiomyopathy progression.

15.
Circ Res ; 106(1): 166-75, 2010 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-19893015

RESUMEN

RATIONALE: MicroRNA (miR)-133a regulates cardiac and skeletal muscle differentiation and plays an important role in cardiac development. Because miR-133a levels decrease during reactive cardiac hypertrophy, some have considered that restoring miR-133a levels could suppress hypertrophic remodeling. OBJECTIVE: To prevent the "normal" downregulation of miR-133a induced by an acute hypertrophic stimulus in the adult heart. METHODS AND RESULTS: miR-133a is downregulated in transverse aortic constriction (TAC) and isoproterenol-induced hypertrophy, but not in 2 genetic hypertrophy models. Using MYH6 promoter-directed expression of a miR-133a genomic precursor, increased cardiomyocyte miR-133a had no effect on postnatal cardiac development assessed by measures of structure, function, and mRNA profile. However, increased miR-133a levels increased QT intervals in surface electrocardiographic recordings and action potential durations in isolated ventricular myocytes, with a decrease in the fast component of the transient outward K+ current, I(to,f), at baseline. Transgenic expression of miR-133a prevented TAC-associated miR-133a downregulation and improved myocardial fibrosis and diastolic function without affecting the extent of hypertrophy. I(to,f) downregulation normally observed post-TAC was prevented in miR-133a transgenic mice, although action potential duration and QT intervals did not reflect this benefit. miR-133a transgenic hearts had no significant alterations of basal or post-TAC mRNA expression profiles, although decreased mRNA and protein levels were observed for the I(to,f) auxiliary KChIP2 subunit, which is not a predicted target. CONCLUSIONS: These results reveal striking differences between in vitro and in vivo phenotypes of miR expression, and further suggest that mRNA signatures do not reliably predict either direct miR targets or major miR effects.


Asunto(s)
Cardiomegalia/metabolismo , MicroARNs/biosíntesis , Miocitos Cardíacos/metabolismo , Animales , Cardiomegalia/inducido químicamente , Cardiomegalia/genética , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Cardiotónicos/efectos adversos , Cardiotónicos/farmacología , Diástole , Electrocardiografía , Fibrosis , Regulación de la Expresión Génica/genética , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Isoproterenol/efectos adversos , Isoproterenol/farmacología , Proteínas de Interacción con los Canales Kv/biosíntesis , Proteínas de Interacción con los Canales Kv/genética , Ratones , Ratones Transgénicos , MicroARNs/genética , Miocitos Cardíacos/patología , Cadenas Pesadas de Miosina/genética , Regiones Promotoras Genéticas/genética
16.
Nat Commun ; 13(1): 168, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013323

RESUMEN

Skeletal muscle serves fundamental roles in organismal health. Gene expression fluctuations are critical for muscle homeostasis and the response to environmental insults. Yet, little is known about post-transcriptional mechanisms regulating such fluctuations while impacting muscle proteome. Here we report genome-wide analysis of mRNA methyladenosine (m6A) dynamics of skeletal muscle hypertrophic growth following overload-induced stress. We show that increases in METTL3 (the m6A enzyme), and concomitantly m6A, control skeletal muscle size during hypertrophy; exogenous delivery of METTL3 induces skeletal muscle growth, even without external triggers. We also show that METTL3 represses activin type 2 A receptors (ACVR2A) synthesis, blunting activation of anti-hypertrophic signaling. Notably, myofiber-specific conditional genetic deletion of METTL3 caused spontaneous muscle wasting over time and abrogated overload-induced hypertrophy; a phenotype reverted by co-administration of a myostatin inhibitor. These studies identify a previously unrecognized post-transcriptional mechanism promoting the hypertrophic response of skeletal muscle via control of myostatin signaling.


Asunto(s)
Receptores de Activinas Tipo II/genética , Hipertrofia/genética , Metiltransferasas/genética , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Miostatina/genética , Receptores de Activinas Tipo II/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Animales , Dependovirus/genética , Dependovirus/metabolismo , Regulación del Desarrollo de la Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Estudio de Asociación del Genoma Completo , Hipertrofia/metabolismo , Hipertrofia/patología , Hipertrofia/prevención & control , Masculino , Metiltransferasas/deficiencia , Ratones , Desarrollo de Músculos/genética , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Miostatina/metabolismo , Transducción de Señal
17.
Mol Metab ; 54: 101343, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34583010

RESUMEN

Regulation of organismal homeostasis in response to nutrient availability is a vital physiological process that involves inter-organ communication. Understanding the mechanisms controlling systemic cross-talk for the maintenance of metabolic health is critical to counteract diet-induced obesity. Here, we show that cardiac-derived transforming growth factor beta 1 (TGF-ß1) protects against weight gain and glucose intolerance in mice subjected to high-fat diet. Secretion of TGF-ß1 by cardiomyocytes correlates with the bioavailability of this factor in circulation. TGF-ß1 prevents adipose tissue inflammation independent of body mass and glucose metabolism phenotypes, indicating protection from adipocyte dysfunction-driven immune cell recruitment. TGF-ß1 alters the gene expression programs in white adipocytes, favoring their fatty acid oxidation and consequently increasing their mitochondrial oxygen consumption rates. Ultimately, subcutaneous and visceral white adipose tissue from cadiac-specific TGF-ß1 transgenic mice fail to undergo cellular hypertrophy, leading to reduced overall adiposity during high-fat feeding. Thus, TGF-ß1 is a critical mediator of heart-fat communication for the regulation of systemic metabolism.


Asunto(s)
Tejido Adiposo/metabolismo , Dieta Alta en Grasa/efectos adversos , Miocitos Cardíacos/metabolismo , Obesidad/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Femenino , Intolerancia a la Glucosa , Masculino , Ratones , Ratones Transgénicos , Aumento de Peso
18.
JCI Insight ; 6(7)2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33651713

RESUMEN

Gene replacement for Duchenne muscular dystrophy (DMD) with micro-dystrophins has entered clinical trials, but efficacy in preventing heart failure is unknown. Although most patients with DMD die from heart failure, cardiomyopathy is undetectable until the teens, so efficacy from trials in young boys will be unknown for a decade. Available DMD animal models were sufficient to demonstrate micro-dystrophin efficacy on earlier onset skeletal muscle pathology underlying loss of ambulation and respiratory insufficiency in patients. However, no mouse models progressed into heart failure, and dog models showed highly variable progression insufficient to evaluate efficacy of micro-dystrophin or other therapies on DMD heart failure. To overcome this barrier, we have generated the first DMD mouse model to our knowledge that reproducibly progresses into heart failure. This model shows cardiac inflammation and fibrosis occur prior to reduced function. Fibrosis does not continue to accumulate, but inflammation persists after function declines. We used this model to test micro-dystrophin gene therapy efficacy on heart failure prevention for the first time. Micro-dystrophin prevented declines in cardiac function and prohibited onset of inflammation and fibrosis. This model will allow identification of committed pathogenic steps to heart failure and testing of genetic and nongenetic therapies to optimize cardiac care for patients with DMD.


Asunto(s)
Cardiomiopatías/etiología , Cardiomiopatías/terapia , Distrofina/genética , Terapia Genética/métodos , Distrofia Muscular de Duchenne/complicaciones , Animales , Cardiomiopatías/fisiopatología , Modelos Animales de Enfermedad , Electrocardiografía , Femenino , Insuficiencia Cardíaca/prevención & control , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Distrofia Muscular de Duchenne/fisiopatología , Distrofia Muscular de Duchenne/terapia , Utrofina/genética
19.
J Clin Invest ; 131(4)2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33586683

RESUMEN

The relationship between adiposity and metabolic health is well established. However, very little is known about the fat depot, known as paracardial fat (pCF), located superior to and surrounding the heart. Here, we show that pCF remodels with aging and a high-fat diet and that the size and function of this depot are controlled by alcohol dehydrogenase 1 (ADH1), an enzyme that oxidizes retinol into retinaldehyde. Elderly individuals and individuals with obesity have low ADH1 expression in pCF, and in mice, genetic ablation of Adh1 is sufficient to drive pCF accumulation, dysfunction, and global impairments in metabolic flexibility. Metabolomics analysis revealed that pCF controlled the levels of circulating metabolites affecting fatty acid biosynthesis. Also, surgical removal of the pCF depot was sufficient to rescue the impairments in cardiometabolic flexibility and fitness observed in Adh1-deficient mice. Furthermore, treatment with retinaldehyde prevented pCF remodeling in these animals. Mechanistically, we found that the ADH1/retinaldehyde pathway works by driving PGC-1α nuclear translocation and promoting mitochondrial fusion and biogenesis in the pCF depot. Together, these data demonstrate that pCF is a critical regulator of cardiometabolic fitness and that retinaldehyde and its generating enzyme ADH1 act as critical regulators of adipocyte remodeling in the pCF depot.


Asunto(s)
Tejido Adiposo/enzimología , Alcohol Deshidrogenasa/metabolismo , Mitocondrias Cardíacas/metabolismo , Obesidad/enzimología , Pericardio/enzimología , Tejido Adiposo/patología , Alcohol Deshidrogenasa/deficiencia , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Metabolómica , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/patología , Obesidad/genética , Obesidad/patología , Pericardio/patología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Retinaldehído/metabolismo , Transducción de Señal/genética
20.
Circulation ; 119(9): 1263-71, 2009 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-19237659

RESUMEN

BACKGROUND: Much has been learned about transcriptional control of cardiac gene expression in clinical and experimental congestive heart failure (CHF), but less is known about dynamic regulation of microRNAs (miRs) in CHF and during CHF treatment. We performed comprehensive microarray profiling of miRs and messenger RNAs (mRNAs) in myocardial specimens from human CHF with (n=10) or without (n=17) biomechanical support from left ventricular assist devices in comparison to nonfailing hearts (n=11). METHODS AND RESULTS: Twenty-eight miRs were upregulated >2.0-fold (P<0.001) in CHF, with nearly complete normalization of the heart failure miR signature by left ventricular assist device treatment. In contrast, of 444 mRNAs that were altered by >1.3-fold in failing hearts, only 29 mRNAs normalized by as much as 25% in post-left ventricular assist device hearts. Unsupervised hierarchical clustering of upregulated miRs and mRNAs with nearest centroid analysis and leave-1-out cross-validation revealed that combining the miR and mRNA signatures increased the ability of RNA profiling to serve as a clinical biomarker of diagnostic group and functional class. CONCLUSIONS: These results show that miRs are more sensitive than mRNAs to the acute functional status of end-stage heart failure, consistent with important functions for regulated miRs in the myocardial response to stress. Combined miR and mRNA profiling may have superior potential as a diagnostic and prognostic test in end-stage cardiomyopathy.


Asunto(s)
Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/terapia , Corazón Auxiliar , MicroARNs/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , Cardiomiopatías/diagnóstico , Cardiomiopatías/genética , Cardiomiopatías/terapia , Perfilación de la Expresión Génica , Marcadores Genéticos , Insuficiencia Cardíaca/diagnóstico , Humanos , Miocardio , Pronóstico , Recuperación de la Función/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA