Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
J Environ Manage ; 358: 120893, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38640761

RESUMEN

Herein, we demonstrate the prospects of tackling several environmental problems by transforming a local rice husk residue into an effective adsorbent, which was then applied for the treatment of real landfill leachate (LL). The study focused on establishing (i) the effect of simple washing on morphological aspects, (ii) evaluating target adsorption capacity for total iron (Fe) and nickel (Ni), (iii) determining regeneration and reuse potential of the adsorbent and (iv) complying to the requirements of worldwide legislations for reuse of treated LL wastewater. The adsorbent was prepared by employing a simple yet effective purification process that can be performed in situ. The LL was collected post-membrane treatment, and the characterizations revealed high concentrations of Fe, Ni, and organic matter content. The simple washing affected the crystallinity, resulting in structural alterations of the adsorbents, also increasing the porosity and specific surface. The adsorption process for Ni occurred naturally at pH 6, but adjusting the pH to 3 significantly improved removal efficiency and adsorption capacity for total Fe. The kinetics were accurately described by the pseudo-second-order model, while the Langmuir model provided a better fit for the isotherms. The adsorbent was stable for 5 reuses, and the metals adsorbed were recovered through basic leaching. The removal capacities achieved underscore the remarkable effectiveness of the process, ensuring the treated LL wastewater meets rigorous global environmental legislations for safe use in irrigation. Thus, by employing the compelling methods herein optimized it is possible to refer to the of solving three environmental problems at once.


Asunto(s)
Hierro , Níquel , Oryza , Contaminantes Químicos del Agua , Níquel/química , Oryza/química , Adsorción , Hierro/química , Contaminantes Químicos del Agua/química , Cinética , Aguas Residuales/química
2.
Molecules ; 27(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36431881

RESUMEN

Brazil's production and consumption of açai pulp (Euterpe oleracea) occur on a large scale. Most of the fruit is formed by the pit, which generates countless tons of residual biomass. A new purpose for this biomass, making its consumption highly sustainable, was presented in this study, where activated carbon (AC) was produced with zinc chloride for later use as an adsorbent. AC carbon formed by carbon and with a yield of 28 % was satisfactorily used as an adsorbent in removing the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Removal efficiency was due to the highly porous surface (Vp = 0.467 cm3 g-1; Dp = 1.126 nm) and good surface área (SBET = 920.56 m2 g-1). The equilibrium data fit the Sips heterogeneous and homogeneous surface model better. It was observed that the increase in temperature favored adsorption, reaching a maximum experimental capacity of 218 mg g-1 at 328 K. The thermodynamic behavior indicated a spontaneous, favorable, and endothermic behavior. The magnitude of the enthalpy of adsorption was in agreement with the physical adsorption. Regardless of the herbicide concentration, the adsorbent displayed fast kinetics, reaching equilibrium within 120 min. The linear driving force (LDF) model provided a strong statistical match to the kinetic curves. AC with zinc chloride (ZnCl2), created from leftover açai biomass, is a potential alternative as an adsorbent for treating effluents containing 2,4-D.


Asunto(s)
Euterpe , Herbicidas , Porosidad , Frutas , Carbón Orgánico , Fenoxiacetatos , Semillas , Ácido 2,4-Diclorofenoxiacético
3.
Molecules ; 27(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36296468

RESUMEN

The study of the recovery of bioactive compounds from natural resources and its implications in several areas is very significant for the scientific community. This work aimed to study Brazilian agroindustrial wastes' antioxidant and antimicrobial activities using green extraction. Olive leaves, jaboticaba peel, araçá peel, and pecan nut shells were evaluated under four conditions: (1) convective-drying and aqueous extraction, (2) convective-drying and ethanolic extraction, (3) freeze-drying and aqueous extraction, and (4) freeze-drying and ethanolic extraction. The results demonstrated that all samples showed high antioxidant potential, and the highest antioxidant activity was obtained for the extract of pecan nut shell. As for the quantification of compounds by HPLC, the olive leaf presented the highest content of phenolic compounds in the extract, mainly oleuropein. Finally, the antimicrobial activity analysis revealed the extracts' bactericidal potential against Staphylococcus aureus and Escherichia coli. The present study shows that green extraction can extract bioactive compounds with antioxidant and antimicrobial properties, highlighting the importance of choosing the drying method and solvent for future uses of these natural resources by the industry.


Asunto(s)
Antiinfecciosos , Antioxidantes , Antioxidantes/farmacología , Antioxidantes/análisis , Extractos Vegetales/farmacología , Brasil , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Solventes
4.
J Environ Manage ; 281: 111869, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33385897

RESUMEN

In this paper, two control laws are proposed and applied in a model for a continuous Microbial Electrochemical Cells system. The used model is based on mass balances describing the behavior of substrate consumption, microbial growth, competition between anodophilic and methanogenic microorganisms for the carbon source in the anode, hydrogen generation, and electrical current production. The main control objective is to improve the electrical current generated and thus the production of bio-hydrogen gas in the reactor, using the dilution rate and the applied potential as individual control input variables. The control laws implemented are nonlinear adaptive type. In order to demonstrate its usefulness, numerical simulation runs involving multiple set-point changes and input perturbations were conducted for each control variable. The results of these simulations show that both control laws were able to respond adequately and efficiently to the disturbances and reach the reference value to which they were subjected. Moreover, it is possible to control both the electrical current produced and the hydrogen produced. Finally, these simulations also show that the highest rate of hydrogen production can be obtained using the applied potential as a control input, but such productivity is only attainable for a short period of time.


Asunto(s)
Fuentes de Energía Bioeléctrica , Purificación del Agua , Electrodos , Electrólisis , Hidrógeno
5.
Water Sci Technol ; 78(8): 1693-1703, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30500793

RESUMEN

Araucaria angustifolia bark (AA-bark), a waste generated in wood processing, was evaluated as a potential adsorbent to remove Gentian Violet (GV) dye from aqueous solutions. The AA-bark presented an amorphous structure with irregular surface and was composed mainly of lignin and holocellulose. These characteristics indicated that the adsorbent contains available sites to accommodate the dye molecules. The GV adsorption on AA-bark was favored at pH 8.0 with adsorbent dosage of 0.80 g L-1. Pseudo-nth order model was adequate to represent the adsorption kinetics of GV on AA-bark. A fast adsorption rate was verified, with the equilibrium being attained within 30 min. Equilibrium data were well represented by the Langmuir model. The maximum adsorption capacity was 305.3 mg g-1. Adsorption was spontaneous, favorable and endothermic. AA-bark was able to treat a simulated dye house effluent, reaching color removal values of 80%. An excellent performance was found in fixed bed experiments, where the length of the mass transfer zone was only 5.38 cm and the breakthrough time was 138.5 h. AA-bark can be regenerated two times using HNO3 0.5 mol L-1. AA-bark can be used as a low-cost material to treat colored effluents in batch and fixed bed adsorption systems.


Asunto(s)
Violeta de Genciana/química , Semillas/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Adsorción , Violeta de Genciana/análisis , Concentración de Iones de Hidrógeno , Cinética , Termodinámica , Tracheophyta/química , Contaminantes Químicos del Agua/análisis
6.
Water Sci Technol ; 77(5-6): 1612-1621, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29595163

RESUMEN

Pará chestnut husk (Bertholletia excelsa) (PCH), an agro-industrial waste largely generated in Brazil, was employed as a low-cost and efficient biosorbent to remove the cationic dyes Crystal Violet (CV) and Methylene Blue (MB) from aqueous media. PCH presented an amorphous structure containing carboxylic acids, esters, ketones and aldehydes on the surface. Non-porous and irregular particles were also observed. For both dyes, the biosorption capacity was favored under acid conditions. Equilibrium was attained within 40 min at 25 °C with a PCH dosage of 0.5 g L-1. The biosorption kinetic curves were satisfactory explained by the pseudo-first-order model. The Freundlich model was best for representing the equilibrium curves. The maximum biosorption capacities were 83.6 and 83.8 mg g-1 for CV and MB, respectively. PCH was efficient for treating a simulated textile effluent containing several dyes and chemicals, achieving a color removal of 90%. In this way, PCH can be considered as an option for treating colored effluents containing textile dyes.


Asunto(s)
Bertholletia/química , Colorantes/química , Residuos Industriales/análisis , Adsorción , Brasil , Cationes , Violeta de Genciana , Concentración de Iones de Hidrógeno , Cinética , Azul de Metileno , Industria Textil , Eliminación de Residuos Líquidos , Agua , Contaminantes Químicos del Agua/química
7.
Water Sci Technol ; 76(5-6): 1177-1187, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28876259

RESUMEN

An alternative, low-cost and efficient biosorbent, powdered grape seeds (PGS), was prepared from wastes of a wine industry, and used to remove brilliant blue (BB) and amaranth red (AR) dyes from aqueous solutions. The biosorbent was properly characterized before and after the biosorption operation. The potential of PGS to remove BB and AR dyes was investigated thought kinetic, isotherm and thermodynamic studies. The biosorption of BB and AR was favored at pH 1.0 using biosorbent dosage of 0.500 g L-1, being attained more than 85% of removal percentage. For BB and AR dyes, pseudo-second-order and Elovich models were able to explain the biosorption kinetic. The biosorption equilibrium of BB on PGS was well represented by the Langmuir model, while for AR, the Sips model was the most adequate. The maximum biosorption capacities were 599.5 and 94.2 mg g-1 for BB and AR, respectively. The biosorption of BB and AR on PGS was a spontaneous, favorable and endothermic process. These findings indicated that PGS is a low-cost and efficient biosorbent, which can be used to treat dye containing waters.


Asunto(s)
Colorantes/química , Semillas/química , Vitis/química , Contaminantes Químicos del Agua/química , Purificación del Agua , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Polvos , Termodinámica , Agua
8.
Water Sci Technol ; 76(11-12): 3379-3391, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29236017

RESUMEN

In the present work, Iridaea cordata (IC), a red marine macroalgae, was used as an efficient biosorbent for the removal of crystal violet (CV) and methylene blue (MB) dyes from aqueous solutions. The effects of pH (5, 7, and 9) and IC concentration (1, 3, and 5 g L-1) on the biosorption were studied through a 32 full factorial design. Under the optimal conditions (pH: 7, biosorbent concentration: 1 g L-1), biosorption kinetic studies were developed and the obtained experimental data were evaluated by pseudo-first order and pseudo-second order models. The results showed that the pseudo-second order model was in agreement with the experimental kinetic data for both dyes. Equilibrium studies were also carried out, and results exhibited good concordance with the Brunauer-Emmett-Teller isotherm. The biosorption capacities were 36.5 and 45.0 mg g-1 for CV and MB dyes, respectively. The dye removal percentages were around 75% for CV and 90% for MB. Thermodynamically, the biosorption process proved to be exothermic, spontaneous, and favorable. These results showed that IC biomass is a promising biosorbent for removal of CV and MB dyes from aqueous solutions.


Asunto(s)
Colorantes/química , Violeta de Genciana/química , Azul de Metileno/química , Rhodophyta/química , Agua/química , Adsorción , Biomasa , Concentración de Iones de Hidrógeno , Cinética , Termodinámica , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/química
9.
Water Sci Technol ; 75(1-2): 106-114, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28067651

RESUMEN

In this work, the potential of ouricuri (Syagrus coronata) fiber as a novel biosorbent to remove methylene blue (MB) from aqueous solutions was investigated. The fiber was prepared and characterized according to the fundamental features for adsorption. A 23 experimental design was used to evaluate the effects of adsorbent dosage (M), fiber diameter (D) and agitation (A) on the adsorption capacity. In the more adequate conditions, kinetic and equilibrium studies were performed. The experimental design results showed that M = 10 g L-1), D = 0.595 mm and A = 200 rpm were the more adequate conditions for MB adsorption. Based on the kinetic study, it was found that the adsorption process was fast, being the equilibrium was attained at about 5 min, with 90% of color removal. The isotherm was properly represented by the Sips model, and the maximum adsorption capacity was 31.7 mg g-1. In brief, it was demonstrated that ouricuri fiber is an alternative biosorbent to remove MB from aqueous media, taking into account the process efficiency and economic viewpoint.


Asunto(s)
Arecaceae/química , Azul de Metileno/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Soluciones , Agua/química
10.
Water Sci Technol ; 73(11): 2713-21, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27232408

RESUMEN

This research was performed to find an alternative, low-cost, competitive, locally available and efficient adsorbent to treat nickel (Ni) containing effluents. For this purpose, several Brazilian agro-wastes like sugarcane bagasse (SCB), passion fruit wastes (PFW), orange peel (OP) and pineapple peel (PP) were compared with an activated carbon (AC). The adsorbents were characterized. Effects of fundamental factors affecting the adsorption were investigated using batch tests. Kinetic and equilibrium studies were performed using conventional models. It was verified that the adsorption was favored at pH of 6.0 for all agro-wastes, being dependent of the Ni speciation, point of zero charge and surface area of the adsorbents. The Ni removal percentage was in the following order: SCB > OP > AC > PFW > PP. From the kinetic viewpoint, the Elovich model was appropriate to fit the Ni adsorption onto SCB, while for the other adsorbents, the pseudo-first-order model was the most suitable. For all adsorbents, the Langmuir model was the more adequate to represent the equilibrium data, being the maximum adsorption capacities of 64.1 mg g(-1), 60.7 mg g(-1), 63.1 mg g(-1), 48.1 mg g(-1) and 64.3 mg g(-1) for SCB, PFW, OP, PP and AC, respectively. These results indicated that mainly SCB and OP can be used as alternative adsorbents to treat Ni containing effluents.


Asunto(s)
Biomasa , Carbón Orgánico/química , Níquel/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Ananas , Brasil , Citrus sinensis , Concentración de Iones de Hidrógeno , Cinética , Modelos Químicos , Modelos Teóricos , Passiflora , Saccharum
11.
Water Sci Technol ; 70(1): 102-7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25026586

RESUMEN

Papaya (Carica papaya L.) seeds were used as adsorbent to remove toxic pharmaceutical dyes (tartrazine and amaranth) from aqueous solutions, in order to extend application range. The effects of pH, initial dye concentration, contact time and temperature were investigated. The kinetic data were evaluated by the pseudo first-order, pseudo second-order and Elovich models. The equilibrium was evaluated by the Langmuir, Freundlich and Temkin isotherm models. It was found that adsorption favored a pH of 2.5, temperature of 298 K and equilibrium was attained at 180-200 min. The adsorption kinetics followed the pseudo second-order model, and the equilibrium was well represented by the Langmuir model. The maximum adsorption capacities were 51.0 and 37.4 mg g(-1) for tartrazine and amaranth, respectively. These results revealed that papaya seeds can be used as an alternative adsorbent to remove pharmaceutical dyes from aqueous solutions.


Asunto(s)
Carica/metabolismo , Colorantes/aislamiento & purificación , Semillas/metabolismo , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Adsorción , Colorante de Amaranto/aislamiento & purificación , Concentración de Iones de Hidrógeno , Cinética , Tartrazina/aislamiento & purificación , Temperatura , Factores de Tiempo , Eliminación de Residuos Líquidos/métodos
12.
Int J Biol Macromol ; 270(Pt 1): 132307, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38740151

RESUMEN

Chitosan, derived from the abundant biopolymer chitin, has emerged as a promising option for water treatment due to its intrinsic bioavailability. This review emphasizes the notable characteristics of chitosan, which allow for various modifications, expanding its applications. The polymer's effectiveness in adsorbing contaminants, particularly in advanced water treatment technologies, is highlighted. The review underscores the potential of chitosan-based hybrid materials, including nanocomposites, hydrogels, membranes, films, sponges, nanoparticles, microspheres, and flakes, as innovative alternatives to traditional chemical-based adsorbents. The advantages of using these materials in wastewater treatment, especially in removing heavy metals, dyes, and emerging compounds, are explored. The study delves into the mechanisms involved in wastewater treatment with chitosan, emphasizing the interactions between the polymer and various contaminants. Additionally, the application of chitosan as a contaminant removal agent in a post-pandemic context is addressed, considering the challenges related to waste management and environmental preservation. The analysis highlights the potential contribution of chitosan in mitigating environmental impacts post-pandemic, offering practical solutions for treating contaminated effluents and promoting sustainability. The study addresses current obstacles and prospects for chitosan-based wastewater treatment, emphasizing its promising role in sustainable water management.


Asunto(s)
Quitosano , Contaminantes Químicos del Agua , Purificación del Agua , Quitosano/química , Purificación del Agua/métodos , Adsorción , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Aguas Residuales/química , Metales Pesados/química
13.
Environ Sci Pollut Res Int ; 31(14): 21291-21301, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38383932

RESUMEN

In this work, iron-bearing mining reject was employed as an alternative and potential low-cost catalyst to degrade phenol in water by photo-Fenton strategy. Various techniques, including SEM-EDS, BET, FTIR, and XRD, were applied to evaluate the material's properties. Process parameters such as hydrogen peroxide concentration, catalyst dosage, and pH were studied to determine the optimum reaction conditions ([catalyst] = 0.75 g L-1, [H2O2] = 7.5 mM, and pH = 3). Phenol degradation and mineralization efficiencies at 180 and 300 min were 96.5 and 78%, respectively. These satisfactory results can be associated with the iron amount present in the waste sample. Furthermore, the material showed high catalytic activity and negligible iron leaching even after the fourth reuse cycle. The degradation behavior of phenol in water was well represented by a kinetic model based on the Fermi function. The iron-bearing mining reject can be considered a potential photo-Fenton catalyst for phenol degradation in wastewater.

14.
Artículo en Inglés | MEDLINE | ID: mdl-38949732

RESUMEN

The presence of phenazopyridine in water is an environmental problem that can cause damage to human health and the environment. However, few studies have reported the adsorption of this emerging contaminant from aqueous matrices. Furthermore, existing research explored only conventional modeling to describe the adsorption phenomenon without understanding the behavior at the molecular level. Herein, the statistical physical modeling of phenazopyridine adsorption into graphene oxide is reported. Steric, energetic, and thermodynamic interpretations were used to describe the phenomenon that controls drug adsorption. The equilibrium data were fitted by mono, double, and multi-layer models, considering factors such as the numbers of phenazopyridine molecules by adsorption sites, density of receptor sites, and half saturation concentration. Furthermore, the statistical physical approach also calculated the thermodynamic parameters (free enthalpy, internal energy, Gibbs free energy, and entropy). The maximum adsorption capacity at the equilibrium was reached at 298 K (510.94 mg g-1). The results showed the physical meaning of adsorption, indicating that the adsorption occurs in multiple layers. The temperature affected the density of receptor sites and half saturation concentration. At the same time, the adsorbed species assumes different positions on the adsorbent surface as a function of the increase in the temperature. Meanwhile, the thermodynamic functions revealed increased entropy with the temperature and the equilibrium concentration.

15.
Sci Total Environ ; 939: 173326, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38777051

RESUMEN

The capture of CO2 by biochar has recently become one of the cornerstones of circular economy models for a sustainable society. In this work, we synthesized an activated biocarbon using Trametes gibbosa (BioACTG) in a one-step synthesis. We investigated CO2 adsorption mechanisms under five different temperatures using a statistical physics approach. The data was better represented by the multilayer model with two distinguished energies, providing more accurate values for the estimated parameters. According to the number of carbon dioxide molecules per site (n) and the densities of the receptor sites (Dzif), the tendency to form a second layer increased as the temperature increased. The adsorption of CO2 on BioACTG was exothermic (the values of Qasat = 15.5 mmol/g at 273 K decrease to 10.5 mmol/g at 353 K), and the temperature influenced CO2 as well as the morphological features of the process. A computational approach was used to investigate the electronic properties of the adsorbate, showing that its lowest unoccupied orbital (LUMO) heavily contributed to the high efficiency of the process which was ruled by pore diffusion mechanisms driven by energetic fluctuations. Other molecules present in CO2-rich mixtures were also investigated, showing that their concentration limited their competitiveness with CO2.


Asunto(s)
Dióxido de Carbono , Termodinámica , Trametes , Adsorción , Trametes/metabolismo , Carbón Orgánico/química , Contaminantes Atmosféricos , Modelos Químicos
16.
Sci Rep ; 14(1): 11555, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773205

RESUMEN

The development of supporting materials based on carbon nanotubes (CNTs) impregnated with iron nanoparticles via a sustainable and green synthesis employing plant extract of Punica granatum L. leaves was carried out for the iron nanoparticle modification and the following impregnation into the carbon nanotubes composites (CNT-Fe) that were also coated with polypyrrole (CNT-Fe + PPy) for use as electrode for supercapacitor and triboelectric nanogenerators. The electrochemical characterization of the materials by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) assays revealed that the CNT-Fe + PPy gave rise to better performance due to the association of double-layer capacitance behavior of carbon derivative in association with the pseudocapacitance contribution of PPy resulting in an areal capacitance value 202 mF/ cm2 for the overall composite. In terms of the application of electrodes in triboelectric nanogenerators, the best performance for the composite of CNT-Fe + PPy was 60 V for output voltage and power density of 6 µW/cm2. The integrated system showed that the supercapacitors can be charged directly by the nanogenerator from 0 to 42 mV in 300 s. The successful green synthesis of iron nanoparticles on CNT and further PPy coating provides a feasible method for the design and synthesis of high-performance SCs and TENGs electrode materials. This work provides a systematic approach that moves the research front forward by generating data that underpins further research in self-powered electronic devices.

17.
Environ Sci Pollut Res Int ; 31(4): 5209-5220, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38110688

RESUMEN

A promissory technic for reducing environmental contaminants is the production of biochar from waste reuse and its application for water treatment. This study developed biochar (CWb) and NH4Cl-modified biochar (MCWb) using cassava residues as precursors. CWb and MCWb were characterized and evaluated in removing dyes (Acid Blue 9 and Food Red 17) in a binary system. The adsorbent demonstrated high adsorption capacity at all pH levels studied, showing its versatility regarding this process parameter. The equilibrium of all adsorption experiments was reached in 30 min. The adsorption process conformed to pseudo-first-order kinetics and extended Langmuir isotherm model. The thermodynamic adsorption experiments demonstrated that the adsorption process is physisorption, exhibiting exothermic and spontaneous characteristics. MCWb exhibited highly efficient and selective adsorption behavior towards the anionic dyes, indicating maximum adsorption capacity of 131 and 150 mg g-1 for Food Red 17 and Acid Blue 9, respectively. Besides, MCWb could be reused nine times, maintaining its original adsorption capacity. This study demonstrated an excellent adsorption capability of biochars in removing dyes. In addition, it indicated the recycling of wastes as a precursor of bio composts, a strategy for utilization in water treatment with binary systems. It showed the feasibility of the reuse capacity that indicated that the adsorbent may have many potential applications.


Asunto(s)
Compuestos Azo , Bencenosulfonatos , Celulosa , Manihot , Contaminantes Químicos del Agua , Colorantes/química , Contaminantes Químicos del Agua/química , Concentración de Iones de Hidrógeno , Carbón Orgánico/química , Adsorción , Cinética
18.
Environ Sci Pollut Res Int ; 31(7): 10417-10429, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38200192

RESUMEN

There is a growing need to develop new strategies for rare earth element (REE) recovery from secondary resources. Herein, a novel approach to utilize biogenic silica (from rice husk) and metakaolin was employed to fabricate magnetic geopolymer (MGP) by incorporating metallic iron. The fabricated MGP adsorbent material was used to uptake Ce3+, La3+, and Nd3+ from synthetic solutions and real phosphogypsum leachate in batch and column modes. The MGP offers a negatively charged surface at pH above 2.7, and the uptake of REEs rises from pH 3 to 6. The kinetic study validated that the kinetics was much faster for Nd3+, followed by La3+ and Ce3+. A thermodynamic investigation validated the exothermic nature of the adsorption process for all selected REEs. The desorption experiment using 2 mol L-1 H2SO4 as the eluent demonstrated approximately 100% desorption of REEs from the adsorbent. After six adsorption-desorption cycles, the MGP maintained a high adsorption performance up to cycle five before suffering a significant decrease in performance in cycle six. The effectiveness of MGP was also assessed for its applicability in recovering numerous REEs (La3+, Ce3+, Pr3+, Sm3+, and Nd3+) from real leachate from phosphogypsum wastes, and the highest recovery was achieved for Nd3+ (95.03%) followed by Ce3+ (86.33%). The operation was also feasible in the column presenting suitable values of the length of the mass transfer zone. The findings of this investigation indicate that MGP adsorbent prepared via a simple route has the potential for the recovery of REEs from synthetic and real samples in both batch and continuous operations modes.


Asunto(s)
Sulfato de Calcio , Metales de Tierras Raras , Oryza , Fósforo , Adsorción , Fenómenos Magnéticos
19.
Environ Sci Pollut Res Int ; 31(30): 42889-42901, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38884933

RESUMEN

Naphthenic acids (NA) are organic compounds commonly found in crude oil and produced water, known for their recalcitrance and toxicity. This study introduces a new adsorbent, a polymer derived from spent coffee grounds (SCGs), through a straightforward cross-linking method for removing cyclohexane carboxylic acid as representative NA. The adsorption kinetics followed a pseudo-second-order model for the data (0.007 g min-1 mg-1), while the equilibrium data fitted the Sips model ( q m = 140.55 mg g-1). The process's thermodynamics indicated that the target NA's adsorption was spontaneous and exothermic. The localized sterical and energetic aspects were investigated through statistical physical modeling, which corroborated that the adsorption occurred indeed in monolayer, as suggested by the Sips model, but revealed the contribution of two energies per site ( n 1 ; n 2 ). The number of molecules adsorbed per site ( n ) was highly influenced by the temperature as n 1 decreased with increasing temperature and n 2 increased. These results were experimentally demonstrated within the pH range between 4 and 6, where both C6H11COO-(aq.) and C6H11COOH(aq.) species coexisted and were adsorbed by different energy sites. The polymer produced was naturally porous and amorphous, with a low surface area of 20 to 30 m2 g-1 that presented more energetically accessible sites than other adsorbents with much higher surface areas. Thus, this study shows that the relation between surface area and high adsorption efficiency depends on the compatibility between the energetic states of the receptor sites, the speciation of the adsorbate molecules, and the temperature range studied.


Asunto(s)
Ácidos Carboxílicos , Café , Polímeros , Adsorción , Café/química , Ácidos Carboxílicos/química , Polímeros/química , Cinética , Ciclohexanos/química , Contaminantes Químicos del Agua/química , Termodinámica
20.
Environ Sci Pollut Res Int ; 31(13): 19294-19303, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38361100

RESUMEN

In this work, the adsorption of nickel ions from a real effluent from a metal-mechanic industry was investigated in a fixed-bed column using biochar. Biochar was prepared from winemaking residues originating from the Beifiur® composting process. The use of wine industry residues as precursor materials for biochar production is established in biomass residue valorization using the existing logistics and the lowest possible number of manipulations and pre-treatments. The results found in the work showed that the optimal conditions for nickel adsorption in fixed-bed columns were bed height (Z) of 7 cm, initial nickel concentration (C0) of 1.5 mg L-1, and flow rate (Q) of 18 mL min-1. In this condition, the maximum adsorption capacity of the column was 0.452 mg g-1, the mass transfer zone (Zm) was 3.3 cm, the treated effluent volume (Veff) was 9.72 L, and the nickel removal (R) was 92.71%. The Yoon-Nelson and BDST dynamic models were suitable to represent the breakthrough curves of nickel adsorption. Finally, the fixed-bed column adsorption using biochar from winemaking residues proved to be a promising alternative for nickel removal from real industrial effluents.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Níquel/química , Purificación del Agua/métodos , Adsorción , Carbón Orgánico/química , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA