Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Mol Cell ; 84(10): 1886-1903.e10, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38688280

RESUMEN

Mutations in the RNA splicing factor gene SF3B1 are common across hematologic and solid cancers and result in widespread alterations in splicing, yet there is currently no therapeutic means to correct this mis-splicing. Here, we utilize synthetic introns uniquely responsive to mutant SF3B1 to identify trans factors required for aberrant mutant SF3B1 splicing activity. This revealed the G-patch domain-containing protein GPATCH8 as required for mutant SF3B1-induced splicing alterations and impaired hematopoiesis. GPATCH8 is involved in quality control of branchpoint selection, interacts with the RNA helicase DHX15, and functionally opposes SURP and G-patch domain containing 1 (SUGP1), a G-patch protein recently implicated in SF3B1-mutant diseases. Silencing of GPATCH8 corrected one-third of mutant SF3B1-dependent splicing defects and was sufficient to improve dysfunctional hematopoiesis in SF3B1-mutant mice and primary human progenitors. These data identify GPATCH8 as a novel splicing factor required for mis-splicing by mutant SF3B1 and highlight the therapeutic impact of correcting aberrant splicing in SF3B1-mutant cancers.


Asunto(s)
Neoplasias Hematológicas , Proteínas Musculares , Mutación , Fosfoproteínas , Factores de Empalme de ARN , Animales , Humanos , Ratones , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Células HEK293 , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patología , Neoplasias Hematológicas/metabolismo , Hematopoyesis/genética , Intrones , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , Empalme del ARN , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo
2.
Nat Immunol ; 14(7): 756-63, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23708252

RESUMEN

Understanding how differentiation programs originate from the gene-expression 'landscape' of hematopoietic stem cells (HSCs) is crucial for the development of new clinical therapies. We mapped the transcriptional dynamics underlying the first steps of commitment by tracking transcriptome changes in human HSCs and eight early progenitor populations. We found that transcriptional programs were extensively shared, extended across lineage-potential boundaries and were not strictly lineage affiliated. Elements of stem, lymphoid and myeloid programs were retained in multilymphoid progenitors (MLPs), which reflected a hybrid transcriptional state. By functional single cell analysis, we found that the transcription factors Bcl-11A, Sox4 and TEAD1 (TEF1) governed transcriptional networks in MLPs, which led to B cell specification. Overall, we found that integrated transcriptome approaches can be used to identify previously unknown regulators of multipotency and show additional complexity in lymphoid commitment.


Asunto(s)
Linfocitos B/citología , Redes Reguladoras de Genes , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Diferenciación Celular/genética , Linaje de la Célula , Biología Computacional , Perfilación de la Expresión Génica/métodos , Humanos , ARN Mensajero/química , ARN Mensajero/genética , Factores de Transcripción/genética
3.
Blood ; 139(13): 2038-2049, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-34861039

RESUMEN

SF3B1 splicing factor mutations are near-universally found in myelodysplastic syndromes (MDS) with ring sideroblasts (RS), a clonal hematopoietic disorder characterized by abnormal erythroid cells with iron-loaded mitochondria. Despite this remarkably strong genotype-to-phenotype correlation, the mechanism by which mutant SF3B1 dysregulates iron metabolism to cause RS remains unclear due to an absence of physiological models of RS formation. Here, we report an induced pluripotent stem cell model of SF3B1-mutant MDS that for the first time recapitulates robust RS formation during in vitro erythroid differentiation. Mutant SF3B1 induces missplicing of ∼100 genes throughout erythroid differentiation, including proposed RS driver genes TMEM14C, PPOX, and ABCB7. All 3 missplicing events reduce protein expression, notably occurring via 5' UTR alteration, and reduced translation efficiency for TMEM14C. Functional rescue of TMEM14C and ABCB7, but not the non-rate-limiting enzyme PPOX, markedly decreased RS, and their combined rescue nearly abolished RS formation. Our study demonstrates that coordinated missplicing of mitochondrial transporters TMEM14C and ABCB7 by mutant SF3B1 sequesters iron in mitochondria, causing RS formation.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Síndromes Mielodisplásicos , Fosfoproteínas , Transportadoras de Casetes de Unión a ATP , Diferenciación Celular/genética , Flavoproteínas/genética , Flavoproteínas/metabolismo , Humanos , Proteínas Mitocondriales/genética , Mutación , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/metabolismo , Fosfoproteínas/genética , Protoporfirinógeno-Oxidasa/genética , Protoporfirinógeno-Oxidasa/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo
4.
Nature ; 553(7689): 506-510, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29342143

RESUMEN

All haematopoietic cell lineages that circulate in the blood of adult mammals derive from multipotent haematopoietic stem cells (HSCs). By contrast, in the blood of mammalian embryos, lineage-restricted progenitors arise first, independently of HSCs, which only emerge later in gestation. As best defined in the mouse, 'primitive' progenitors first appear in the yolk sac at 7.5 days post-coitum. Subsequently, erythroid-myeloid progenitors that express fetal haemoglobin, as well as fetal lymphoid progenitors, develop in the yolk sac and the embryo proper, but these cells lack HSC potential. Ultimately, 'definitive' HSCs with long-term, multilineage potential and the ability to engraft irradiated adults emerge at 10.5 days post-coitum from arterial endothelium in the aorta-gonad-mesonephros and other haemogenic vasculature. The molecular mechanisms of this reverse progression of haematopoietic ontogeny remain unexplained. We hypothesized that the definitive haematopoietic program might be actively repressed in early embryogenesis through epigenetic silencing, and that alleviating this repression would elicit multipotency in otherwise lineage-restricted haematopoietic progenitors. Here we show that reduced expression of the Polycomb group protein EZH1 enhances multi-lymphoid output from human pluripotent stem cells. In addition, Ezh1 deficiency in mouse embryos results in precocious emergence of functional definitive HSCs in vivo. Thus, we identify EZH1 as a repressor of haematopoietic multipotency in the early mammalian embryo.


Asunto(s)
Células Madre Embrionarias/citología , Silenciador del Gen , Hematopoyesis , Células Madre Hematopoyéticas/citología , Linfocitos/citología , Células Madre Multipotentes/citología , Complejo Represivo Polycomb 2/metabolismo , Animales , Diferenciación Celular , Linaje de la Célula , Cromatina/genética , Cromatina/metabolismo , Desarrollo Embrionario , Femenino , Humanos , Linfocitos/metabolismo , Ratones , Células Madre Pluripotentes/citología , Complejo Represivo Polycomb 2/química , Complejo Represivo Polycomb 2/deficiencia , Complejo Represivo Polycomb 2/genética
5.
Nature ; 545(7655): 432-438, 2017 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-28514439

RESUMEN

A variety of tissue lineages can be differentiated from pluripotent stem cells by mimicking embryonic development through stepwise exposure to morphogens, or by conversion of one differentiated cell type into another by enforced expression of master transcription factors. Here, to yield functional human haematopoietic stem cells, we perform morphogen-directed differentiation of human pluripotent stem cells into haemogenic endothelium followed by screening of 26 candidate haematopoietic stem-cell-specifying transcription factors for their capacity to promote multi-lineage haematopoietic engraftment in mouse hosts. We recover seven transcription factors (ERG, HOXA5, HOXA9, HOXA10, LCOR, RUNX1 and SPI1) that are sufficient to convert haemogenic endothelium into haematopoietic stem and progenitor cells that engraft myeloid, B and T cells in primary and secondary mouse recipients. Our combined approach of morphogen-driven differentiation and transcription-factor-mediated cell fate conversion produces haematopoietic stem and progenitor cells from pluripotent stem cells and holds promise for modelling haematopoietic disease in humanized mice and for therapeutic strategies in genetic blood disorders.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Células Madre Pluripotentes/citología , Factores de Transcripción/metabolismo , Animales , Reprogramación Celular , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Endotelio/citología , Femenino , Trasplante de Células Madre Hematopoyéticas , Proteínas Homeobox A10 , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Regulador Transcripcional ERG/metabolismo
6.
Nat Immunol ; 11(7): 585-93, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20543838

RESUMEN

The classical model of hematopoiesis posits the segregation of lymphoid and myeloid lineages as the earliest fate decision. The validity of this model in the mouse has been questioned; however, little is known about the lineage potential of human progenitors. Here we provide a comprehensive analysis of the human hematopoietic hierarchy by clonally mapping the developmental potential of seven progenitor classes from neonatal cord blood and adult bone marrow. Human multilymphoid progenitors, identified as a distinct population of Thy-1(neg-lo)CD45RA(+) cells in the CD34(+)CD38(-) stem cell compartment, gave rise to all lymphoid cell types, as well as monocytes, macrophages and dendritic cells, which indicated that these myeloid lineages arise in early lymphoid lineage specification. Thus, as in the mouse, human hematopoiesis does not follow a rigid model of myeloid-lymphoid segregation.


Asunto(s)
Antígenos CD/biosíntesis , Linaje de la Célula , Células Dendríticas/citología , Sangre Fetal/citología , Hematopoyesis , Macrófagos/citología , Adulto , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/fisiología , Separación Celular , Células Cultivadas , Células Dendríticas/fisiología , Citometría de Flujo , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Humanos , Recién Nacido , Células Progenitoras Linfoides/citología , Células Progenitoras Linfoides/fisiología , Macrófagos/fisiología , Ratones , Ratones Mutantes , Células Mieloides/citología , Células Mieloides/fisiología
7.
Curr Opin Hematol ; 28(1): 50-56, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33264225

RESUMEN

PURPOSE OF REVIEW: Myeloid malignancies comprise a spectrum of genetically heterogeneous disorders marked by the stepwise acquisition of somatic mutations and clonal evolution. The blood and bone marrow of patients typically consists of a mix of different clones and subclones along the path of clonal evolution that cannot be deconvoluted with most current approaches. Here, we review the application of induced pluripotent stem cell (iPSC) technology to the study of the clonal architecture and clonal evolution of these diseases, focusing on myelodysplastic syndromes and acute myeloid leukemia. RECENT FINDINGS: Reprogramming to pluripotency allows capture of the genomes of single somatic cells into stable iPSC lines. In addition, precise genome editing can introduce specific driver mutations, isolated, and in combinations, into normal iPSCs. Studies utilizing these approaches have elucidated the clonal composition and mutational order in patients with myeloid neoplasms. Importantly, they have also enabled functional interrogation of the cellular and molecular consequences of individual mutations and their combinations and allowed testing of the effects of drugs on distinct disease clones. SUMMARY: Human iPSCs are important tools to elucidate the mechanisms of progression from normal to malignant haematopoiesis and empower drug testing and drug discovery.


Asunto(s)
Evolución Clonal , Células Madre Pluripotentes Inducidas/metabolismo , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicos/genética , Animales , Reprogramación Celular , Edición Génica , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/patología , Leucemia Mieloide Aguda/patología , Síndromes Mielodisplásicos/patología
8.
Hum Mol Genet ; 28(1): 133-142, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30247636

RESUMEN

Severe thrombocytopenia, characterized by dysplastic megakaryocytes and intracranial bleeding, was diagnosed in six individuals from a consanguineous kindred. Three of the individuals were successfully treated by bone marrow transplant. Whole-exome sequencing and homozygosity mapping of multiple family members, coupled with whole-genome sequencing to reveal shared non-coding variants, revealed one potentially functional variant segregating with thrombocytopenia under a recessive model: GALE p.R51W (c.C151T, NM_001127621). The mutation is extremely rare (allele frequency = 2.5 × 10-05), and the likelihood of the observed co-segregation occurring by chance is 1.2 × 10-06. GALE encodes UDP-galactose-4-epimerase, an enzyme of galactose metabolism and glycosylation responsible for two reversible reactions: interconversion of UDP-galactose with UDP-glucose and interconversion of UDP-N-acetylgalactosamine with UDP-N-acetylglucosamine. The mutation alters an amino acid residue that is conserved from yeast to humans. The variant protein has both significantly lower enzymatic activity for both interconversion reactions and highly significant thermal instability. Proper glycosylation is critical to normal hematopoiesis, in particular to megakaryocyte and platelet development, as reflected in the presence of thrombocytopenia in the context of congenital disorders of glycosylation. Mutations in GALE have not previously been associated with thrombocytopenia. Our results suggest that GALE p.R51W is inadequate for normal glycosylation and thereby may impair megakaryocyte and platelet development. If other mutations in GALE are shown to have similar consequences, this gene may be proven to play a critical role in hematopoiesis.


Asunto(s)
Galactosemias/genética , Trombocitopenia/genética , UDPglucosa 4-Epimerasa/genética , Adulto , Alelos , Femenino , Galactosa/metabolismo , Frecuencia de los Genes/genética , Humanos , Masculino , Persona de Mediana Edad , Linaje , UDPglucosa 4-Epimerasa/metabolismo , Secuenciación del Exoma
9.
Blood ; 134(2): 186-198, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31010849

RESUMEN

Myeloid neoplasms, including myelodysplastic syndromes (MDS), are genetically heterogeneous disorders driven by clonal acquisition of somatic mutations in hematopoietic stem and progenitor cells (HPCs). The order of premalignant mutations and their impact on HPC self-renewal and differentiation remain poorly understood. We show that episomal reprogramming of MDS patient samples generates induced pluripotent stem cells from single premalignant cells with a partial complement of mutations, directly informing the temporal order of mutations in the individual patient. Reprogramming preferentially captured early subclones with fewer mutations, which were rare among single patient cells. To evaluate the functional impact of clonal evolution in individual patients, we differentiated isogenic MDS induced pluripotent stem cells harboring up to 4 successive clonal abnormalities recapitulating a progressive decrease in hematopoietic differentiation potential. SF3B1, in concert with epigenetic mutations, perturbed mitochondrial function leading to accumulation of damaged mitochondria during disease progression, resulting in apoptosis and ineffective erythropoiesis. Reprogramming also informed the order of premalignant mutations in patients with complex karyotype and identified 5q deletion as an early cytogenetic anomaly. The loss of chromosome 5q cooperated with TP53 mutations to perturb genome stability, promoting acquisition of structural and karyotypic abnormalities. Reprogramming thus enables molecular and functional interrogation of preleukemic clonal evolution, identifying mitochondrial function and chromosome stability as key pathways affected by acquisition of somatic mutations in MDS.


Asunto(s)
Reprogramación Celular , Evolución Clonal/genética , Células Madre Hematopoyéticas/patología , Síndromes Mielodisplásicos/genética , Células Madre Pluripotentes/patología , Humanos
10.
Nature ; 481(7380): 157-63, 2012 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-22237106

RESUMEN

Early T-cell precursor acute lymphoblastic leukaemia (ETP ALL) is an aggressive malignancy of unknown genetic basis. We performed whole-genome sequencing of 12 ETP ALL cases and assessed the frequency of the identified somatic mutations in 94 T-cell acute lymphoblastic leukaemia cases. ETP ALL was characterized by activating mutations in genes regulating cytokine receptor and RAS signalling (67% of cases; NRAS, KRAS, FLT3, IL7R, JAK3, JAK1, SH2B3 and BRAF), inactivating lesions disrupting haematopoietic development (58%; GATA3, ETV6, RUNX1, IKZF1 and EP300) and histone-modifying genes (48%; EZH2, EED, SUZ12, SETD2 and EP300). We also identified new targets of recurrent mutation including DNM2, ECT2L and RELN. The mutational spectrum is similar to myeloid tumours, and moreover, the global transcriptional profile of ETP ALL was similar to that of normal and myeloid leukaemia haematopoietic stem cells. These findings suggest that addition of myeloid-directed therapies might improve the poor outcome of ETP ALL.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Mutación/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Edad de Inicio , Niño , Variaciones en el Número de Copia de ADN/genética , Genes ras/genética , Genoma Humano/genética , Genómica , Hematopoyesis/genética , Histonas/metabolismo , Humanos , Quinasas Janus/genética , Quinasas Janus/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Datos de Secuencia Molecular , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Receptores de Interleucina-7/genética , Proteína Reelina , Análisis de Secuencia de ADN , Transducción de Señal/genética , Células Madre/metabolismo , Células Madre/patología , Linfocitos T/metabolismo , Linfocitos T/patología , Translocación Genética/genética
11.
Nature ; 469(7330): 362-7, 2011 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-21248843

RESUMEN

Many tumours are composed of genetically diverse cells; however, little is known about how diversity evolves or the impact that diversity has on functional properties. Here, using xenografting and DNA copy number alteration (CNA) profiling of human BCR-ABL1 lymphoblastic leukaemia, we demonstrate that genetic diversity occurs in functionally defined leukaemia-initiating cells and that many diagnostic patient samples contain multiple genetically distinct leukaemia-initiating cell subclones. Reconstructing the subclonal genetic ancestry of several samples by CNA profiling demonstrated a branching multi-clonal evolution model of leukaemogenesis, rather than linear succession. For some patient samples, the predominant diagnostic clone repopulated xenografts, whereas in others it was outcompeted by minor subclones. Reconstitution with the predominant diagnosis clone was associated with more aggressive growth properties in xenografts, deletion of CDKN2A and CDKN2B, and a trend towards poorer patient outcome. Our findings link clonal diversity with leukaemia-initiating-cell function and underscore the importance of developing therapies that eradicate all intratumoral subclones.


Asunto(s)
Células Clonales/metabolismo , Células Clonales/patología , Evolución Molecular , Proteínas de Fusión bcr-abl/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Animales , Supervivencia Celular , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/deficiencia , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Variaciones en el Número de Copia de ADN/genética , Progresión de la Enfermedad , Genes p16 , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Modelos Biológicos , Trasplante de Neoplasias , Análisis de Secuencia por Matrices de Oligonucleótidos , Cromosoma Filadelfia , Polimorfismo de Nucleótido Simple/genética , Tasa de Supervivencia , Trasplante Heterólogo
12.
Genes Dev ; 23(17): 2076-87, 2009 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-19723763

RESUMEN

A major question in hematopoiesis is how the system maintains long-term homeostasis whereby the generation of large numbers of differentiated cells is balanced with the requirement for maintenance of progenitor pools, while remaining sufficiently flexible to respond to periods of perturbed cellular output during infection or stress. We focused on the development of the myeloid lineage and present evidence that promyelocytic leukemia zinc finger (PLZF) provides a novel function that is critical for both normal and stress-induced myelopoiesis. During homeostasis, PLZF restricts proliferation and differentiation of human cord blood-derived myeloid progenitors to maintain a balance between the progenitor and mature cell compartments. Analysis of PLZF promoter-binding sites revealed that it represses transcription factors involved in normal myeloid differentiation, including GFI-1, C/EBPalpha, and LEF-1, and induces negative regulators DUSP6 and ID2. Loss of ID2 relieves PLZF-mediated repression of differentiation identifying it as a functional target of PLZF in myelopoiesis. Furthermore, induction of ERK1/2 by myeloid cytokines, reflective of a stress response, leads to nuclear export and inactivation of PLZF, which augments mature cell production. Thus, negative regulators of differentiation can serve to maintain developmental systems in a primed state, so that their inactivation by extrinsic signals can induce proliferation and differentiation to rapidly satisfy increased demand for mature cells.


Asunto(s)
Diferenciación Celular , Citocinas/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Homeostasis/fisiología , Mielopoyesis/fisiología , Animales , Línea Celular , Proliferación Celular , Células Cultivadas , Sangre Fetal/citología , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Factores de Transcripción/metabolismo
13.
Mol Cell ; 31(6): 813-23, 2008 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-18922465

RESUMEN

Diversity-generating retroelements (DGRs) introduce vast amounts of sequence diversity into target genes. During mutagenic homing, adenine residues are converted to random nucleotides in a unidirectional, reverse transcriptase-dependent transposition process from a donor template repeat (TR) to a recipient variable repeat (VR). Using a Bordetella bacteriophage DGR as a model, we demonstrate that homing occurs through a TR-containing RNA intermediate and is RecA independent. Marker transfer studies show that cDNA integration at the 3' end of VR occurs within a (G/C)(14) element, and deletion analysis demonstrates that the reaction is independent of 5' end cDNA integration. cDNA integration at the 5' end of VR requires only short stretches of sequence homology. We propose that homing occurs through a unique target DNA-primed reverse transcription mechanism that precisely regenerates target sequences. This nonproliferative "copy and replace" mechanism enables repeated rounds of protein diversification and optimization of ligand-receptor interactions.


Asunto(s)
Codón/genética , Variación Genética , Proteínas/genética , Retroelementos/genética , Secuencia de Bases , ADN Complementario/genética , Marcadores Genéticos , Modelos Genéticos , Mutagénesis Insercional , ARN Mensajero , Rec A Recombinasas/metabolismo , Moldes Genéticos
14.
Blood Cancer Discov ; 5(5): 353-370, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38856693

RESUMEN

Splicing factor SF3B1 mutations are frequent somatic lesions in myeloid neoplasms that transform hematopoietic stem cells (HSCs) by inducing mis-splicing of target genes. However, the molecular and functional consequences of SF3B1 mutations in human HSCs and progenitors (HSPCs) remain unclear. Here, we identify the mis-splicing program in human HSPCs as a targetable vulnerability by precise gene editing of SF3B1 K700E mutations in primary CD34+ cells. Mutant SF3B1 induced pervasive mis-splicing and reduced expression of genes regulating mitosis and genome maintenance leading to altered differentiation, delayed G2/M progression, and profound sensitivity to CHK1 inhibition (CHK1i). Mis-splicing or reduced expression of mitotic regulators BUBR1 and CDC27 delayed G2/M transit and promoted CHK1i sensitivity. Clinical CHK1i prexasertib selectively targeted SF3B1-mutant immunophenotypic HSCs and abrogated engraftment in vivo. These findings identify mis-splicing of mitotic regulators in SF3B1-mutant HSPCs as a targetable vulnerability engaged by pharmacological CHK1 inhibition. Significance: In this study, we engineer precise SF3B1 mutations in human HSPCs and identify CHK1 inhibition as a selective vulnerability promoted by mis-splicing of mitotic regulators. These findings uncover the mis-splicing program induced by mutant SF3B1 in human HSPCs and show that it can be therapeutically targeted by clinical CHK1 inhibitors.


Asunto(s)
Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Células Madre Hematopoyéticas , Mitosis , Mutación , Factores de Empalme de ARN , Humanos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Mitosis/efectos de los fármacos , Mitosis/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ratones , Animales , Inhibidores de Proteínas Quinasas/farmacología
15.
Cancer Res ; 84(4): 577-597, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-37967363

RESUMEN

RNA splicing factor (SF) gene mutations are commonly observed in patients with myeloid malignancies. Here we showed that SRSF2- and U2AF1-mutant leukemias are preferentially sensitive to PARP inhibitors (PARPi), despite being proficient in homologous recombination repair. Instead, SF-mutant leukemias exhibited R-loop accumulation that elicited an R-loop-associated PARP1 response, rendering cells dependent on PARP1 activity for survival. Consequently, PARPi induced DNA damage and cell death in SF-mutant leukemias in an R-loop-dependent manner. PARPi further increased aberrant R-loop levels, causing higher transcription-replication collisions and triggering ATR activation in SF-mutant leukemias. Ultimately, PARPi-induced DNA damage and cell death in SF-mutant leukemias could be enhanced by ATR inhibition. Finally, the level of PARP1 activity at R-loops correlated with PARPi sensitivity, suggesting that R-loop-associated PARP1 activity could be predictive of PARPi sensitivity in patients harboring SF gene mutations. This study highlights the potential of targeting different R-loop response pathways caused by spliceosome gene mutations as a therapeutic strategy for treating cancer. SIGNIFICANCE: Spliceosome-mutant leukemias accumulate R-loops and require PARP1 to resolve transcription-replication conflicts and genomic instability, providing rationale to repurpose FDA-approved PARP inhibitors for patients carrying spliceosome gene mutations.


Asunto(s)
Leucemia , Empalmosomas , Humanos , Empalmosomas/genética , Estructuras R-Loop , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Reparación del ADN , Leucemia/tratamiento farmacológico , Leucemia/genética , Factores de Empalme de ARN/genética , Poli(ADP-Ribosa) Polimerasa-1/genética
16.
Blood Cancer Discov ; 4(4): 252-253, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37067903

RESUMEN

SUMMARY: In this issue of Blood Cancer Discovery, Kotini and colleagues present a strategy for large-scale reprogramming of primary human acute myeloid leukemias (AML) to induced pluripotent stem cell (iPSC). They show that the hematopoietic differentiation of AML iPSCs gives rise to transplantable leukemias with remarkable molecular similarity to the original patients' AML, providing new models and insights into the disease. See related article by Kotini et al., p. 318 (7) .


Asunto(s)
Células Madre Pluripotentes Inducidas , Leucemia Mieloide Aguda , Humanos , Células Madre Pluripotentes Inducidas/citología , Leucemia Mieloide Aguda/genética , Diferenciación Celular/genética , Variación Genética
17.
Res Sq ; 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37461708

RESUMEN

Background: Ever since their discovery, induced pluripotent stem cells (iPSCs) have been extensively differentiated into a large variety of cell types. However, a limited amount of work has been dedicated to differentiating iPSCs into osteoclasts. While several differentiation protocols have been published, it remains unclear which protocols or differentiation methods are preferrable regarding the differentiation of osteoclasts. Methods: In this study we compare the osteoclastogenesis capacity of a peripheral blood mononuclear cell (PBMC)-derived iPSC line to a fibroblast-derived iPSC line in conjunction with either embryoid body-based or monolayer-based differentiation strategies. Both cell lines and differentiation protocols were investigated regarding their ability to generate osteoclasts and their inherent robustness and ease of use. The ability of both cell lines to remain undifferentiated while propagating using a feeder-free system was assessed using alkaline phosphatase staining. This was followed by evaluating mesodermal differentiation and the characterization of hematopoietic progenitor cells using flow cytometry. Finally, osteoclast yield and functionality based on resorptive activity, Cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression were assessed. Results were validated using qRT-PCR throughout the differentiation stages. Results: Embryoid-body based differentiation yielded CD45+, CD14+, CD11b+ subpopulations which in turn differentiated into osteoclasts which demonstrated TRAP positivity, Cathepsin K expression and mineral resorptive capabilities. This was regardless of which iPSC line was used. Monolayer-based differentiation yielded lower quantities of hematopoietic cells that were mostly CD34+ and did not subsequently differentiate into osteoclasts. Conclusions: The outcome of this study demonstrates the successful differentiation of osteoclasts from iPSCs in conjunction with the embryoid-based differentiation method, while the monolayer-based method did not yield osteoclasts. No differences were observed regarding osteoclast differentiation between the PBMC and fibroblast-derived iPSC lines.

18.
Stem Cell Res Ther ; 14(1): 319, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37936199

RESUMEN

BACKGROUND: Ever since their discovery, induced pluripotent stem cells (iPSCs) have been extensively differentiated into a large variety of cell types. However, a limited amount of work has been dedicated to differentiating iPSCs into osteoclasts. While several differentiation protocols have been published, it remains unclear which protocols or differentiation methods are preferable regarding the differentiation of osteoclasts. METHODS: In this study, we compared the osteoclastogenesis capacity of a peripheral blood mononuclear cell (PBMC)-derived iPSC line to a fibroblast-derived iPSC line in conjunction with either embryoid body-based or monolayer-based differentiation strategies. Both cell lines and differentiation protocols were investigated regarding their ability to generate osteoclasts and their inherent robustness and ease of use. The ability of both cell lines to remain undifferentiated while propagating using a feeder-free system was assessed using alkaline phosphatase staining. This was followed by evaluating mesodermal differentiation and the characterization of hematopoietic progenitor cells using flow cytometry. Finally, osteoclast yield and functionality based on resorptive activity, Cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression were assessed. The results were validated using qRT-PCR throughout the differentiation stages. RESULTS: Embryoid body-based differentiation yielded CD45+, CD14+, CD11b+ subpopulations which in turn differentiated into osteoclasts which demonstrated TRAP positivity, Cathepsin K expression and mineral resorptive capabilities. This was regardless of which iPSC line was used. Monolayer-based differentiation yielded lower quantities of hematopoietic cells that were mostly CD34+ and did not subsequently differentiate into osteoclasts. CONCLUSIONS: The outcome of this study demonstrates the successful differentiation of osteoclasts from iPSCs in conjunction with the embryoid-based differentiation method, while the monolayer-based method did not yield osteoclasts. No differences were observed regarding osteoclast differentiation between the PBMC and fibroblast-derived iPSC lines.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Osteoclastos , Leucocitos Mononucleares , Catepsina K/metabolismo , Diferenciación Celular
19.
Blood ; 115(18): 3704-7, 2010 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-20207983

RESUMEN

Repopulation of immunodeficient mice remains the primary method to assay human hematopoietic stem cells (HSCs). Here we report that female NOD/SCID/IL-2Rg(c)-null mice are far superior in detecting human HSCs (Lin(-)CD34(+)CD38(-)CD90(+)CD45RA(-)) compared with male recipients. When multiple HSCs were transplanted, female recipients displayed a trend (1.4-fold) toward higher levels of human chimerism (female vs male: injected femur, 44.4 +/- 9.3 vs 32.2 +/- 6.2; n = 12 females, n = 24 males; P = .1). Strikingly, this effect was dramatically amplified at limiting cell doses where female recipients had an approximately 11-fold higher chimerism from single HSCs (female vs male: injected femur, 8.1 +/- 2.7 vs 0.7 +/- 0.7; n = 28 females, n = 20 males; P < .001). Secondary transplantations from primary recipients indicate that females more efficiently support the self-renewal of human HSCs. Therefore, sex-associated factors play a pivotal role in the survival, proliferation, and self-renewal of human HSCs in the xenograft model, and recipient sex must be carefully monitored in the future design of experiments requiring human HSC assays.


Asunto(s)
Quimerismo , Trasplante de Células Madre Hematopoyéticas , Trasplante Heterólogo , Animales , Antígenos CD/análisis , Proliferación Celular , Femenino , Citometría de Flujo , Supervivencia de Injerto , Células Madre Hematopoyéticas/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Receptores de Interleucina-2/genética , Receptores de Interleucina-2/metabolismo , Factores Sexuales , Acondicionamiento Pretrasplante
20.
Blood Adv ; 6(12): 3579-3589, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35443024

RESUMEN

Autophagy is a self-degradation pathway that is essential for erythropoiesis. During erythroid differentiation, autophagy facilitates the degradation of macromolecules and the programmed clearance of mitochondria. Impaired mitochondrial clearance results in anemia and alters the lifespan of red blood cells in vivo. While several essential autophagy genes contribute to autophagy in erythropoiesis, little is known about erythroid-specific mediators of this pathway. Genetic analysis of primary human erythroid and nonerythroid cells revealed the selective upregulation of the core autophagy gene ATG4A in maturing human erythroid cells. Because the function of ATG4A in erythropoiesis is unknown, we evaluated its role using an ex vivo model of human erythropoiesis. Depletion of ATG4A in primary human hematopoietic stem and progenitor cells selectively impaired erythroid but not myeloid lineage differentiation, resulting in reduced red cell production, delayed terminal differentiation, and impaired enucleation. Loss of ATG4A impaired autophagy and mitochondrial clearance, giving rise to reticulocytes with retained mitochondria and autophagic vesicles. In summary, our study identifies ATG4A as a cell type-specific regulator of autophagy in erythroid development.


Asunto(s)
Eritropoyesis , Mitocondrias , Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Diferenciación Celular , Cisteína Endopeptidasas/metabolismo , Eritropoyesis/genética , Humanos , Mitocondrias/metabolismo , Reticulocitos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA