Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Mol Sci ; 19(4)2018 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-29587452

RESUMEN

Linum flavum hairy root lines were established from hypocotyl pieces using Agrobacterium rhizogenes strains LBA 9402 and ATCC 15834. Both strains were effective for transformation but induction of hairy root phenotype was more stable with strain ATCC 15834. Whereas similar accumulation patterns were observed in podophyllotoxin-related compounds (6-methoxy-podophyllotoxin, podophyllotoxin and deoxypodophyllotoxin), significant quantitative variations were noted between root lines. The influence of culture medium and various treatments (hormone, elicitation and precursor feeding) were evaluated. The highest accumulation was obtained in Gamborg B5 medium. Treatment with methyl jasmonate, and feeding using ferulic acid increased the accumulation of aryltetralin lignans. These results point to the use of hairy root culture lines of Linum flavum as potential sources for these valuable metabolites as an alternative, or as a complement to Podophyllum collected from wild stands.


Asunto(s)
Antineoplásicos Fitogénicos/metabolismo , Lino/citología , Lignanos/metabolismo , Acetatos/farmacología , Antineoplásicos Fitogénicos/análisis , Ácidos Cumáricos/farmacología , Medios de Cultivo/química , Medios de Cultivo/farmacología , Ciclopentanos/farmacología , Lino/efectos de los fármacos , Lino/crecimiento & desarrollo , Lino/metabolismo , Lignanos/análisis , Estructura Molecular , Oxilipinas/farmacología , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Técnicas de Cultivo de Tejidos/métodos
2.
Molecules ; 23(10)2018 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-30309022

RESUMEN

A selective acylation protocol using cerium chloride (CeCl3) as catalyst was applied to functionalize silybinin (1), a natural antioxidant flavonolignan from milk thistle fruit, in order to increase its solubility in lipophilic media while retaining its strong antioxidant activity. The selective esterification of 1 at the position 3-OH with a palmitate acyl chain leading to the formation of the 3-O-palmitoyl-silybin (2) was confirmed by both mass spectroscopy (MS) and nuclear magnetic resonance (NMR) analyses. The antioxidant activity of 1 was at least retained and even increased with the CUPRAC assay designed to estimate the antioxidant activity of both hydrophilic and lipophilic compounds. Finally, the 3-O-palmitoylation of 1, resulting in the formation of 2, also increased its anti-lipoperoxidant activity (i.e., inhibition of conjugated diene production) in two different lipophilic media (bulk oil and o/w emulsion) subjected to accelerated storage test.


Asunto(s)
Lípidos/química , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/farmacología , Silibina/síntesis química , Silibina/farmacología , Depuradores de Radicales Libres/química , Peroxidación de Lípido , Espectroscopía de Protones por Resonancia Magnética , Silibina/química , Espectrometría de Masa por Ionización de Electrospray
3.
Molecules ; 23(10)2018 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-30322184

RESUMEN

Flaxseeds are a functional food representing, by far, the richest natural grain source of lignans, and accumulate substantial amounts of other health beneficial phenolic compounds (i.e., flavonols, hydroxycinnamic acids). This specific accumulation pattern is related to their numerous beneficial effects on human health. However, to date, little data is available concerning the relative impact of genetic and geographic parameters on the phytochemical yield and composition. Here, the major influence of the cultivar over geographic parameters on the flaxseed phytochemical accumulation yield and composition is evidenced. The importance of genetic parameters on the lignan accumulation was further confirmed by gene expression analysis monitored by RT-qPCR. The corresponding antioxidant activity of these flaxseed extracts was evaluated, both in vitro, using ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC), and iron chelating assays, as well as in vivo, by monitoring the impact of UV-induced oxidative stress on the lipid membrane peroxidation of yeast cells. Our results, both the in vitro and in vivo studies, confirm that flaxseed extracts are an effective protector against oxidative stress. The results point out that secoisolariciresinol diglucoside, caffeic acid glucoside, and p-coumaric acid glucoside are the main contributors to the antioxidant capacity. Considering the health benefits of these compounds, the present study demonstrates that the flaxseed cultivar type could greatly influence the phytochemical intakes and, therefore, the associated biological activities. We recommend that this crucial parameter be considered in epidemiological studies dealing with flaxseeds.


Asunto(s)
Antioxidantes/análisis , Lino/crecimiento & desarrollo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/análisis , Semillas/crecimiento & desarrollo , Antioxidantes/química , Antioxidantes/farmacología , Lino/química , Lino/clasificación , Lino/genética , Alimentos Funcionales , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Humanos , Lignanos/análisis , Lignanos/química , Lignanos/farmacología , Peroxidación de Lípido/efectos de los fármacos , Estructura Molecular , Fenoles/análisis , Fenoles/química , Fenoles/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Proteínas de Plantas/genética , Semillas/química , Semillas/clasificación , Semillas/genética , Levaduras/efectos de los fármacos , Levaduras/metabolismo
4.
Planta ; 246(3): 405-420, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28451749

RESUMEN

MAIN CONCLUSION: This study provides new insights into the biosynthesis regulation and in planta function of the lignan yatein in flax leaves. Pinoresinol-lariciresinol reductases (PLR) catalyze the conversion of pinoresinol into secoisolariciresinol (SECO) in lignan biosynthesis. Several lignans are accumulated in high concentrations, such as SECO accumulated as secoisolariciresinol diglucoside (SDG) in seeds and yatein in aerial parts, in the flax plant (Linum usitatissimum L.) from which two PLR enzymes of opposite enantioselectivity have been isolated. While LuPLR1 catalyzes the biosynthesis of (+)-SECO leading to (+)-SDG in seeds, the role(s) of the second PLR (LuPLR2) is not completely elucidated. This study provides new insights into the in planta regulation and function of the lignan yatein in flax leaves: its biosynthesis relies on a different PLR with opposite stereospecificity but also on a distinct expression regulation. RNAi technology provided evidence for the in vivo involvement of the LuPLR2 gene in the biosynthesis of (-)-yatein accumulated in flax leaves. LuPLR2 expression in different tissues and in response to stress was studied by RT-qPCR and promoter-reporter transgenesis showing that the spatio-temporal expression of the LuPLR2 gene in leaves perfectly matches the (-)-yatein accumulation and that LuPLR2 expression and yatein production are increased by methyl jasmonate and wounding. A promoter deletion approach yielded putative regulatory elements. This expression pattern in relation to a possible role for this lignan in flax defense is discussed.


Asunto(s)
4-Butirolactona/análogos & derivados , Lino/fisiología , Genes de Plantas/genética , Oxidorreductasas/genética , Inmunidad de la Planta/genética , 4-Butirolactona/biosíntesis , Dioxoles , Lino/enzimología , Lino/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Genes de Plantas/fisiología , Glucuronidasa/metabolismo , Redes y Vías Metabólicas , Oxidorreductasas/fisiología , Inmunidad de la Planta/fisiología , Hojas de la Planta/enzimología , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Nicotiana/genética
5.
Planta Med ; 83(6): 574-581, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27776375

RESUMEN

Podophyllotoxin, a lignan still extracted from the rhizomes of Podophyllum hexandrum (Berberidaceae), is the starting molecule for the semisynthesis of widely used anticancer drugs such as etoposide. However, this source is threatened by the over-collection of P. hexandrum. Plants belonging to the Linaceae and Cupressaceae families could be attractive alternative sources with species that contain the lignan podophyllotoxin or its precursors and derivatives. Wild flax species, such as Linum flavum, as well as some Juniperus and Callitris species were investigated for their lignan content, and the in vitro antiproliferative capacity of their extracts was assayed on four tumor cell lines. Some of the lignans were detected by LC-HRMS for the first time in these extracts.In addition, lignans purified from these plants and compounds semisynthesized from commercially available podophyllotoxin were tested in terms of their in vitro antiproliferative activity. The genus Juniperus was the most promising given its in vitro antiproliferative effects, which were also observed with extracts from L. flavum and Callitris species.The in vitro antiproliferative effect of the plant extracts studied here appears to correlate well with the contents of the aryltetralin lignan podophyllotoxin and its glycoside as well as with deoxypodophyllotoxin and 6-methoxypodophyllotoxin. The strongest correlation between the lignan content of the extracts and the antiproliferative activity was observed for 6-methoxypodophyllotoxin. Regarding the possibility of producing large renewable amounts of 6-methoxypodophyllotoxin, this molecule could be of interest to produce new anticancer drugs and to bypass the resistance mechanisms against podophyllotoxin-derived drugs.


Asunto(s)
Antineoplásicos/farmacología , Cupressaceae/química , Lino/química , Juniperus/química , Lignanos/farmacología , Extractos Vegetales/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Vías Biosintéticas , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sinergismo Farmacológico , Medicamentos Herbarios Chinos , Humanos , Lignanos/química , Lignanos/aislamiento & purificación , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Podofilotoxina/análogos & derivados , Podofilotoxina/química , Podofilotoxina/aislamiento & purificación , Podofilotoxina/farmacología
6.
Molecules ; 19(3): 3025-37, 2014 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-24619301

RESUMEN

Flax (Linum usitatissimum L.) seeds are widely used for oil extraction and the cold-pressed flaxseed (or linseed) cakes obtained during this process constitute a valuable by-product. The flavonol herbacetin diglucoside (HDG) has been previously reported as a constituent of the flaxseed lignan macromolecule linked through ester bonds to the linker molecule hydroxymethylglutaric acid. In this context, the development and validation of a new approach using microwave-assisted extraction (MAE) of HDG from flaxseed cakes followed by quantification with a reverse-phase HPLC system with UV detection was purposed. The experimental parameters affecting the HDG extraction yield, such as microwave power, extraction time and sodium hydroxide concentration, from the lignan macromolecule were optimized. A maximum HDG concentration of 5.76 mg/g DW in flaxseed cakes was measured following an irradiation time of 6 min, for a microwave power of 150 W using a direct extraction in 0.1 M NaOH in 70% (v/v) aqueous methanol. The optimized method was proven to be rapid and reliable in terms of precision, repeatability, stability and accuracy for the extraction of HDG. Comparison with a conventional extraction method demonstrated that MAE is more effective and less time-consuming.


Asunto(s)
Flavonoides/química , Lino/química , Glucósidos/química , Extractos Vegetales/química , Semillas/química , Fraccionamiento Químico/métodos , Cromatografía Líquida de Alta Presión , Microondas
7.
Bioorg Med Chem Lett ; 23(10): 3007-12, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23583514

RESUMEN

Type 2 diabetes mellitus (T2DM) is one of the common global diseases. Flaxseed is by far the richest source of the dietary lignans (i.e., secoisolariciresinol diglucoside) which have been shown to delay the development of T2DM in animal models. Herein, we propose the first evidences for a mechanism of action involving the inhibition of the pancreatic α-amylase (EC 3.2.1.1) by flaxseed-derived lignans that could therefore constitute a promising nutraceutical for the prevention and the treatment of T2DM.


Asunto(s)
Butileno Glicoles/farmacología , Inhibidores Enzimáticos/farmacología , Lino/química , Glucósidos/farmacología , Lignanos/farmacología , alfa-Amilasas Pancreáticas/antagonistas & inhibidores , Extractos Vegetales/química , Animales , Butileno Glicoles/química , Butileno Glicoles/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Glucósidos/química , Glucósidos/aislamiento & purificación , Inhibidores de Glicósido Hidrolasas , Intestinos/enzimología , Lignanos/química , Lignanos/aislamiento & purificación , Estructura Molecular , alfa-Amilasas Pancreáticas/metabolismo , Ratas , Relación Estructura-Actividad , Porcinos , alfa-Glucosidasas/metabolismo
8.
J Photochem Photobiol B ; 167: 216-227, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28088102

RESUMEN

Lignans and neolignans are principal bioactive components of Linum usitatissimum L. (Flax), having multiple pharmacological activities. In present study, we are reporting an authoritative abiotic elicitation strategy of photoperiod regimes along with UV-C radiations. Cell cultures were grown in different photoperiod regimes (24h-dark, 24h-light and 16L/8D h photoperiod) either alone or in combination with various doses (1.8-10.8kJ/m2) of ultraviolet-C (UV-C) radiations. Secoisolariciresinol diglucoside (SDG), lariciresinol diglucoside (LDG), dehydrodiconiferyl alcohol glucoside (DCG), and guaiacylglycerol-ß-coniferyl alcohol ether glucoside (GGCG) were quantified by using reverse phase-high performance liquid chromatography (RP-HPLC). Results showed that the cultures exposed to UV-C radiations, accumulated higher levels of lignans, neolignans and other biochemical markers than cultures grown under different photoperiod regimes. 3.6kJ/m2 dose of UV-C radiations resulted in 1.86-fold (7.1mg/g DW) increase in accumulation of SDG, 2.25-fold (21.6mg/g DW) in LDG, and 1.33-fold (9.2mg/g DW) in GGCG in cell cultures grown under UV+photoperiod than their respective controls. Furthermore, cell cultures grown under UV+dark showed 1.36-fold (60.0mg/g DW) increase in accumulation of DCG in response to 1.8kJ/m2 dose of UV-C radiations. Smilar trends were observed in productivity of SDG, LDG and GGCG. Additionally, 3.6kJ/m2 dose of UV-C radiations also resulted in 2.82-fold (195.65mg/l) increase in total phenolic production, 2.94-fold (98.9mg/l) in total flavonoid production and 1.04-fold (95%) in antioxidant activity of cell cultures grown under UV+photoperiod. These findings open new dimensions for feasible production of biologically active lignans and neolignans by Flax cell cultures.


Asunto(s)
Lino/metabolismo , Lignanos/biosíntesis , Fotoperiodo , Rayos Ultravioleta , Antioxidantes/metabolismo , Biomasa , Células Cultivadas , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Flavonoides/metabolismo , Lino/citología , Fenoles/metabolismo
9.
Ultrason Sonochem ; 26: 176-185, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25753491

RESUMEN

Flaxseed accumulates in its seedcoat a macromolecular complex composed of lignan (secoisolariciresinol diglucoside, SDG), flavonol (herbacetin diglucoside, HDG) and hydroxycinnamic acids (p-couramic, caffeic and ferulic acid glucosides). Their antioxidant and/or cancer chemopreventive properties support their interest in human health and therefore, the demand for their extraction. In the present study, ultrasound-assisted extraction (UAE) of flaxseed phenolic compounds was investigated. Scanning Electron Microscopy imaging and histochemical analysis revealed the deep alteration of the seedcoat ultrastructure and the release of the mucilage following ultrasound treatment. Therefore, this method was found to be very efficient for the reduction of mucilage entrapment of flaxseed phenolics. The optimal conditions for UAE phenolic compounds extraction from flaxseeds were found to be: water as solvent supplemented with 0.2N of sodium hydroxide for alkaline hydrolysis of the SDG-HMG complex, an extraction time of 60 min at a temperature of 25°C and an ultrasound frequency of 30 kHz. Under these optimized and validated conditions, highest yields of SDG, HDG and hydroxycinnamic acid glucosides were detected in comparison to other published methods. Therefore, the procedure presented herein is a valuable method for efficient extraction and quantification of the main flaxseed phenolics. Moreover, this UAE is of particular interest within the context of green chemistry in terms of reducing energy consumption and valuation of flaxseed cakes as by-products resulting from the production of flax oil.


Asunto(s)
Fraccionamiento Químico/métodos , Lino/química , Fenoles/aislamiento & purificación , Semillas/química , Ondas Ultrasónicas , Fraccionamiento Químico/instrumentación , Equipos y Suministros Eléctricos , Hidróxido de Sodio/química , Temperatura , Factores de Tiempo
10.
Phytochemistry ; 115: 70-8, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25698360

RESUMEN

Due to their pronounced cytotoxic activity, a number of aryltetralin lignans (ATLs), such as podophyllotoxin (PTOX), are used as antitumor compounds. The production of such molecules from entire plants or plant cell-tissue-organ cultures is thus of interest to the pharmaceutical industry. Hairy root cultures constitute a good tool not only for phytochemical production but also for investigating plant secondary metabolism. This work reports on the growth and ATL biosynthesis in two hairy root cultures of Linum album Kotschy ex Boiss. and Linum flavum. The kinetics of accumulation of the intermediates of MPTOX biosynthesis and of their glucosylated forms are described over a 21-day period of growth. An accumulation of non-glucosylated forms of the ATLs during the exponential phase of the cultures is followed by an accumulation of the glucosylated forms during the stationary phase. Our results show a strong coordination of the biosynthetic paths derived from deoxypodophyllotoxin via deoxypodophyllotoxin 6-hydroxylase and deoxypodophyllotoxin 7-hydroxylase, and a coordinated glucosylation of podophyllotoxin, methoxypodophyllotoxin, and 5'-demethoxymethoxypodophyllotoxin. Furthermore, our results suggest an important role of ß-peltatin-6-glucoside formation in the control of ATL accumulation in Linum hairy root cultures.


Asunto(s)
Lino/química , Lignanos , Medicamentos Herbarios Chinos , Lino/enzimología , Lino/genética , Lino/crecimiento & desarrollo , Glicosilación , Cinética , Lignanos/química , Lignanos/aislamiento & purificación , Lignanos/metabolismo , Lignanos/farmacología , Estructura Molecular , Raíces de Plantas/química , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Podofilotoxina/análogos & derivados , Podofilotoxina/química , Podofilotoxina/aislamiento & purificación , Podofilotoxina/farmacología , Podofilotoxina/toxicidad
11.
Plant Physiol Biochem ; 72: 96-111, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23816064

RESUMEN

A Linum usitatissimum LuERA1 gene encoding a putative ortholog of the ERA1 (Enhanced Response to ABA 1) gene of Arabidopsis thaliana (encoding the beta subunit of a farnesyltransferase) was analyzed in silico and for its expression in flax. The gene and the protein sequences are highly similar to other sequences already characterized in plants and all the features of a farnesyltransferase were detected. Molecular modeling of LuERA1 protein confirmed its farnesyltransferase nature. LuERA1 is expressed in the vegetative organs and also in the outer seedcoat of the flaxseed, where it could modulate the previously observed regulation operated by ABA on lignan synthesis. This effect could be mediated by the regulation of the transcription of a key gene for lignan synthesis in flax, the LuPLR1 gene, encoding a pinoresinol lariciresinol reductase. The positive effect of manumycin A, a specific inhibitor of farnesyltransferase, on lignan biosynthesis in flax cell suspension systems supports the hypothesis of the involvement of such an enzyme in the negative regulation of ABA action. In Arabidopsis, ERA1 is able to negatively regulate the ABA effects and the mutant era1 has an enhanced sensitivity to ABA. When expressed in an Arabidopsis cell suspension (heterologous system) LuERA1 is able to reverse the effect of the era1 mutation. RNAi experiments in flax targeting the farnesyltransferase ß-subunit encoded by the LuERA1 gene led to an increase LuPLR1 expression level associated with an increased content of lignan in transgenic calli. Altogether these results strongly suggest a role of the product of this LuERA1 gene in the ABA-mediated upregulation of lignan biosynthesis in flax cells through the activation of LuPLR1 promoter. This ABA signaling pathway involving ERA1 probably acts through the ABRE box found in the promoter sequence of LuPLR1, a key gene for lignan synthesis in flax, as demonstrated by LuPLR1 gene promoter-reporter experiments in flax cells using wild type and mutated promoter sequences.


Asunto(s)
Ácido Abscísico/metabolismo , Lino/metabolismo , Lignanos/biosíntesis , Lino/genética , Expresión Génica/genética , Expresión Génica/fisiología , Prenilación de Proteína/genética , Prenilación de Proteína/fisiología
12.
J Agric Food Chem ; 59(15): 8101-7, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-21702435

RESUMEN

The lignans podophyllotoxin and deoxypodophyllotoxin are secondary metabolites with potent pharmaceutical applications in cancer therapy. However, the supply of podophyllotoxin from its current natural source, Podophyllum hexandrum, is becoming increasingly problematic, and alternative sources are therefore urgently needed. So far, podophyllotoxin and deoxypodophyllotoxin have been found in some Juniperus species, although at low levels in most cases. Moreover, extraction protocols deserve optimization. This study aimed at developing and validating an efficient extraction protocol of podophyllotoxin and deoxypodophyllotoxin from Juniperus species and applying it to 13 Juniperus species, among which some had never been previously analyzed. Juniperus bermudiana was used for the development and validation of an extraction protocol for podophyllotoxin and deoxypodophyllotoxin allowing extraction yields of up to 22.6 mg/g DW of podophyllotoxin and 4.4 mg/g DW deoxypodophyllotoxin, the highest values found in leaf extract of Juniperus. The optimized extraction protocol and HPLC separation from DAD or MS detections were established and validated to investigate podophyllotoxin and deoxypodophyllotoxin contents in aerial parts of 12 other Juniperus species. This allowed either higher yields to be obtained in some species reported to contain these two compounds or the occurrence of these compounds in some other species to be reported for the first time. This efficient protocol allows effective extraction of podophyllotoxin and deoxypodophyllotoxin from aerial parts of Juniperus species, which could therefore constitute interesting alternative sources of these valuable metabolites.


Asunto(s)
Fraccionamiento Químico/métodos , Juniperus/química , Extractos Vegetales/aislamiento & purificación , Podofilotoxina/análogos & derivados , Podofilotoxina/aislamiento & purificación , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos , Extractos Vegetales/análisis , Podofilotoxina/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA