Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(2): e2320840121, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38157450
2.
Sci Adv ; 9(30): eade6253, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37506204

RESUMEN

Despite continuous progress in climate modeling, global projections of the terrestrial water cycle remain highly model dependent. Here, we use quality-controlled gridded observations of temperature and humidity to constrain projected changes in continental near-surface relative humidity across the 21st century. Results show that the projections are poorly constrained when using surface temperature observations only and argue for mitigation policies that are not only rooted in global warming levels. Projections constrained with both near-surface temperature and relative humidity observations show an inevitable continental drying, especially in the northern midlatitudes where anthropogenic aerosols have, however, countered this long-term response until the late 1980s. A "strong drying" storyline is then used to highlight the urgent need for careful adaptation strategies and to suggest a possible contribution of land surface processes to model uncertainties.

3.
Nat Commun ; 13(1): 6848, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36369164

RESUMEN

Current knowledge of the spatiotemporal patterns of changes in soil moisture-based terrestrial aridity has considerable uncertainty. Using Standardized Soil Moisture Index (SSI) calculated from multi-source merged data sets, we find widespread drying in the global midlatitudes, and wetting in the northern subtropics and in spring between 45°N-65°N, during 1971-2016. Formal detection and attribution analysis shows that human forcings, especially greenhouse gases, contribute significantly to the changes in 0-10 cm SSI during August-November, and 0-100 cm during September-April. We further develop and apply an emergent constraint method on the future SSI's signal-to-noise (S/N) ratios and trends under the Shared Socioeconomic Pathway 5-8.5. The results show continued significant presence of human forcings and more rapid drying in 0-10 cm than 0-100 cm. Our findings highlight the predominant human contributions to spatiotemporally heterogenous terrestrial aridification, providing a basis for drought and flood risk management.


Asunto(s)
Sequías , Suelo , Humanos , Estaciones del Año , Desecación
4.
Ann N Y Acad Sci ; 1472(1): 49-75, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32246848

RESUMEN

Globally, thermodynamics explains an increase in atmospheric water vapor with warming of around 7%/°C near to the surface. In contrast, global precipitation and evaporation are constrained by the Earth's energy balance to increase at ∼2-3%/°C. However, this rate of increase is suppressed by rapid atmospheric adjustments in response to greenhouse gases and absorbing aerosols that directly alter the atmospheric energy budget. Rapid adjustments to forcings, cooling effects from scattering aerosol, and observational uncertainty can explain why observed global precipitation responses are currently difficult to detect but are expected to emerge and accelerate as warming increases and aerosol forcing diminishes. Precipitation increases with warming are expected to be smaller over land than ocean due to limitations on moisture convergence, exacerbated by feedbacks and affected by rapid adjustments. Thermodynamic increases in atmospheric moisture fluxes amplify wet and dry events, driving an intensification of precipitation extremes. The rate of intensification can deviate from a simple thermodynamic response due to in-storm and larger-scale feedback processes, while changes in large-scale dynamics and catchment characteristics further modulate the frequency of flooding in response to precipitation increases. Changes in atmospheric circulation in response to radiative forcing and evolving surface temperature patterns are capable of dominating water cycle changes in some regions. Moreover, the direct impact of human activities on the water cycle through water abstraction, irrigation, and land use change is already a significant component of regional water cycle change and is expected to further increase in importance as water demand grows with global population.


Asunto(s)
Cambio Climático , Inundaciones , Lluvia , Ciclo Hidrológico , Humanos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA