Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(1): e2308706120, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38147649

RESUMEN

Social anxiety disorder (SAD) is a crippling psychiatric disorder characterized by intense fear or anxiety in social situations and their avoidance. However, the underlying biology of SAD is unclear and better treatments are needed. Recently, the gut microbiota has emerged as a key regulator of both brain and behaviour, especially those related to social function. Moreover, increasing data supports a role for immune function and oxytocin signalling in social responses. To investigate whether the gut microbiota plays a causal role in modulating behaviours relevant to SAD, we transplanted the microbiota from SAD patients, which was identified by 16S rRNA sequencing to be of a differential composition compared to healthy controls, to mice. Although the mice that received the SAD microbiota had normal behaviours across a battery of tests designed to assess depression and general anxiety-like behaviours, they had a specific heightened sensitivity to social fear, a model of SAD. This distinct heightened social fear response was coupled with changes in central and peripheral immune function and oxytocin expression in the bed nucleus of the stria terminalis. This work demonstrates an interkingdom basis for social fear responses and posits the microbiome as a potential therapeutic target for SAD.


Asunto(s)
Microbioma Gastrointestinal , Fobia Social , Humanos , Animales , Ratones , Microbioma Gastrointestinal/fisiología , Oxitocina , ARN Ribosómico 16S/genética , Miedo , Ansiedad/psicología
2.
Brain Behav Immun ; 120: 315-326, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852762

RESUMEN

Social anxiety disorder is a common psychiatric condition that severely affects quality of life of individuals and is a significant societal burden. Although many risk factors for social anxiety exist, it is currently unknown how social fear sensitivity manifests biologically. Furthermore, since some individuals are resilient and others are susceptible to social fear, it is important to interrogate the mechanisms underpinning individual response to social fear situations. The microbiota-gut-brain axis has been associated with social behaviour, has recently been linked with social anxiety disorder, and may serve as a therapeutic target for modulation. Here, we assess the potential of this axis to be linked with social fear extinction processes in a murine model of social anxiety disorder. To this end, we correlated differential social fear responses with microbiota composition, central gene expression, and immune responses. Our data provide evidence that microbiota variability is strongly correlated with alterations in social fear behaviour. Moreover, we identified altered gene candidates by amygdalar transcriptomics that are linked with social fear sensitivity. These include genes associated with social behaviour (Armcx1, Fam69b, Kcnj9, Maoa, Serinc5, Slc6a17, Spata2, and Syngr1), inflammation and immunity (Cars, Ckmt1, Klf5, Maoa, Map3k12, Pex5, Serinc5, Sidt1, Spata2), and microbe-host interaction (Klf5, Map3k12, Serinc5, Sidt1). Together, these data provide further evidence for a role of the microbiota-gut-brain axis in social fear responses.


Asunto(s)
Eje Cerebro-Intestino , Extinción Psicológica , Miedo , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Animales , Miedo/fisiología , Ratones , Microbioma Gastrointestinal/fisiología , Extinción Psicológica/fisiología , Masculino , Eje Cerebro-Intestino/fisiología , Encéfalo/metabolismo , Conducta Social , Fobia Social/metabolismo , Fobia Social/psicología , Amígdala del Cerebelo/metabolismo , Modelos Animales de Enfermedad , Ansiedad/metabolismo
3.
J Gen Virol ; 103(12)2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36748479

RESUMEN

The International Committee on Taxonomy of Viruses recently adopted, and is gradually implementing, a binomial naming format for virus species. Although full Latinization of these names remains optional, a standardized nomenclature based on Latinized binomials has the advantage of comparability with all other biological taxonomies. As a language without living native speakers, Latin is more culturally neutral than many contemporary languages, and words built from Latin roots are already widely used in the language of science across the world. Conversion of established species names to Latinized binomials or creation of Latinized binomials de novo may seem daunting, but the rules for name creation are straightforward and can be implemented in a formulaic manner. Here, we describe approaches, strategies and steps for creating Latinized binomials for virus species without prior knowledge of Latin. We also discuss a novel approach to the automated generation of large batches of novel genus and species names. Importantly, conversion to a binomial format does not affect virus names, many of which are created from local languages.


Asunto(s)
Terminología como Asunto , Virus , Virus/clasificación
4.
BMC Biol ; 18(1): 173, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33218339

RESUMEN

BACKGROUND: It has become increasingly accepted that establishing and maintaining a complex and diverse gut microbiota is fundamental to human health. There are growing efforts to identify means of modulating and influencing the microbiota, especially in individuals who have experienced a disruption in their native microbiota. Faecal microbiota transplantation (FMT) is one method that restores diversity to the microbiota of an individual by introducing microbes from a healthy donor. FMT introduces the total microbial load into the recipient, including the bacteria, archaea, yeasts, protists and viruses. In this study, we investigated whether an autochthonous faecal viral transfer (FVT), in the form of a sterile faecal filtrate, could impact the recovery of a bacteriome disrupted by antibiotic treatment. RESULTS: Following antibiotic disruption of the bacteriome, test mice received an FVT harvested prior to antibiotic treatment, while control mice received a heat- and nuclease-treated FVT. In both groups of mice, the perturbed microbiome reverted over time to one more similar to the pre-treatment one. However, the bacteriomes of mice that received an FVT, in which bacteriophages predominate, separated from those of the control mice as determined by principal co-ordinate analysis (PCoA). Moreover, analysis of the differentially abundant taxa indicated a closer resemblance to the pre-treatment bacteriome in the test mice that had received an FVT. Similarly, metagenomic sequencing of the virome confirmed that faecal bacteriophages of FVT and control mice differed over time in both abundance and diversity, with the phages constituting the FVT persisting in mice that received them. CONCLUSIONS: An autochthonous virome transfer reshaped the bacteriomes of mice post-antibiotic treatment such that they more closely resembled the pre-antibiotic microbiota profile compared to mice that received non-viable phages. Thus, FVT may have a role in addressing antibiotic-associated microbiota alterations and potentially prevent the establishment of post-antibiotic infection. Given that bacteriophages are biologically inert in the absence of their host bacteria, they could form a safe and effective alternative to whole microbiota transplants that could be delivered during/following perturbation of the gut flora.


Asunto(s)
Antibacterianos/efectos adversos , Bacterias/aislamiento & purificación , Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Trasplante de Microbiota Fecal , Heces/microbiología , Metagenoma , Microbiota , Animales , Antibacterianos/administración & dosificación , Bacterias/efectos de los fármacos , Ratones
5.
Int J Mol Sci ; 22(11)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073633

RESUMEN

Clostridioides difficile is a spore-forming enteric pathogen causing life-threatening diarrhoea and colitis. Microbial disruption caused by antibiotics has been linked with susceptibility to, and transmission and relapse of, C. difficile infection. Therefore, there is an urgent need for novel therapeutics that are effective in preventing C. difficile growth, spore germination, and outgrowth. In recent years bacteriophage-derived endolysins and their derivatives show promise as a novel class of antibacterial agents. In this study, we recombinantly expressed and characterized a cell wall hydrolase (CWH) lysin from C. difficile phage, phiMMP01. The full-length CWH displayed lytic activity against selected C. difficile strains. However, removing the N-terminal cell wall binding domain, creating CWH351-656, resulted in increased and/or an expanded lytic spectrum of activity. C. difficile specificity was retained versus commensal clostridia and other bacterial species. As expected, the putative cell wall binding domain, CWH1-350, was completely inactive. We also observe the effect of CWH351-656 on preventing C. difficile spore outgrowth. Our results suggest that CWH351-656 has therapeutic potential as an antimicrobial agent against C. difficile infection.


Asunto(s)
Bacteriófagos , Clostridioides difficile , Endopeptidasas/metabolismo , Esporas Bacterianas , Proteínas Virales/metabolismo , Bacteriófagos/enzimología , Bacteriófagos/genética , Clostridioides difficile/enzimología , Clostridioides difficile/genética , Clostridioides difficile/virología , Endopeptidasas/genética , Endopeptidasas/farmacología , Enterocolitis Seudomembranosa/tratamiento farmacológico , Humanos , Esporas Bacterianas/enzimología , Esporas Bacterianas/genética , Esporas Bacterianas/virología , Proteínas Virales/genética , Proteínas Virales/farmacología
6.
Biofouling ; 33(1): 45-58, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27918204

RESUMEN

The effects of pronase (PRN), cellulase (CEL) or DNaseI alone or combined with benzalkonium chloride (BAC) against Listeria monocytogenes-carrying biofilms were assayed. The best removal activity against L. monocytogenes-Escherichia coli biofilms was obtained using DNaseI followed by PRN and CEL. Subsequently, a modified logistic model was used to quantify the combined effects of PRN or DNaseI with BAC. A better BAC performance after PRN compared to DNaseI eradicating L. monocytogenes was observed. In E. coli the effects were the opposite. Finally, effects of DNaseI and DNaseI-BAC treatments were compared against two different L. monocytogenes-carrying biofilms. DNaseI-BAC was more effective against L. monocytogenes when co-cultured with E. coli. Nonetheless, comparing the removal effects after BAC addition, these were higher in mixed-biofilms with Pseudomonas fluorescens. However, a high number of released viable cells was observed after combined treatments. These results open new perspectives of enzymes as an anti-biofilm strategy for environmental pathogen control.


Asunto(s)
Compuestos de Benzalconio/farmacología , Biopelículas/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Hidrolasas/farmacología , Listeria monocytogenes/efectos de los fármacos , Pseudomonas fluorescens/efectos de los fármacos , Carga Bacteriana , Biopelículas/crecimiento & desarrollo , Celulasa/farmacología , Desoxirribonucleasa I/farmacología , Sinergismo Farmacológico , Escherichia coli/fisiología , Listeria monocytogenes/fisiología , Viabilidad Microbiana , Microscopía Fluorescente , Pronasa/farmacología , Pseudomonas fluorescens/fisiología
7.
Appl Environ Microbiol ; 81(22): 7851-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26341205

RESUMEN

Bacteriocin production is regarded as a desirable probiotic trait that aids in colonization and persistence in the gastrointestinal tract (GIT). Strains of Lactobacillus salivarius, a species associated with the GIT, are regarded as promising probiotic candidates and have a number of associated bacteriocins documented to date. These include multiple class IIb bacteriocins (salivaricin T, salivaricin P, and ABP-118) and the class IId bacteriocin bactofencin A, which show activity against medically important pathogens. However, the production of a bacteriocin in laboratory media does not ensure production under stressful environmental conditions, such as those encountered within the GIT. To allow this issue to be addressed, the promoter regions located upstream of the structural genes encoding the L. salivarius bacteriocins mentioned above were fused to a number of reporter proteins (green fluorescent protein [GFP], red fluorescent protein [RFP], and luciferase [Lux]). Of these, only transcriptional fusions to GFP generated signals of sufficient strength to enable the study of promoter activity in L. salivarius. While analysis of the class IIb bacteriocin promoter regions indicated relatively weak GFP expression, assessment of the promoter of the antistaphylococcal bacteriocin bactofencin A revealed a strong promoter that is most active in the absence of the antimicrobial peptide and is positively induced in the presence of mild environmental stresses, including simulated gastric fluid. Taken together, these data provide information on factors that influence bacteriocin production, which will assist in the development of strategies to optimize in vivo and in vitro production of these antimicrobials.


Asunto(s)
Bacteriocinas/farmacología , Genes Bacterianos , Lactobacillus/genética , Probióticos/metabolismo , Regiones Promotoras Genéticas , Tracto Gastrointestinal/microbiología , Genes Reporteros , Lactobacillus/metabolismo
8.
iScience ; 27(2): 108778, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38292428

RESUMEN

Bacteriophages are a major component of the gut microbiome and are believed to play a role in establishment and stabilization of microbial communities by influencing taxonomic and functional diversity. We show that the activity of lytic and temperate phages can also significantly affect bacterial community structure in a model of extended colonic retention. Intact fresh human feces were incubated anaerobically at 37°C without homogenization and subjected to metagenomic sequencing. We observed subject-specific blooms and collapses of selected bacteriophage and bacterial populations within some individuals. Most notable were striking collapses of Prevotella populations accompanied by increases in specific bacteriophages. In a number of cases, we even observed a shift from one bacterial "enterotype" to another within 48 h. These results confirm that intact feces represents a highly dynamic ecological system and suggests that colonic retention time could have a profound effect on microbiome composition, including a significant impact by bacteriophages.

9.
Gut Microbes ; 16(1): 2298254, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38178369

RESUMEN

The human gut microbiome plays a significant role in health and disease. The viral component (virome) is predominantly composed of bacteriophages (phages) and has received significantly less attention in comparison to the bacteriome. This knowledge gap is largely due to challenges associated with the isolation and characterization of novel gut phages, and bioinformatic hurdles such as the lack of a universal phage marker gene and the absence of sufficient numbers of homologs in viral databases. Here, we describe the isolation from human feces of a novel lytic phage with siphovirus morphology, φPDS1, infecting Parabacteroides distasonis APCS2/PD, and classified within a newly proposed Sagittacolavirus genus. In silico and biological characterization of this phage is presented in this study. Key to the isolation of φPDS1 was the antibiotic-driven selective enrichment of the bacterial host in a fecal fermenter. Despite producing plaques and lacking genes associated with lysogeny, φPDS1 demonstrates the ability to coexist in liquid culture for multiple days without affecting the abundance of its host. Multiple studies have shown that changes in Parabacteroides distasonis abundance can be linked to various disease states, rendering this novel phage-host pair and their interactions of particular interest.


Asunto(s)
Bacteriófagos , Microbioma Gastrointestinal , Microbiota , Humanos , Bacteriófagos/genética , Microbioma Gastrointestinal/genética , Bacteroidetes
10.
Microbiol Spectr ; : e0059224, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101714

RESUMEN

Escherichia coli is a commensal inhabitant of the mammalian gut microbiota, frequently associated with various gastrointestinal diseases. There is increasing interest in comprehending the variety of bacteriophages (phages) that target this bacterium, as such insights could pave the way for their potential use in therapeutic applications. Here, we report the isolation and characterization of four newly identified E. coli infecting tailed phages (W70, A7-1, A5-4, and A73) that were found to constitute a novel genus, Septuagintavirus, within the subfamily Vequintavirinae. Genomes of these phages ranged from 137 kbp to 145 kbp, with a GC content of 41 mol%. They possess a maximum nucleotide similarity of 30% with phages of the closest phylogenetic genus, Certrevirus, while displaying limited homology to other genera of the Vequintavirinae family. Host range analysis showed that these phages have limited activity against a panel of E. coli strains, infecting 6 out of 16 tested isolates, regardless of their phylotype. Electrospray ionization-tandem mass spectrometry (ESI-MS/MS) was performed on the virion of phage W70, allowing the identification of 28 structural proteins, 19 of which were shared with phages of other genera of Vequintavirinae family. The greatest diversity was identified with proteins forming tail fiber structures, likely indicating the adaptation of virions of each phage genus of this subfamily for the recognition of their target receptor on host cells. The findings of this study provide greater insights into the phages of the subfamily Vequintavirinae, contributing to the pool of knowledge currently known about these phages. IMPORTANCE: Escherichia coli is a well-known bacterium that inhabits diverse ecological niches, including the mammalian gut microbiota. Certain strains are associated with gastrointestinal diseases, and there is a growing interest in using bacteriophages, viruses that infect bacteria, to combat bacterial infections. Here, we describe the isolation and characterization of four novel E. coli bacteriophages that constitute a new genus, Septuagintavirus, within the subfamily Vequintavirinae. We conducted mass spectrometry on virions of a representative phage of this novel clade and compared it to other phages within the subfamily. Our analysis shows that virion structure is highly conserved among all phages, except for proteins related to tail fiber structures implicated in the host range. These findings provide greater insights into the phages of the subfamily Vequintavirinae, contributing to the existing pool of knowledge about these phages.

11.
Nat Microbiol ; 9(2): 359-376, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38316929

RESUMEN

The microbiota-gut-brain axis has been shown to play an important role in the stress response, but previous work has focused primarily on the role of the bacteriome. The gut virome constitutes a major portion of the microbiome, with bacteriophages having the potential to remodel bacteriome structure and activity. Here we use a mouse model of chronic social stress, and employ 16S rRNA and whole metagenomic sequencing on faecal pellets to determine how the virome is modulated by and contributes to the effects of stress. We found that chronic stress led to behavioural, immune and bacteriome alterations in mice that were associated with changes in the bacteriophage class Caudoviricetes and unassigned viral taxa. To determine whether these changes were causally related to stress-associated behavioural or physiological outcomes, we conducted a faecal virome transplant from mice before stress and autochthonously transferred it to mice undergoing chronic social stress. The transfer of the faecal virome protected against stress-associated behaviour sequelae and restored stress-induced changes in select circulating immune cell populations, cytokine release, bacteriome alterations and gene expression in the amygdala. These data provide evidence that the virome plays a role in the modulation of the microbiota-gut-brain axis during stress, indicating that these viral populations should be considered when designing future microbiome-directed therapies.


Asunto(s)
Bacteriófagos , Microbiota , Virus , Animales , Ratones , Viroma , ARN Ribosómico 16S/genética , Virus/genética , Bacteriófagos/genética , Inmunidad
12.
BMC Microbiol ; 13: 212, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-24069959

RESUMEN

BACKGROUND: The emergence of bacterial drug resistance encourages the re-evaluation of the potential of existing antimicrobials. Lantibiotics are post-translationally modified, ribosomally synthesised antimicrobial peptides with a broad spectrum antimicrobial activity. Here, we focussed on expanding the potential of lacticin 3147, one of the most studied lantibiotics and one which possesses potent activity against a wide range of Gram positive species including many nosocomial pathogens. More specifically, our aim was to investigate if lacticin 3147 activity could be enhanced when combined with a range of different clinical antibiotics. RESULTS: Initial screening revealed that polymyxin B and polymyxin E (colistin) exhibited synergistic activity with lacticin 3147. Checkerboard assays were performed against a number of strains, including both Gram positive and Gram negative species. The resultant fractional inhibitory concentration (FIC) index values established that, while partial synergy was detected against Gram positive targets, synergy was obvious against Gram negative species, including Cronobacter and E. coli. CONCLUSIONS: Combining lacticin 3147 with low levels of a polymyxin could provide a means of broadening target specificity of the lantibiotic, while also reducing polymyxin use due to the lower concentrations required as a result of synergy.


Asunto(s)
Antibacterianos/farmacología , Bacteriocinas/farmacología , Sinergismo Farmacológico , Bacterias Gramnegativas/efectos de los fármacos , Polimixinas/farmacología , Bacterias Gramnegativas/crecimiento & desarrollo , Pruebas de Sensibilidad Microbiana
13.
Gut Microbes ; 15(1): 2194794, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36994608

RESUMEN

Ruminococcus gnavus is a prevalent gut microbe reported to occur in higher abundance among individuals with inflammatory bowel disease (IBD). This study reports the isolation and characterization of six bacteriophages (phages) isolated from human fecal material and environmental samples that infect this species. Isolated phages have a siphovirus morphology, with genomes ranging between 36.5 and 37.8 kbp. Genome analysis indicates that the phages have a temperate lifestyle, which was confirmed by their ability to form lysogens on their host bacterial species. In contrast to the finding that phages lyse their host in liquid medium, results from a mouse trial indicate these phages can co-exist with the host bacterium in the gut without causing a significant reduction of R. gnavus. The bacterial counts in the feces of phage-treated mice did not significantly differ in the presence of phage. Furthermore, analysis of publicly available gut virome sequence data indicates a high abundance of these phages among individuals suffering from IBD. This work provides the first insight into how phages interact with R. gnavus in the human gut microbiome.


Asunto(s)
Bacteriófagos , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Humanos , Ratones , Animales , Bacteriófagos/genética , Mucinas , Ruminococcus/genética , Microbioma Gastrointestinal/genética , Bacterias
14.
Microbiol Resour Announc ; 12(5): e0004823, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37098955

RESUMEN

Here, we report the 3,426,844-bp draft genome sequence of Legionella pneumophila subsp. pneumophila strain DSM 25199, a serogroup 1 strain of L. pneumophila. The assembly consists of 24 contigs with an N50 of 300,843 bp.

15.
Front Microbiol ; 14: 1290697, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38143858

RESUMEN

Bacteriocins are antimicrobial peptides that have been studied for decades as food bio-preservatives or as alternatives to antibiotics. They also have potential as modulators of the gut microbiome, which has been linked to human health. However, it is difficult to predict a priori how bacteriocins will impact complex microbial communities through direct and indirect effects. Here we assess the effect of different bacteriocin-producing strains on a Simplified Human Intestinal Microbiota (SIHUMI) model, using a set of bacteriocin-producing strains (Bac+) and otherwise isogenic non-producers (Bac-). Bacteriocins from different classes and with different activity spectra were selected, including lantibiotics such as lacticin 3147 and nisin A, and pediocin-like bacteriocins such as pediocin PA-1 among other peptides. SIHUMI is a bacterial consortium of seven diverse human gut species that assembles to a predictable final composition in a particular growth medium. Each member can be individually tracked by qPCR. Bac+ and Bac- strains were superimposed on the SIHUMI system, and samples were taken at intervals up to 48 h. The genome copy number of each SIHUMI member was evaluated using specific primers. We establish that the composition of the community changes in response to the presence of either broad- or narrow-spectrum bacteriocin producers and confirm that there are significant off-target effects. These effects were analyzed considering antagonistic inter-species interactions within the SIHUMI community, providing a comprehensive insight into the possible mechanisms by which complex communities can be shaped by bacteriocins.

16.
Gut Microbes ; 15(1): 2163838, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36656595

RESUMEN

Conflicting evidence exists on the association between consumption of non-steroidal anti-inflammatory drugs (NSAIDs) and symptomatic worsening of inflammatory bowel disease (IBD). We hypothesized that the heterogeneous prevalence of pathobionts [e.g., adherent-invasive Escherichia coli (AIEC)], might explain this inconsistent NSAIDs/IBD correlation. Using IL10-/- mice, we found that NSAID aggravated colitis in AIEC-colonized animals. This was accompanied by activation of the NLRP3 inflammasome, Caspase-8, apoptosis, and pyroptosis, features not seen in mice exposed to AIEC or NSAID alone, revealing an AIEC/NSAID synergistic effect. Inhibition of NLRP3 or Caspase-8 activity ameliorated colitis, with reduction in NLRP3 inflammasome activation, cell death markers, activated T-cells and macrophages, improved histology, and increased abundance of Clostridium cluster XIVa species. Our findings provide new insights into how NSAIDs and an opportunistic gut-pathobiont can synergize to worsen IBD symptoms. Targeting the NLRP3 inflammasome or Caspase-8 could be a potential therapeutic strategy in IBD patients with gut inflammation, which is worsened by NSAIDs.


Asunto(s)
Antiinflamatorios no Esteroideos , Colitis , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Animales , Ratones , Antiinflamatorios no Esteroideos/efectos adversos , Caspasa 8/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/microbiología , Inflamasomas , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/microbiología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inhibidores de Caspasas/farmacología , Escherichia coli/patogenicidad
17.
Commun Biol ; 6(1): 221, 2023 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-36841913

RESUMEN

Viruses are increasingly recognised as important components of the human microbiome, fulfilling numerous ecological roles including bacterial predation, immune stimulation, genetic diversification, horizontal gene transfer, microbial interactions, and augmentation of metabolic functions. However, our current view of the human gut virome is tainted by previous sequencing requirements that necessitated the amplification of starting nucleic acids. In this study, we performed an original longitudinal analysis of 40 healthy control, 19 Crohn's disease, and 20 ulcerative colitis viromes over three time points without an amplification bias, which revealed and highlighted the interpersonal individuality of the human gut virome. In contrast to a 16 S rRNA gene analysis of matched samples, we show that α- and ß-diversity metrics of unamplified viromes are not as efficient at discerning controls from patients with inflammatory bowel disease. Additionally, we explored the intrinsic properties of unamplified gut viromes and show there is considerable interpersonal variability in viral taxa, infrequent longitudinal persistence of intrapersonal viruses, and vast fluctuations in the abundance of temporal viruses. Together, these properties of unamplified faecal viromes confound the ability to discern disease associations but significantly advance toward an unbiased and accurate representation of the human gut virome.


Asunto(s)
Colitis Ulcerosa , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Virus , Humanos , Viroma/genética , Microbioma Gastrointestinal/genética , Virus/genética , Colitis Ulcerosa/genética , Colitis Ulcerosa/microbiología , Enfermedades Inflamatorias del Intestino/genética
18.
Antimicrob Agents Chemother ; 56(1): 573-8, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22064537

RESUMEN

Nisin U is a member of the extended nisin family of lantibiotics. Here we identify the presence of nisin U immunity gene homologues in Streptococcus infantarius subsp. infantarius BAA-102. Heterologous expression of these genes in Lactococcus lactis subsp. cremoris HP confers protection to nisin U and other members of the nisin family, thereby establishing that the recently identified phenomenon of resistance through immune mimicry also occurs with respect to nisin.


Asunto(s)
Bacteriocinas/biosíntesis , Lactococcus lactis/genética , Nisina/biosíntesis , Streptococcus/genética , Antibacterianos/biosíntesis , Bacteriocinas/genética , ADN Bacteriano , Farmacorresistencia Bacteriana , Escherichia coli , Expresión Génica , Genes Bacterianos , Sitios Genéticos , Lactococcus lactis/metabolismo , Imitación Molecular , Nisina/genética , Streptococcus/metabolismo
19.
Antimicrob Agents Chemother ; 56(10): 5122-33, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22802258

RESUMEN

The lantibiotic lacticin 3147 has been the focus of much research due to its broad spectrum of activity against many microbial targets, including drug-resistant pathogens. In order to protect itself, a lacticin 3147 producer must possess a cognate immunity mechanism. Lacticin 3147 immunity is provided by an ABC transporter, LtnFE, and a dedicated immunity protein, LtnI, both of which are capable of independently providing a degree of protection. In the study described here, we carried out an in-depth investigation of LtnI structure-function relationships through the creation of a series of fusion proteins and LtnI determinants that have been the subject of random and site-directed mutagenesis. We establish that LtnI is a transmembrane protein that contains a number of individual residues and regions, such as those between amino acids 20 and 27 and amino acids 76 and 83, which are essential for LtnI function. Finally, as a consequence of the screening of a bank of 28,000 strains producing different LtnI derivatives, we identified one variant (LtnI I81V) that provides enhanced protection. To our knowledge, this is the first report of a lantibiotic immunity protein with enhanced functionality.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Bacteriocinas/farmacología , Bioingeniería/métodos , Proteínas de la Membrana/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas de la Membrana/genética , Mutagénesis Sitio-Dirigida , Relación Estructura-Actividad
20.
Microorganisms ; 10(1)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35056644

RESUMEN

Eggerthella lenta is an anaerobic, high GC, Gram-positive bacillus commonly found in the human digestive tract that belongs to the class Coriobacteriia of the phylum Actinobacteria. This species has been of increasing interest as an important player in the metabolism of xenobiotics and dietary compounds. However, little is known regarding its susceptibility to bacteriophage predation and how this may influence its fitness. Here, we report the isolation of seven novel E. lenta strains using cefotaxime and ceftriaxone as selective agents. We conducted comparative and pangenome analyses of these strains and those publicly available to investigate the diversity of prophages associated with this species. Prophage gene products represent a minimum of 5.8% of the E. lenta pangenome, comprising at least ten distantly related prophage clades that display limited homology to currently known bacteriophages. All clades possess genes implicated in virion structure, lysis, lysogeny and, to a limited extent, DNA replication. Some prophages utilise tyrosine recombinases and diversity generating retroelements to generate phase variation among targeted genes. The prophages have differing levels of sensitivity to the CRISPR/cas systems of their hosts, with spacers from 44 E. lenta isolates found to target only five out of the ten identified prophage clades. Furthermore, using a PCR-based approach targeting the prophage attP site, we were able to determine that several of these elements can excise from the host chromosome, thus supporting the notion that these are active prophages. The findings of this study provide further insights into the diversity of prophages infecting species of the phylum Actinobacteria.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA