RESUMEN
This study evaluates the quality of 30 biomass pellets sold for residential use in Poland. It provides data on their physical, chemical, and petrographic properties and compares them to existing standards and the information provided by the fuel producers. The results reveal considerable variations in the quality of the pellets and show that some of the purchased samples are not within the DINplus and/or ENplus certification thresholds. Among all 30 purchased samples, only one passes the quality thresholds set by the PL-US BIO, a newly established quality certification in Poland that combines quality assessment following DINplus with optical microscopy analysis. The primary issues causing a decrease in pellet quality include elevated ash and fines content, compromised mechanical durability, too low ash melting temperature, and additions of undesired additions like bark, inorganic matter, and petroleum products. Our research highlights the need for improved fuel quality control measures, and transparent and accurate product labeling, as well as the need for a comprehensive and publicly available national database of solid biomass fuel producers and fuels sold. These are essential steps toward increasing customers' awareness and trust, encouraging them to embrace biomass fuels as reliable and sustainable sources of energy.
Asunto(s)
Biomasa , PoloniaRESUMEN
Methane oxidizing microorganisms (methanotrophs) are ubiquitous in the environment and represent a major sink for the greenhouse gas methane (CH4). Recent studies have demonstrated methanotrophs are abundant and contribute to CH4 dynamics in caves. However, very little is known about what controls the distribution and abundance of methanotrophs in subterranean ecosystems. Here, we report a survey of soils collected from > 20 caves in North America to elucidate the factors shaping cave methanotroph communities. Using 16S rRNA sequencing, we recovered methanotrophs from nearly all (98%) of the samples, including cave sites where CH4 concentrations were at or below detection limits (≤0.3 ppmv). We identified a core methanotroph community among caves comprised of high-affinity methanotrophs. Although associated with local-scale mineralogy, methanotroph composition did not systematically vary between the entrances and interior of caves, where CH4 concentrations varied. We also observed methanotrophs are able to disperse readily between cave systems showing these organisms have low barriers to dispersal. Lastly, the relative abundance of methanotrophs was positively correlated with cave-air CH4 concentrations, suggesting these microorganisms contribute to CH4 flux in subterranean ecosystems. IMPORTANCE Recent observations have shown the atmospheric greenhouse gas methane (CH4) is consumed by microorganisms (methanotrophs) in caves at rates comparable to CH4 oxidation in surface soils. Caves are abundant in karst landscapes that comprise 14% of Earth's land surface area, and therefore may represent a potentially important, but overlooked, CH4 sink. We sampled cave soils to gain a better understand the community composition and structure of cave methanotrophs. Our results show the members of the USC-γ clade are dominant in cave communities and can easily disperse through the environment, methanotroph relative abundance was correlated with local scale mineralogy of soils, and the relative abundance of methanotrophs was positively correlated with CH4 concentrations in cave air.
Asunto(s)
Gases de Efecto Invernadero , Microbiología del Suelo , Ecosistema , Metano/análisis , ARN Ribosómico 16S/genética , Suelo/químicaRESUMEN
Numerous studies have been conducted to assess air pollution and human health risks arising from exposure to outdoor cooking, but limited standards have been implemented around the world to assure fuel quality. While charcoal briquettes and lumps are a popular fuel choice for grilling, almost no data specifying their properties are available to consumers. Because the properties of fuels affect the flue gases, it is critical to understand how the quality of grilling briquettes and lumps translates not only into the quality of the grilled food, but, even more importantly, how their emissions impact human safety and the environment. The main purpose of this study is to investigate the impacts of the quality of charcoal briquettes and lumps on potentially harmful emissions during grilling. To analyze their quality, we used reflected light microscopy to identify a range of contaminants, including biomass, mineral matter, coal, coke, metal, rust, plastics, glues, and synthetic resins, in 74 commercially available products made in Poland, the United States of America, Ukraine, Germany, Belarus, the Czech Republic, and the Republic of South Africa. Our data show that majority of the products analyzed do not meet the existing quality standard EN 1860-2:2005 (E) of less than 1% contaminants, some of these products contain up to 26.6% of impurities. The amount of contaminants correlates with particulate matter, as well as CO and CO2. The contribution of biomass is especially significant because it can be used to predict harmful particulate matter emissions during grilling. The relationship between the composition of charcoal briquettes and lump charcoal and their emissions is particularly strong during the first 15 to 20 min after ignition (when emissions are the highest), therefore, this initial stage is especially unsafe to consumers, and staying away from the grill during this time is recommended.
Asunto(s)
Contaminantes Atmosféricos , Carbón Orgánico , Contaminantes Atmosféricos/análisis , Carbón Orgánico/análisis , Culinaria , República Checa , Alemania , Humanos , Material Particulado/análisis , Polonia , República de Belarús , Sudáfrica , UcraniaRESUMEN
Geological hydrocarbon gas seepage is a major global source of atmospheric methane, ethane and propane as greenhouse gases and photochemical pollutants. Natural gas seepage is generally related to faults and associated fracture intensification domains that provide conduits for natural gas from reservoir rocks to migrate upward and enter the atmosphere. In this study, we compare the case of intense gas seepage stemming directly from source rocks, mostly organic-rich fractured black shales in western New York State (NYS) versus areas with rare seepage in the more southern regions of the Appalachian Basin and the Midwest USA. In addition to thermogenic methane, western NYS shale gas seeps emit ethane and propane with C2+3 gas concentrations reaching up to 35 vol%. Fractures in NYS developed, reactivated and maintained permeability for gas as a result of Quaternary glaciation and post-glacial basin uplift. In contrast, the Appalachian regions farther south and the southern Midwest regions experienced less glacial loading and unloading than in NYS, resulting in less recent natural fracturing, as witnessed by the rarity of seepage on surface outcrops and in caves overlying gas-bearing shales and coals. The historical literature suggests that early western NYS drilling and production of oil and gas diminished shale gas pressure and resulted in declining gas seepage rates. Our survey documented 12 active western NYS natural gas seeps, whereas >32 seeps have been reported or documented since the 17th century. Preliminary tests showed that SCIAMACHY satellite data did not detect atmospheric methane anomalies over western NYS seeps.