Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Curr Opin Hematol ; 31(1): 16-23, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37823547

RESUMEN

PURPOSE OF REVIEW: Models of arterial thrombus formation represent a vital experimental tool to investigate platelet function and test novel antithrombotic drugs. This review highlights some of the recent advances in modelling thrombus formation in vitro and suggests potential future directions. RECENT FINDINGS: Microfluidic devices and the availability of commercial chips in addition to enhanced accessibility of 3D printing has facilitated a rapid surge in the development of novel in-vitro thrombosis models. These include progression towards more sophisticated, 'vessel on a chip' models which incorporate vascular endothelial cells and smooth muscle cells. Other approaches include the addition of branches to the traditional single channel to yield an occlusive model; and developments in the adhesive coating of microfluidic chambers to better mimic the thrombogenic surface exposed following plaque rupture. Future developments in the drive to create more biologically relevant chambers could see a move towards the use of human placental vessels, perfused ex-vivo. However, further work is required to determine the feasibility and validity of this approach. SUMMARY: Recent advances in thrombus formation models have significantly improved the pathophysiological relevance of in-vitro flow chambers to better reflect the in-vivo environment and provide a more translational platform to test novel antithrombotics.


Asunto(s)
Células Endoteliales , Trombosis , Femenino , Embarazo , Humanos , Placenta , Trombosis/etiología , Arterias , Hemostasis
2.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38256024

RESUMEN

Proteoglycans are differentially expressed in different atherosclerotic plaque phenotypes, with biglycan and decorin characteristic of ruptured plaques and versican and hyaluronan more prominent in eroded plaques. Following plaque disruption, the exposure of extracellular matrix (ECM) proteins triggers platelet adhesion and thrombus formation. In this study, the impact of differential plaque composition on platelet function and thrombus formation was investigated. Platelet adhesion, activation and thrombus formation under different shear stress conditions were assessed in response to individual proteoglycans and composites representing different plaque phenotypes. The results demonstrated that all the proteoglycans tested mediated platelet adhesion but not platelet activation, and the extent of adhesion observed was significantly lower than that observed with type I and type III collagens. Thrombus formation upon the rupture and erosion ECM composites was significantly reduced (p < 0.05) compared to relevant collagen alone, indicating that proteoglycans negatively regulate platelet collagen responses. This was supported by results demonstrating that the addition of soluble biglycan or decorin to whole blood markedly reduced thrombus formation on type I collagen (p < 0.05). Interestingly, thrombus formation upon the erosion composite displayed aspirin sensitivity, whereas the rupture composite was intensive to aspirin, having implications for current antiplatelet therapy regimes. In conclusion, differential platelet responses and antiplatelet efficacy are observed on ECM composites phenotypic of plaque rupture and erosion. Proteoglycans inhibit thrombus formation and may offer a novel plaque-specific approach to limit arterial thrombosis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Trombosis , Humanos , Biglicano , Decorina , Proteínas de la Matriz Extracelular , Aspirina , Colágeno Tipo I
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA