Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
FASEB J ; 35(9): e21812, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34411354

RESUMEN

Blastocysts hatch from the zona pellucida (ZP) to enable implantation into the uterine endometrial epithelium, but little is known regarding the effect of hatching sites on pregnancy outcomes. Murine hatching embryos were categorized into five groups based on initial trophectoderm projection (TEP)/ZP position corresponding to the inner cell mass center. In blastocysts (3.5 dpc) post-12 hours in vitro culture, TEP rates of A-site (44.4%) and B-site (38.6%) embryos were higher than those of C-site (12.5%) and D-site (3.1%) embryos, while the O-site (1.4%) was the lowest (P < .05). Post-ET A-site (55.6%) and B-site (65.6%) birth rates were higher than those of C-site embryos (21.3%) and controls (P < .05). Furthermore, live birth rate of B-site embryos remained higher than C-site embryos (68.8% vs 31.3%; P < .05) when both were transferred into the same recipients. Different TEP site blastocysts exhibited different implantation competences: the implantation rate of C-site embryos was lower than that of both A- and B-site groups (67.7% vs 84.3% and 83.2%, respectively; P < .05) at 2 days post-ET. C-site embryos also had a distinctly higher ratio of developmental defects (47.5%) than A- and B-site embryos (22.5% and 14.6%, respectively), with implantation failure mainly associated with poor birth rate, a finding corroborated by differential gene expression analysis such as LIF, LIFR, and S100a9. Surprisingly, acidified Tyrode's solution (AAH)-treated B-site blastocysts had a significantly increased birth rate (77.1%) than C-site (55.3%) and controls (43.4%). Site specificity and differential gene expression during embryo hatching can be applied in ART screening. More importantly, assisted hatching by AAH is effective and feasible for improving pregnancy and term development, particularly at the B-site, for humans and in animal husbandry.


Asunto(s)
Tasa de Natalidad , Blastocisto/citología , Implantación del Embrión , Trofoblastos/citología , Zona Pelúcida/metabolismo , Animales , Transferencia de Embrión , Femenino , Fertilización In Vitro , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Embarazo , Resultado del Embarazo , Útero/citología
2.
Zygote ; 30(6): 903-909, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36106584

RESUMEN

Somatic cell nuclear transfer (NT) is associated with aberrant changes in epigenetic reprogramming that impede the development of embryos, particularly during zygotic genome activation. Here, we characterized epigenetic patterns of H3K4me3, H3K9me3, and H3K27me3 in mouse NT embryos up to the second cell cycle (i.e. four-celled stage) during zygotic genome activation. In vivo fertilized and parthenogenetically activated (PA) embryos served as controls. In fertilized embryos, maternal and paternal pronuclei exhibited asymmetric H3K4me3, H3K9me3, and H3K27me3 modifications, with the paternal pronucleus showing delayed epigenetic modifications. Higher levels of H3K4me3 and H3K9me3 were observed in NT and PA embryos than in fertilized embryos. However, NT embryos exhibited a lower level of H3K27me3 than PA and fertilized embryos from pronuclear stage 3 to the four-celled stage. Our finding that NT embryos exhibited aberrant H3K4me3, H3K9me3, and H3K27me3 modifications in comparison with fertilized embryos during early zygotic genome activation help to unravel the epigenetic mechanisms of methylation changes in early NT reprogramming and provide an insight into the role of histone H3 in the regulation of cell plasticity during natural reproduction and somatic cell NT.


Asunto(s)
Histonas , Técnicas de Transferencia Nuclear , Ratones , Animales , Histonas/genética , Histonas/metabolismo , Cigoto/metabolismo , Epigénesis Genética
3.
J Reprod Dev ; 63(2): 175-183, 2017 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-28163265

RESUMEN

The aim of this study was to investigate the effect of different heparin concentrations in the course of sexed in vitro fertilization (IVF), on bovine embryonic development and development to term following embryo transfer (ET). With a total of 9156 oocytes for IVF, sorted as well as unsorted sperm from four bulls had different heparin requirements for achieving the highest rate of development in vitro. However, when optimal heparin concentrations were used (40 to 80 µg/ml), the performance of X-sorted sperm (0.3 × 106/ml/IVF droplet) from all four bulls, as judged by blastocyst development (Bulls A, B, C, and D: 25.2, 19.7, 25.1, and 9.8%, respectively), was significantly increased, and the blastocyst rate was comparable to that observed with unsorted sperm at certain heparin concentrations within the four bulls. We determined that near-optimal blastocyst development was possible with sorted sperm from all four bulls, when a heparin concentration of 40 µg/ml was used. Pregnancy rates at d 70 post ET ranged from 39.1 to 40.3% (P > 0.05), and the calving rates ranged from 34.4 to 35.1% (P > 0.05), when heparin was used at a concentration of 10 µg/ml (n = 236), 20 µg/ml (n = 189), and 40 µg/ml (n = 305), respectively. Our study demonstrates that, although the sorted sperm of different bulls performed optimally over a range of heparin concentrations, a generally accepted heparin concentration of 40 µg/ml can be set for sexed IVF. This improvement is beneficial when sexed embryo production by ovum pickup and IVF is an essential component of genetic breeding programs.


Asunto(s)
Técnicas de Cultivo de Embriones/veterinaria , Transferencia de Embrión/veterinaria , Desarrollo Embrionario/efectos de los fármacos , Fertilización In Vitro/veterinaria , Heparina/farmacología , Preselección del Sexo , Animales , Bovinos , Femenino , Masculino , Embarazo , Índice de Embarazo , Espermatozoides/efectos de los fármacos
4.
Cryobiology ; 71(1): 70-6, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26025881

RESUMEN

The aim of this study was to assess modified droplet vitrification (MDV) for the cryopreservation of early developmental mouse embryos. Mouse embryos were equilibrated in holding solution for 3 min followed by immersion in vitrification solution for 30-45 s, and then three embryos per 3-µL vitrification droplet were directly dropped into liquid nitrogen. Vitrified embryos were warmed to examine their developmental potential both in vitro and in vivo. The results demonstrated that MDV vitrified and warmed embryos had a survival rate of 98.1-99.6% (P>0.05); however, blastocyst development post warming and culture in vitro demonstrated that vitrified 4-celled, 8-celled, 16-celled, morulae, and blastocyst embryos had significant higher developmental potentials (94.7-99.5%) than those from zygotes (9.2%) and 2-celled embryos (85.7%) (P<0.05). Compared to CryoLoop and CryoTech vitrification, MDV showed similar results with regards to rates of survival, blastocyst development, but with the higher hatching rate (76.1% vs. 64.0-67.3%) (P<0.05). Cryopreservation by MDV resulted in a similar blastocyst developmental potential in 4-celled and 16 celled embryos from ICR (94.7-99.5%), C57BL/6J (94.7-96.4%), and their crossbred F1 strain (97.9-98.9%) (P>0.05). After embryo transfer of vitrified ICR embryos from 4-celled, 16-celled, morulae and blastocyst stage, 40.7-43.7% of the embryos developed into live offspring (P>0.05), but MDV vitrification resulted in the highest birth rate (43.8%) compared to CryoLoop (38.3%) and CryoTech (35.4%) (P<0.05), when 4-celled mouse embryos were used for vitrification. Our study clearly demonstrated that MDV is the most efficient vitrification to cryopreserve embryos at least 4-celled and advanced stages, which can be used to preserve important mouse genomes from different strains and different developmental stages.


Asunto(s)
Blastocisto/citología , Criopreservación/métodos , Vitrificación , Animales , Técnicas de Cultivo de Embriones , Transferencia de Embrión , Desarrollo Embrionario , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Mórula/citología , Cigoto/citología
5.
Cell Prolif ; 57(1): e13519, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37322828

RESUMEN

Epigenetic reprogramming during fertilization and somatic cell nuclear transfer (NT) is required for cell plasticity and competent development. Here, we characterize the epigenetic modification pattern of H4K20me3, a repressive histone signature in heterochromatin, during fertilization and NT reprogramming. Importantly, the dynamic H4K20me3 signature identified during preimplantation development in fertilized embryos differed from NT and parthenogenetic activation (PA) embryos. In fertilized embryos, only maternal pronuclei carried the canonical H4K20me3 peripheral nucleolar ring-like signature. H4K20me3 disappeared at the 2-cell stage and reappeared in fertilized embryos at the 8-cell stage and in NT and PA embryos at the 4-cell stage. H4K20me3 intensity in 4-cell, 8-cell, and morula stages of fertilized embryos was significantly lower than in NT and PA embryos, suggesting aberrant regulation of H4K20me3 in PA and NT embryos. Indeed, RNA expression of the H4K20 methyltransferase Suv4-20h2 in 4-cell fertilized embryos was significantly lower than NT embryos. Knockdown of Suv4-20h2 in NT embryos rescued the H4K20me3 pattern similar to fertilized embryos. Compared to control NT embryos, knockdown of Suv4-20h2 in NT embryos improved blastocyst development ratios (11.1% vs. 30.5%) and full-term cloning efficiencies (0.8% vs. 5.9%). Upregulation of reprogramming factors, including Kdm4b, Kdm4d, Kdm6a, and Kdm6b, as well as ZGA-related factors, including Dux, Zscan4, and Hmgpi, was observed with Suv4-20h2 knockdown in NT embryos. Collectively, these are the first findings to demonstrate that H4K20me3 is an epigenetic barrier of NT reprogramming and begin to unravel the epigenetic mechanisms of H4K20 trimethylation in cell plasticity during natural reproduction and NT reprogramming in mice.


Asunto(s)
Histonas , Técnicas de Transferencia Nuclear , Animales , Ratones , Histonas/genética , Histonas/metabolismo , Clonación de Organismos , Epigénesis Genética , Desarrollo Embrionario/genética , Reprogramación Celular/genética
6.
Theriogenology ; 221: 25-30, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38537318

RESUMEN

The objectives of this study were to analyze the (1) effects of donor age and multiparity on development of in vitro fertilization (IVF) embryos after ovum pickup (OPU), (2) effects of repeated and consecutive OPU-IVF procedures on embryo development, and (3) embryo production from OPU-IVF in donors with differing embryo yields after multiple ovulation and embryo transfer technology (MOET) in Japanese Black cattle (Wagyu). Donors were pre-treated with low-dosage follicle-stimulating hormone (FSH; 200 IU total), and oocytes were collected via OPU and fertilized by IVF to generate blastocysts. The number of oocytes collected per OPU session per donor was lower in heifers (2-4 years old, 5.3 oocytes) than in primiparous and pluriparous cows (2-10 years old, 13.6-19.1 oocytes; P < 0.05). Rates of blastocyst development for oocytes from heifers (33.1%) were lower than for those from cows (2-10 years old, 44.1-54.3%; P < 0.05), and average blastocyst yield/OPU/animal was lower in heifers (3.7) than in 5-6 years old cows (10.1; P < 0.05). Donors undergoing five consecutive OPU-IVF sessions after low-dosage FSH showed similar oocyte retrieval (12.2-15.1 oocytes per OPU/animal), blastocyst development rates (35.6-45.0%), and embryo yield/OPU/animal (4.8-5.8; P > 0.05) across sessions. Additionally, embryo yield from OPU-IVF was significantly improved in animals with previous low embryo yield from MOET (5.9 vs. 2.6, respectively, P < 0.05). These results indicate that Wagyu cows with previous births can be more productive as OPU-IVF donors than heifers, and oocytes from donors undergoing to five consecutive OPU-IVF cycles are competent for embryo development without loss of embryo yield/OPU/animal. Moreover, OPU-IVF can be used for embryo production and breeding from all elite Japanese Black cattle, regardless of previous low embryo yield in routine MOET.


Asunto(s)
Oocitos , Historia Reproductiva , Bovinos , Femenino , Animales , Fertilización In Vitro/veterinaria , Recuperación del Oocito/veterinaria , Recuperación del Oocito/métodos , Hormona Folículo Estimulante/farmacología , Óvulo
7.
Anim Reprod Sci ; 267: 107533, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38879972

RESUMEN

Japanese Black (Wagyu) cattle donors were primed with different protocols and sources of follicle-stimulating hormone (FSH) for successive ovum pickup (OPU) and embryo development after in vitro fertilization (IVF). Following OPU, retrieved cumulus oocyte complexes (COCs) were subjected to IVF, and resulting blastocysts were transferred into recipients to evaluate implantation capability. Experiment 1: The best blastocyst development (45.3 %) and embryo yields (5.0/donor/OPU) were found with oocytes retrieved from donors treated with FSH (STIMUFOL®, Belgium) at a dosage of 150 IU per donor, compared to two others commercial FSH sources. Experiment 2: There were no differences in embryo development or yield with STIMUFOL FSH (total FSH 150 IU/donor) at a priming duration of either 60-h (Regime 1, six FSH injections) or 36-h (Regime 2, four FSH injections). Experiment 3: Compacted COCs required 22-26-h maturation in vitro (IVM) before IVF for optimal blastocyst development (36.1-41.1 %); however, short (18-h) and prolonged (30-h) IVM duration resulted in lower embryonic development. In contrast, expanded COCs resulted in inferior blastocyst development compared to compacted COCs. Immunofluorescence microscopy revealed that the ratio of 89.8 % cumulus compacted COCs were at the germinal vesicle (pachytene) phase while 98.9 % cumulus expanded COCs went through spontaneous meiosis from meiotic metaphase I, anaphase I, telophase I to metaphase II upon OPU retrieval (P<0.05). Pregnancy rates were not different among three FSH sources or different FSH treatments as long as embryos reached the blastocyst stage. Our study found that different sources of FSH used for Wagyu donor priming prior to OPU resulted in differential embryo development potentials, but those embryos that reached out to blastocysts had a competent implantation ability.

8.
Mol Reprod Dev ; 80(3): 193-203, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23280629

RESUMEN

NANOG is an essential transcription factor involved in the proliferation and maintenance of embryonic stem cells (ESC) and reprogramming of somatic cells to a pluripotent state. Oct4 and Nanog promoter-driven enhanced green fluorescent protein (EGFP) reporters have been employed for establishing lines of induced pluripotent stem cells (iPSC) from mouse, human, and pig. In ruminants, including cattle, in which no fully validated ESC lines have been established, iPSC generated by reprogramming somatic cells to an ESC-like state may prove useful in the production of genetically modified livestock. In this study, utility of the bovine NANOG reporter was tested for use with cattle. Seven proximal bovine NANOG promoter fragments of different size were fused to the LUC gene, and were tested in mouse ESC lines using a dual-luciferase assay. Three of the bovine NANOG promoters, 315 bp (-134/+181), 446 bp (-265/+181), and 1,100 bp (-919/+181), were fused to a nuclear localized signal EGFP reporter gene. The fidelity of these constructs was analyzed by transfection into mouse ESC and bovine fetal fibroblasts (bFFs), and subsequent reprogramming of the bFF. Fusion of the transgenic bFF with human teratocarcinoma (NTERA2) cells induced nuclear expression of the EGFP reporter. Similarly, bFF-derived somatic cell nuclear transfer (SCNT) embryos expressed EGFP in a stage- and location-appropriate manner. Following reprogramming of transgenic bFFs for 10 days with an Oct4-Sox2-Klf4-cMyc vector, iPSC expressed EGFP and alkaline phosphatase. These results indicate that NANOG reporters can be used to monitor nuclear reprogramming of bFFs and to distinguish cell allocation in SCNT-derived embryos.


Asunto(s)
Reprogramación Celular/genética , Células Madre Embrionarias/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Animales , Bovinos , Fusión Celular/métodos , Línea Celular , Células Madre Embrionarias/citología , Femenino , Fibroblastos/metabolismo , Genes Reporteros , Técnicas Genéticas , Proteínas Fluorescentes Verdes/metabolismo , Factor 4 Similar a Kruppel , Ratones , Datos de Secuencia Molecular , Técnicas de Transferencia Nuclear , Regiones Promotoras Genéticas , Alineación de Secuencia , Factores de Transcripción/metabolismo
9.
Nat Genet ; 31(2): 216-20, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12032569

RESUMEN

In mammals, epigenetic marks on the X chromosomes are involved in dosage compensation. Specifically, they are required for X chromosome inactivation (XCI), the random transcriptional silencing of one of the two X chromosomes in female cells during late blastocyst development. During natural reproduction, both X chromosomes are active in the female zygote. In somatic-cell cloning, however, the cloned embryos receive one active (Xa) and one inactive (Xi) X chromosome from the donor cells. Patterns of XCIhave been reported normal in cloned mice, but have yet to be investigated in other species. We examined allele-specific expression of the X-linked monoamine oxidase type A (MAOA) gene and the expression of nine additional X-linked genes in nine cloned XX calves. We found aberrant expression patterns in nine of ten X-linked genes and hypomethylation of Xist in organs of deceased clones. Analysis of MAOA expression in bovine placentae from natural reproduction revealed imprinted XCI with preferential inactivation of the paternal X chromosome. In contrast, we found random XCI in placentae of the deceased clones but completely skewed XCI in that of live clones. Thus, incomplete nuclear reprogramming may generate abnormal epigenetic marks on the X chromosomes of cloned cattle, affecting both random and imprinted XCI.


Asunto(s)
Clonación de Organismos , Compensación de Dosificación (Genética) , Cromosoma X/genética , Animales , Bovinos , Metilación de ADN , Femenino , Datos de Secuencia Molecular , Monoaminooxidasa/genética , ARN Largo no Codificante , ARN no Traducido/genética , Factores de Transcripción/genética
10.
Mol Reprod Dev ; 79(8): 573-85, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22730016

RESUMEN

It is very important to develop an effective, specific, and robust expression cassette that ensures a high level of expression in the mammary glands. In this study, we designed and constructed a series of mammary gland-specific vectors containing a complex hybrid promoter/enhancer by utilizing promoter sequences from milk proteins (i.e., goat ß-casein, bovine αs1-casein, or goat ß-lactoglobulin) and cytomegalovirus enhancer sequences; vectors containing a single milk protein promoter served as controls. Chicken ß-globin insulator sequences were also included in some of these vectors. The expression of constructs was analyzed through the generation of transgenic mice. Enzyme-linked immunosorbent assay (ELISA) analysis revealed that the hybrid promoter/enhancer could drive the expression of recombinant human lactoferrin (rhLF) cDNA at high levels (1.17-8.10 mg/ml) in the milk of transgenic mice, whereas control promoters achieved a very low rhLF expression (7-40 ng/ml). Moreover, the expression of rhLF was not detected in the serum or saliva of any transgenic animal. This result shows that all constructs, driven by the hybrid promoter/enhancer, had high mammary gland-specific expression pattern. Together, our results suggest that the use of a hybrid promoter/enhancer is a valuable alternative approach for increasing mammary-specific expression of recombinant hLF in a transgenic mouse model.


Asunto(s)
Citomegalovirus/genética , Elementos de Facilitación Genéticos/fisiología , Lactoferrina/biosíntesis , Glándulas Mamarias Animales/fisiología , Regiones Promotoras Genéticas/fisiología , Animales , Bovinos , Pollos , Femenino , Cabras , Humanos , Elementos Aisladores/genética , Lactoferrina/genética , Ratones , Ratones Transgénicos , Especificidad de Órganos/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Globinas beta/genética
11.
Reprod Biomed Online ; 25(4): 358-70, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22877942

RESUMEN

This study documents the spatial and temporal distribution of Oct-4, Cdx-2 and acetylated H4K5 (H4K5ac) by immunocytochemistry staining using in-vivo-derived rabbit embryos at different stages: day-3 compact morulae, day-4 early blastocysts, day-4 expanded blastocysts, day-5 blastocysts, day-6 blastocysts and day-7 blastocysts. The Oct-4 signal was stronger in the inner cell mass (ICM)/epiblast cells than in the trophectoderm (TE) cells in all blastocyst stages except day-4 expanded blastocysts, where the signal was similarly weak in both the ICM and TE cells. The Cdx-2 signal was first detected in a small number of TE cells of day-4 early blastocysts, and became evident in the TE cells exclusively afterwards. A consistently strong H4K5ac signal was observed in the TE cells in all blastocyst stages examined. In particular, this signal was stronger in the TE than in the ICM cells in day-4 early blastocysts, day-4 expanded blastocysts and day-5 blastocysts. Double staining of H4K5ac with either Oct-4 or Cdx-2 on embryos at different blastocyst stages confirmed these findings. This work suggests that day 4 is a critical timing for lineage formation in rabbit embryos. A combination of Oct-4, Cdx-2 and H4K5ac can be used as biomarkers to identify different lineage cells in rabbit blastocysts.


Asunto(s)
Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Histonas/metabolismo , Proteínas de Homeodominio/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Conejos/embriología , Transactivadores/metabolismo , Acetilación , Animales , Biomarcadores/metabolismo , Blastocisto/citología , Blastocisto/metabolismo , Masa Celular Interna del Blastocisto/citología , Masa Celular Interna del Blastocisto/metabolismo , Factor de Transcripción CDX2 , Embrión de Mamíferos/citología , Femenino , Inmunohistoquímica , Lisina/metabolismo , Microscopía Confocal , Mórula/citología , Mórula/metabolismo , Embarazo , Conejos/metabolismo
12.
Reprod Biomed Online ; 24(4): 433-42, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22381206

RESUMEN

Rabbit is a unique species to study human embryology; however, there are limited reports on the key transcription factors and epigenetic events of rabbit embryos. This study examined the Oct-4 and acetylated H4K5 (H4K5ac) patterns in rabbit embryos using immunochemistry staining. The average intensity of the Oct-4 signal in the nuclei of the whole embryo spiked upon fertilization, then decreased until the 8-cell stage and increased afterwards until the compact morula (CM) stage. It decreased thereafter from the CM stage to the early blastocyst (EB) stage, with a minimum at the expanded blastocyst (EXPB) stage and came back to a level similar to that of the CM-stage embryos in the hatching blastocysts (HB). The Oct-4 signal was observed in both the inner cell mass (ICM) and the trophectoderm (TE) cells of blastocysts. The average H4K5ac signal intensity of the whole embryo increased upon fertilization, started to decrease at the 4-cell stage, reached a minimum at the 8-cell stage, increased again at the EXPB stage and peaked at the HB stage. While TE cells maintained similar levels of H4K5ac throughout the blastocyst stages, ICM cells of HB showed higher levels of H4K5ac than those of EB and EXPB. Understanding key genetic and epigenetic events during early embryo development will help to identify factors contributing to embryo losses and consequently improve embryo survival rates. As a preferred laboratory species for many human disease studies such as atherosclerosis, rabbit is also a pioneer species in the development of several embryo biotechnologies, such as IVF, transgenesis, animal cloning, embryo cryopreservation and embryonic stem cells. However, there are limited reports on key transcription factors and epigenetic events of rabbit embryos. In the present study, we documented the temporal and spatial distribution of Oct-4 protein and H4K5 acetylation during early embryo development using the immunostaining approach. We also compared the patterns of these two important biomarkers between the inner cell mass (ICM) and the trophectoderm (TE) cells in blastocyst-stage embryos. Our findings suggest that a combination of Oct-4, H4K5ac and possibly other biomarkers such as Cdx-2 is needed to accurately identify different lineages of cells in morula and blastocyst stage rabbit embryos. Importantly, we revealed a novel wave of Oct-4 intensity change in the ICM cells of rabbit blastocysts. The signal was high at the early blastocyst stage, reached a minimum at the expanded blastocyst stage and returned to a high level at the hatching blastocyst stage. We hypothesize that the signal may have reflected the regulation of Oct-4 through enhancer switching and therefore may be related to cell lineage formation in rabbit embryos. These findings enrich our understanding on key genetic and epigenetic programming events during early embryo development in rabbits.


Asunto(s)
Desarrollo Embrionario/fisiología , Histonas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Conejos/embriología , Conejos/metabolismo , Acetilación , Animales , Células Cultivadas , Embrión de Mamíferos , Femenino , Lisina/metabolismo , Oocitos/citología , Oocitos/metabolismo , Embarazo , Procesamiento Proteico-Postraduccional/fisiología , Factores de Tiempo , Distribución Tisular
13.
Am J Transl Res ; 14(6): 4295-4309, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35836851

RESUMEN

Embryonic stem cell (ESC) research is critical to the scientific community, as their application in regenerative medicine can be widely beneficial. ESCs eventually withdraw from their self-renewal program and subsequently differentiate into specific cell lineages; however, the mechanisms regulating these processes remain unclear. PKC inhibition using 3-[1-[3-(dimethylamino) propyl]-5-methoxy-1H-indol-3-yl]-4-(1H-indol-3-yl)-1H-pyrrole-2,5-dione (PKCi) is responsible for the derivation and maintenance of human, rat, and mouse ESCs, but the mechanism by which PKCi maintains stem cell self-renewal is poorly understood. By studying the PKCi stem cell (PKCi-mESC) transcriptome and epigenetic modification, we found the transcriptome of PKCi-mESC differed from 2i stem cells (2i-mESC), with 2010 up-regulated genes and 1784 down-regulated genes. Among them, genes related to core transcription factors, naïve-specific markers, and pluripotency are differentially expressed between the two stem cell lines. We analyzed epigenetic modification of PKCi-mESC and found the distribution of H3K27me3 signal was significantly reduced at transcription start sites (TSSs) throughout the genome and at differentially expressed genes (DEGs). Likewise, the H3K9me3 signal at TSSs throughout the genome was significantly reduced in PKCi-mESC, but the distribution on DEGs is reversed. Kdm4d and Kdm6a knockdown by RNA interference (RNAi) significantly altered the expression of genes related to self-renewal in PKCi-mESC. In conclusion, we revealed PKCi-mESC and 2i-mESC differentially express numerous genes, including stem cell-related genes. Furthermore, PKCi-mESC regulated gene expression through H3K27me3 and H3K9me3 modification, which maintained stem cell self-renewal capacity.

14.
Cell Death Discov ; 8(1): 344, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35915078

RESUMEN

The pluripotency of naïve mouse embryonic stem cells (mES) is regulated by multiple signaling pathways, with inhibition of protein kinase C (PKCi) playing a particularly important role in maintaining naïve mES. However, the regulatory function of nucleosome remodeling and deacetylase (NuRD) complex in mES cultured in a PKCi system is unknown. We found that, compared with 2iL-derived mES, PKCi-derived mES showed low mRNA expression of NuRD complex subunits, including MBD3, HDAC1/HDAC2, MTA1, and RbAP46/RbAP48. Western blot showed that PKCi-derived mES expressed lower protein levels of MBD3 and HDAC2 at passage 3, as well as MBD3, HDAC2, and MTA1 at passage 10, indicating that PKCi suppressed NuRD complex expression. Knockdown of MBD3 increased PKCi-derived mES pluripotency by increasing NANOG and OCT4 expression and colony formation. By contrast, overexpression of MBD3 or removal of PKC inhibitor-induced differentiation of mES, results in reduced NANOG, OCT4, and REX1 expression and colony formation, increased differentiation-related gene expression, and differentiation into flat cells. Knockdown of MBD3 in mES upon PKC inhibitor removal partially reversed cell differentiation. Our results show that the regulatory NuRD complex and its MBD3 subunit influence the naïve pluripotency of mES cultured in a PKCi system.

15.
Am J Transl Res ; 14(8): 5941-5951, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105059

RESUMEN

OBJECTIVE: We examined the epigenetic dynamics of histone H4K20 trimethylation (H4K20me3), a repressive signature in heterochromatin, during goat oocyte meiosis and the reprogramming of somatic cell nuclear transfer (NT) embryos through the first three cell divisions. METHODS: Following NT, oocytes were treated with parthenogenetic activation (PA), by 5 µM calcium ionophore A23187 for 5 min followed by incubation in 2.0 mM 6-dimethylaminopurine with 5 µg/mL cycloheximide for 4 h. NT embryos up to 8-celled stage were incubated with H4K20me3 antibody. RESULTS: Immunofluorescence microscopy revealed the existence of a persistent H4K20me3 signature during oocyte maturation from germinal vesicle phase to metaphase I, anaphase I, telophase I, and metaphase II, with a gradual reduction in staining intensity. NT embryos at the 2-, 4- and 8-celled stage showed lower H4K20me3 intensity than PA and IVF embryos (P < 0.05). CONCLUSION: These results indicate that NT embryos exhibit insufficient H4K20me3 modification compared with IVF and PA embryos during early reprogramming, suggesting the existence of a resistant memory of differentiated cell nuclear architecture. These findings help unravel the epigenetic mechanism of histone H4K20me3 in goat nuclear transfer reprogramming.

16.
Am J Transl Res ; 13(10): 12094-12106, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34786147

RESUMEN

We injected mouse zygotes with combinations of Cas9 protein, Cas9 mRNA, and two gRNAs targeting a single exon of type I interferon receptor (IFNAR1) to determine the gene targeting efficiencies. Cas9 protein produced on-target mutations more efficiently than Cas9 mRNA when each was used with a single gRNA, regardless of which gRNA was used. When Cas9 mRNA and Cas9 protein were co-injected, the on-target efficiency could reach 97.0% when both gRNAs were used, which was higher than when either gRNA was used alone (61.3% and 75.5%, respectively; P<0.05). Co-injection of Cas9 protein with both gRNAs produced the highest on-target mutation rate of any combination (100.0%). Most on-target mutations were deletions of 2 to 113 nucleotides, and there were few off-target mutations in mutant animals. The expression intensity of IFNAR1 was reduced in heterozygous IFNAR1 +/- mice (IF) and almost or completely absent in homozygous null IFNAR -/- mice compared with that in wild-type mice (IF and Western blot). When both gRNAs targeting IFNAR1 were used simultaneously with two gRNAs targeting FVII, the on-target editing efficiency on each gene was 96.8% and 85.5%, respectively. Co-injection of dual gRNAs and Cas9 protein is an efficient approach for IFNAR1 knockout and multi-gene editing in mice and may be applied in other animal models and breeding livestock.

17.
Am J Transl Res ; 12(12): 8147-8161, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33437388

RESUMEN

Methyl-CpG-binding domain 3 (Mbd3) is a core repressor complex component. Although Mbd3 is required for the pluripotency of embryonic stem cells (ES), the role of Mbd3 in mouse ES (mES) cell apoptosis remains undefined. In this study naïve-state mES were derived and maintained in the presence of a selective protein kinase C pathway inhibitor (PKCi; GÓ§6983) to study the function of Mbd3 during mES apoptosis. Mbd3 overexpression in mES decreased the total cell number and viability, and it also dramatically increased the rate of apoptosis. Further investigation of Mbd3 overexpression revealed a 3-fold increase in the proapoptotic/prosurvival protein ratio (Bax/Bcl-2) and elevated RNA expression levels of apoptosis-related genes, including Bim, Trail, Fasl, and caspase 3, with reduced Bcl-2 RNA expression levels. Removal of PKCi from the mES cell culture resulted in upregulated Mbd3 expression and apoptosis, similar to the effects of Mbd3 overexpression. Furthermore, specific knockdown of endogenous Mbd3 partially rescued the mES apoptosis induced by the removal of PKCi, thus increasing the total cell number and viability while decreasing the rate of apoptosis. Additionally, Bax, Bim, Trail, and caspase 3 RNA expression levels were partially reduced, and that of Bcl-2 was partially increased. Our findings support Mbd3 as a pivotal regulator of apoptosis in mES.

18.
Mol Reprod Dev ; 76(1): 38-47, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18449896

RESUMEN

In vitro production (IVP) has been shown to affect embryonic gene expression and often result in large offspring syndrome (LOS) in cattle and sheep. To dissect the effects of in vitro maturation, fertilization and culture on bovine embryos, we compared the expression profiles of single blastocysts generated by: (1) in vitro maturation, fertilization and culture (IVF); (2) in vivo maturation, fertilization and in vitro culture (IVD); and (3) in vivo maturation, fertilization and development (AI). To conduct expression profiling, total RNA was isolated from individual embryos, linearly amplified and hybridized to a custom bovine cDNA microarray containing approximately 6,300 unique genes. There were 306, 367, and 200 genes differentially expressed between the AI and IVD, IVF and IVD, and AI and IVF comparisons, respectively. Interestingly, 44 differentially expressed genes were identified between the AI embryos and both the IVF and IVD embryos, making these potential candidates for LOS. There were 60 genes differentially expressed between the IVF embryos and the AI and IVD embryos. The Gene Ontology category "RNA processing" was over-represented among the genes that were down-regulated in the IVF embryos, indicating an effect of in vitro oocyte maturation/fertilization on the ability to transcribe maternal RNA stores. A culture effect on the expression of genes involved in translation was also observed by the comparison of AI with IVD embryos.


Asunto(s)
Técnicas de Cultivo de Embriones , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Fertilización In Vitro , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Animales , Bovinos , Epigénesis Genética/genética , Cromosoma X/genética
19.
Methods Mol Biol ; 1874: 391-401, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30353527

RESUMEN

Exogenous genes can be site-specifically integrated into the genomic DNA of animals by homologous recombination, generating transgenic animals. These animals have a clear hereditary background, although position effects of the exogenous genes and potential functional disruption of host genes can be caused by the genetic inserts. Therefore, the generation of mammary gland bioreactors via gene-targeting methods is a great asset for producing recombinant proteins in milk. Here, we describe a method of generating gene-targeted goats with the human alpha-lactalbumin gene (hα-LA) integrated into the beta-lactoglobulin gene (BLG) locus. The milk from these goats will be less allergenic and will be enriched with components of human milk protein.


Asunto(s)
Marcación de Gen/métodos , Lactalbúmina/genética , Glándulas Mamarias Animales/citología , Proteínas Recombinantes/metabolismo , Animales , Animales Modificados Genéticamente , Células Cultivadas , Femenino , Cabras , Humanos , Lactalbúmina/metabolismo , Lactoglobulinas/genética , Glándulas Mamarias Animales/metabolismo , Transfección
20.
Am J Transl Res ; 11(1): 430-441, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30787999

RESUMEN

Epigenetic modification and expression of key pluripotent factors are critical for development, cell fate determination, and differentiation in early embryos. In this study, we systematically examined the dynamic patterns of histone modifications (H3K4me3 and H3K27me3) and Nanog expression during the development of preimplantation rabbit embryos. Rabbit oocytes, 1-, 2-, 4-, 8-, and 16-cell embryos, morulae, and blastocysts were collected at specific time points following superovulation and assessed for nuclear H3K4me3, H3K27me3, and Nanog expression by immunofluorescence microscopy. The frequency of H3K4me3-positive nuclear staining was highest in oocytes through 4-cell embryos (100%), decreased in 8-cell (97.2%) and 16-cell (94.4%) embryos (P > 0.05), declined dramatically in morulae (86.7%) (1- through 8-cell embryos vs morulae, P < 0.05), and was the lowest in blastocysts (76.2%) (P < 0.05). Nuclear staining of H3K27me3 was negative in oocytes and embryos through the 16-cell stage but was positive in 25.9% of morulae and 34.2% of blastocyst (P < 0.05). Similarly, rabbit oocytes and embryos through the 16-cell stage did not express Nanog, but Nanog was expressed in 24.9% of morulae and 36.5% of blastocysts (P < 0.05). The observed decrease in H3K4me3 and increase in H3K27me3 as development progressed in preimplantation rabbit embryos, together with late Nanog expression, indicates a correlation of these factors with early embryonic cell fate determination and differentiation. Our study provides a specific and dynamic profile of histone modifications and gene expression that will be important for the derivation of rabbit embryonic stem cells and improving rabbit cloning by somatic cell nuclear transfer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA