Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 116: 150-160, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34265416

RESUMEN

As a tyrosine phosphatase, Src homology 2-containing protein tyrosine phosphatase 2 (SHP2) serves as an inhibitor in PI3K-Akt pathway. In mammals, SHP2 can phosphorylate GSK3ß at Y216 site to control the expression of IFN. So far, the multiple functions of SHP2 have been reported in mammals. However, little is known about fish SHP2. In this study, we cloned and identified a grass carp (Ctenopharyngodon idellus) SHP2 gene (CiSHP2, MT373151). SHP2 is conserved among different vertebrates by amino acid sequences alignment and the phylogenetic tree analysis. CiSHP2 shared the closest homology with Danio rerio SHP2. Simultaneously, SHP2 was also tested in grass carp tissues and CIK (C. idellus kidney) cells. We found that it responded to poly I:C stimulation. CiSHP2 was located in the cytoplasm just as the same as those of mammals. Interestingly, it inhibited the phosphorylation level of GSK3ß in a non-contact manner. Meanwhile CiGSK3ß interacted with and directly phosphorylated CiTBK1. In addition, we found that CiSHP2 also reduced the phosphorylation level of CiTBK1 by CiGSK3ß, and then it depressed the expression of IFN I via GSK3ß-TBK1 axis. These results suggested that CiSHP2 was involved in CiGSK3ß and CiTBK1 activity but not regulated their transcriptional level. At the same time, we also found that CiSHP2 also influenced the activity of CiIRF3. Therefore, fish SHP2 inhibited IFN I expression through blocking GSK3ß-TBK1 signal axis.


Asunto(s)
Carpas/inmunología , Proteínas de Peces/inmunología , Glucógeno Sintasa Quinasa 3 beta/inmunología , Interferón Tipo I/inmunología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/inmunología , Secuencia de Aminoácidos , Animales , Carpas/genética , Línea Celular , Proteínas de Peces/genética , Fosforilación , Filogenia , Poli I-C/farmacología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética
2.
Fish Shellfish Immunol ; 103: 377-384, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32454210

RESUMEN

As a dsRNA-dependent and interferon-induced protein kinase, PKR is involved in antiviral immune response and apoptosis mediated by various cytokines. In mammalian cells, PKR can also be activated in the absence of dsRNA. A PKR activator, PACT (PKR activating protein), also referred to as RAX (PKR-associated protein X) plays an important role. In recent years, with the increasing recognition of fish interferon system, PKR and PACT have been gradually revealed in fish. However, the function of fish PACT is unclear. In our previous work, we suggested that grass carp (Ctenopharyngodon idella) PACT must be involved in IRF2 and ATF4-mediated stress response pathways. In the present study, we found that the expression of C. idella PACT (CiPACT) and CiPKR were significantly up-regulated under the stimulation of LPS. It indicated that CiPACT and CiPKR may play an important role in response to LPS stimulation. In addition, the response time of CiPACT to LPS is earlier than that of CiPKR. It has also shown that overexpression of CiPACT in CIK cells can significantly enhance the level of p-eIF2α, induces apoptosis and translocation of Cip65 to nucleus from cytoplasm. To further understand the mechanism, we carried out the co-immunoprecipitation assay. It proved that the interaction of CiPACT and CiPKR made the phosphorylation of CiPKR. Overexpression of CiPACT induced the down-regulation of intracellular expression of bcl-2 and up-regulation of bax. However, in CiPKR knocked-down cells the expression of bcl-2 and bax were just the opposite. Therefore, the mechanism of fish PACT induces apoptosis and activates NF-кB is dependent on PKR.


Asunto(s)
Apoptosis/inmunología , Carpas/genética , Proteínas de Peces/genética , Regulación de la Expresión Génica/inmunología , FN-kappa B/genética , Proteínas de Unión al ARN/genética , Animales , Carpas/inmunología , Proteínas de Peces/metabolismo , FN-kappa B/metabolismo , Proteínas de Unión al ARN/metabolismo
3.
Dev Comp Immunol ; 118: 104014, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33460677

RESUMEN

In vertebrates, TANK Binding Kinase 1 (TBK1) plays an important role in innate immunity, mainly because it can mediate production of interferon to resist the invasion of pathogens. In mammals, cell division cycle-25a (Cdc25a) is a member of the Cdc25 family of cell division cycle proteins. It is a phosphatase that plays an important role in cell cycle regulation by dephosphorylating its substrate proteins. Currently, many phosphatases are reported to play a role in innate immunity. This is because the phosphatases can shut down or reduce immune signaling pathways by down-regulating phosphorylation signals. However, there are no reports on fish Cdc25a in innate immunity. In this paper, we conducted a preliminary study on the involvement of grass carp Cdc25a in innate immunity. First, we cloned the full-length cDNA of grass carp Cdc25a (CiCdc25a), and found that it shares the highest genetic relationship with that of Anabarilius grahami through phylogenetic tree comparison. In grass carp tissues and CIK cells, the expression of CiCdc25a mRNA was up-regulated under poly (I:C) stimulation. Therefore, CiCdc25a can respond to poly (I:C). The subcellular localization results showed that CiCdc25a is distributed both in the cytoplasm and nucleus. We also found that CiCdc25a can down-regulate the expression of IFN 1 with or without poly (I:C) stimulation. In other words, the down-regulation of IFN1 by CiCdc25a is independent of poly (I:C) stimulation. Further functional studies have shown that the inhibition of IFN1 expression by CiCdc25a may be related to decrease of TBK1 activity. We also confirmed that the phosphorylation of TBK1 at Ser172 is essential for production of IFN 1. In short, CiCdc25a can interact with TBK1 and subsequently inhibits the phosphorylation of TBK1, thereby weakens TBK1 activity. These results indicated that grass carp Cdc25a down-regulates IFN 1 expression by reducing TBK1 phosphorylation.


Asunto(s)
Carpas/inmunología , Proteínas de Peces/metabolismo , Interferón Tipo I/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Fosfatasas cdc25/metabolismo , Animales , Carpas/genética , Carpas/metabolismo , Línea Celular , Clonación Molecular , Regulación hacia Abajo/inmunología , Proteínas de Peces/genética , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Fosforilación/inmunología , Filogenia , Poli I-C/inmunología , Unión Proteica/inmunología , Proteínas Serina-Treonina Quinasas/genética , Fosfatasas cdc25/genética
4.
Dev Comp Immunol ; 114: 103834, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32827605

RESUMEN

In response to viral infections, various pattern recognition receptors (PRRs) are activated for the production of type I interferon (IFN I). As a center of these receptor responses, TANK binding kinase-1 (TBK1) activates interferon regulatory factor 3 (IRF3). SRC is a member of Src family kinases (SFK) which participates in TBK1-mediated IFN I signaling pathway. In mammals, the immunological function of SRC is depended on its interaction with TBK1. To date, SRC has not been studied in fish. In this paper, we cloned the ORF of grass carp (Ctenopharyngodon idellus) SRC (CiSRC). CiSRC has a closer relationship with Sinocyclocheilus rhinocerous SRC (SrSRC). The expression level of CiSRC was significantly up-regulated following poly (I:C) stimulation in grass carp tissues and cells. Subcellular localization results showed that CiSRC is located both in the cytoplasm and nucleus, while CiTBK1 is only located in the cytoplasm of CIK cells. When GFP-CiSRC and FLAG-CiTBK1 were co-transfected into CIK cells, we found that they were co-localized in the cytoplasm. GST-pulldown and Co-immunoprecipitation analysis revealed that CiSRC and CiSRC tyrosine kinase domain deletion mutant (SRC-ΔTyrkc) can interact with CiTBK1, respectively. CiSRC promotes the phosphorylation of CiTBK1. Furthermore, the phosphorylation of TBK1 is more strongly under poly (I:C) stimulation. We also demonstrated that SRC can up-regulate IFN I expression. These results above unraveled that CiSRC initiates innate immune response by binding to and then up-regulating the phosphorylation of TBK1.


Asunto(s)
Carpas/inmunología , Proteínas de Peces/metabolismo , Interferón Tipo I/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Virosis/metabolismo , Familia-src Quinasas/metabolismo , Animales , Células Cultivadas , Clonación Molecular , Proteínas de Peces/genética , Inmunidad Innata , Interferón Tipo I/genética , Mamíferos , Fosforilación , Poli I-C/inmunología , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Activación Transcripcional , Regulación hacia Arriba , Virosis/inmunología , Proteínas de Pez Cebra/genética , Familia-src Quinasas/genética
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 262: 120095, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34175759

RESUMEN

Visualizing endogenous histidine (His) in living systems is an important and challenging work in life science field. Herein, two weak-emission iridium(III) complexes (IrL1 and IrL2) with solvent ligands (CH3CN) were designed and synthesized. It was found that IrL2 showed a better performance for detecting His with more remarkable fluorescence enhancement and lower limit of detection (LOD = 35 nM). Moreover, the recognitionmechanism was confirmed to be a substitution of solvent ligands by His. Importantly, probe IrL2 was applicable to visualize endogenous His in living cells and rat tissue slices via an energy-dependent endocytotic pathway. We hope that this probe can serve as a useful tool for the diagnosis of His-related diseases.


Asunto(s)
Colorantes Fluorescentes , Iridio , Animales , Células HeLa , Histidina , Humanos , Ligandos , Ratas
6.
Dev Comp Immunol ; 116: 103951, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33253749

RESUMEN

TNK1 (thirty-eight-negative kinase 1) belongs to the ACK (Activated Cdc42 Kinases) family of intracellular non-receptor tyrosine kinases that usually acts as an important regulator in cytokine receptor-mediated intracellular signal transduction pathways. JAK-STAT signal pathway acts as a key point in cellular proliferation, differentiation and immunomodulatory. Mammalian TNK1 is involved in antiviral immunity and activation of growth factors. However, TNK1 has rarely been studied in fish. To evaluate the role of fish TNK1 in JAK-STAT pathway, we cloned the full-length cDNA sequence of grass carp (Ctenopharyngodon idella) TNK1 (CiTNK1). CiTNK1 protein consists of N-terminal Tyrkc (tyrosine kinase) domain, C-terminal SH3 (Src homology 3) domain and Pro-rich domain. Phylogenetic analysis showed that CiTNK1 has a closer relationship with Danio rerio TNK1. The expression and phosphorylation of CiTNK1 in grass carp tissues and cells was increased under poly(I:C) stimulation. Subcellular localization and co-immunoprecipitation indicated that CiTNK1 is targeted in the cytoplasm and interacts with grass carp STAT1 (CiSTAT1). Co-transfection of CiTNK1 and CiSTAT1 into cells facilitated the expression of IFN I. This is because that the presence of CiTNK1 enhanced the phosphorylation of CiSTAT1 and causes activation of CiSTAT1. Our results revealed that TNK1 can potentiate the phosphorylation of STAT1 and then regulates JAK-STAT pathway to trigger IFN I expression in fish.


Asunto(s)
Carpas/metabolismo , Quinasas Janus/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Factor de Transcripción STAT1/metabolismo , Secuencia de Aminoácidos , Animales , Citoplasma/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Expresión Génica , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Fosforilación , Filogenia , Poli I-C/metabolismo , Unión Proteica , Proteínas Tirosina Quinasas/genética , Alineación de Secuencia , Transducción de Señal
7.
Dev Comp Immunol ; 116: 103909, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33129882

RESUMEN

Mre11A is considered as a cytosolic DNA receptor in mammals. However, it is rarely known about Mre11A in other vertebrates. Recently, a mammalian ortholog of Mre11A has been identified in grass carp (Ctenopharyngodon idellus) in our lab. Phylogenetic-tree analysis provided evidence for a close genetic relationship between C.idellus Mre11A and Carassius auratus Mre11A. The tissue expression profile of CiMre11A was detected, with a relatively higher level of expression in kidney, intestines, liver and spleen than that in other tissues after grass carp reovirus (GCRV) infection. Similarly, CiMre11A was also up-regulated in CIK cells after treatment with GCRV. Q-PCR and dual-luciferase assays indicated that the transcription levels of IFN1 and ISG15 were inhibited by CiMre11A knockdown, but were gradually augmented after CIK cells were transfected with increasing amounts of CiMre11A. Subcellular localization assays showed that a part of CiMre11A was translocated from the nucleus to the cytoplasm. Co-immunoprecipitation and co-localization assays demonstrated that CiMre11A interacts with CiSTING in response to GCRV infection. In CIK cells, the expressions of both IFN1 and ISG15 were acutely up-regulated by CiMre11A overexpression, as well as by co-overexpression of CiMre11A and CiSTING. CiMre11A and CiSTING induced the phosphorylation and cytoplasmic-to-nuclear translocation of IRF7 in CIK cells. The multiplication of GCRV in CIK cells was inhibited by the overexpression of CiMre11A and CiSTING.


Asunto(s)
Carpas/inmunología , Enfermedades de los Peces/inmunología , Proteínas de Peces/inmunología , Interferón Tipo I/inmunología , Proteína Homóloga de MRE11/inmunología , Secuencia de Aminoácidos , Animales , Carpas/genética , Carpas/virología , Citocinas/genética , Citocinas/inmunología , Citocinas/metabolismo , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Enfermedades de los Peces/genética , Enfermedades de los Peces/virología , Proteínas de Peces/clasificación , Proteínas de Peces/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/inmunología , Interacciones Huésped-Patógeno/inmunología , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Proteína Homóloga de MRE11/clasificación , Proteína Homóloga de MRE11/genética , Orthoreovirus de los Mamíferos/inmunología , Orthoreovirus de los Mamíferos/fisiología , Filogenia , Unión Proteica , Homología de Secuencia de Aminoácido , Ubiquitinas/genética , Ubiquitinas/inmunología , Ubiquitinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA