Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nano Lett ; 23(3): 843-849, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36689622

RESUMEN

The operation of nanoscale electronic devices is related intimately to the three-dimensional (3D) charge density distributions within them. Here, we demonstrate the quantitative 3D mapping of the charge density and long-range electric field associated with an electrically biased carbon fiber nanotip with a spatial resolution of approximately 5 nm using electron holographic tomography in the transmission electron microscope combined with model-based iterative reconstruction. The approach presented here can be applied to a wide range of other nanoscale materials and devices.

2.
Nano Lett ; 20(2): 1280-1285, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31904971

RESUMEN

Elemental phosphorus nanostructures are notorious for a large number of allotropes, which limits their usefulness as semiconductors. To limit this structural diversity, we synthesize selectively quasi-1D phosphorus nanostructures inside carbon nanotubes (CNTs) that act both as stable templates and nanoreactors. Whereas zigzag phosphorus nanoribbons form preferably in CNTs with an inner diameter exceeding 1.4 nm, a previously unknown square columnar structure of phosphorus is observed to form inside narrower nanotubes. Our findings are supported by electron microscopy and Raman spectroscopy observations as well as ab initio density functional theory calculations. Our computational results suggest that square columnar structures form preferably in CNTs with an inner diameter around 1.0 nm, whereas black phosphorus nanoribbons form preferably inside CNTs with a 4.1 nm inner diameter, with zigzag nanoribbons energetically favored over armchair nanoribbons. Our theoretical predictions agree with the experimental findings.

3.
Faraday Discuss ; 213(0): 245-258, 2019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30371713

RESUMEN

Recently, extended mixed dislocations were observed at a [001]/(100) low-angle tilt grain boundary of a SrTiO3 bicrystal because of a slight twist between the two crystal parts. The b = a[201]/(100) mixed dislocations at the grain boundary dissociate into three dislocations with Burgers vector b of a/2[101], a[100], and a/2[101], respectively. A structure model has been proposed in particular for the dislocation cores of the two partials with b = a/2[101] based on the high-angle annular dark-field (HAADF) images acquired by scanning transmission electron microscopy (STEM). However, the details of the atomic structure and the chemical composition of the dislocation cores remain unexplored, especially for the b = a[100] dislocation that is evidently disassociated into two b = a/2[101] partial dislocations. In this work, we study the further atomic details of the extended mixed dislocations, in particular the local chemistry, in a SrTiO3 bicrystal using STEM, electron energy loss spectroscopy (EELS), and energy dispersive X-ray (EDX) spectroscopy techniques. By these atomic-scale imaging techniques, we reveal a unique feature for the atomic structure of the b = a[201]/(100) extended mixed dislocation, which we named as local crystallographic shear (LCS) structures. In addition, we identify a rock salt FCC-type TiOx (x = 0.66-1.24) phase at the locations of the extended mixed dislocations. In contrast to the insulating TiO2 phases, the TiOx phase is known to exhibit very low electrical resistivity of only several µΩ cm. In this regard, the extended mixed dislocations of SrTiO3 comprising the FCC TiOx phase may function as the conducting filament in resistive switching processes by completion and disruption of the TiOx phase along the dislocation cores through electrically stimulated redox reactions.

4.
Angew Chem Int Ed Engl ; 58(25): 8541-8545, 2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-31081290

RESUMEN

The defined assembly of nanoparticles (NPs) in polymer matrices is an important prerequisite for next-generation functional materials. A promising approach to control NP positions in polymer matrices at the nanometer scale is the use of block copolymers. It allows the selective deposition of NPs in nanodomains, but the final defined and ordered positioning of the NPs within the domains has not been possible. This can now be achieved by coating NPs with block copolymers. The self-assembly of block copolymer-coated NPs directly leads to ordered microdomains containing ordered NP arrays with exactly one NP per unit cell. By variation of the grafting density, the inter-nanoparticle distance can be controlled from direct NP surface contact to surface separations of several nanometers, determined by the thickness of the polymer shell. The method can be applied to a wide variety of block copolymers and NPs and is thus suitable for a broad range of applications.

5.
Phys Rev Lett ; 120(17): 177601, 2018 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-29756809

RESUMEN

Distinct and novel features of nanometric electric topological defects, including dipole waves and dipole disclinations, are presently revealed in the PbTiO_{3} layers of PbTiO_{3}/SrTiO_{3} multilayer films by means of quantitative high-resolution scanning transmission electron microscopy. These original dipole configurations are confirmed and explained by atomistic simulations and have the potential to act as functional elements in future electronics.

8.
Angew Chem Int Ed Engl ; 56(7): 1850-1854, 2017 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-28074606

RESUMEN

A phosphorus allotrope that has not been observed so far, ring-shaped phosphorus consisting of alternate P8 and P2 structural units, has been assembled inside multi-walled carbon nanotube nanoreactors with inner diameters of 5-8 nm by a chemical vapor transport and reaction of red phosphorus at 500 °C. The ring-shaped nanostructures with surrounding graphene walls are stable under ambient conditions. The nanostructures were characterized by high-resolution transmission electron microscopy, scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, Raman scattering, attenuated total reflectance Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy.

10.
iScience ; 25(4): 104047, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35359811

RESUMEN

Magnetic high-entropy alloys (HEAs) are a new category of high-performance magnetic materials, with multicomponent concentrated compositions and complex multi-phase structures. Although there have been numerous reports of their interesting magnetic properties, there is very limited understanding about the interplay between their hierarchical multi-phase structures and the resulting magnetic behavior. We reveal for the first time the influence of a hierarchically decomposed B2 + A2 structure in an AlCo0.5Cr0.5FeNi HEA on the formation of magnetic vortex states within individual A2 (disordered BCC) precipitates, which are distributed in an ordered B2 matrix that is weakly ferromagnetic. Non-magnetic or weakly ferromagnetic B2 precipitates in large magnetic domains of the A2 phase, and strongly magnetic Fe-Co-rich interphase A2 regions, are also observed. These results provide important insight into the origin of coercivity in this HEA, which can be attributed to a complex magnetization process that includes the successive reversal of magnetic vortices.

11.
J Phys Chem C Nanomater Interfaces ; 126(1): 786-796, 2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35059098

RESUMEN

Using a combination of in situ bulk and surface characterization techniques, we provide atomic-scale insight into the complex surface and bulk dynamics of a LaNiO3 perovskite material during heating in vacuo. Driven by the outstanding activity LaNiO3 in the methane dry reforming reaction (DRM), attributable to the decomposition of LaNiO3 during DRM operation into a Ni//La2O3 composite, we reveal the Ni exsolution dynamics both on a local and global scale by in situ electron microscopy, in situ X-ray diffraction and in situ X-ray photoelectron spectroscopy. To reduce the complexity and disentangle thermal from self-activation and reaction-induced effects, we embarked on a heating experiment in vacuo under comparable experimental conditions in all methods. Associated with the Ni exsolution, the remaining perovskite grains suffer a drastic shrinkage of the grain volume and compression of the structure. Ni particles mainly evolve at grain boundaries and stacking faults. Sophisticated structure analysis of the elemental composition by electron-energy loss mapping allows us to disentangle the distribution of the different structures resulting from LaNiO3 decomposition on a local scale. Important for explaining the DRM activity, our results indicate that most of the Ni moieties are oxidized and that the formation of NiO occurs preferentially at grain edges, resulting from the reaction of the exsolved Ni particles with oxygen released from the perovskite lattice during decomposition via a spillover process from the perovskite to the Ni particles. Correlating electron microscopy and X-ray diffraction data allows us to establish a sequential two-step process in the decomposition of LaNiO3 via a Ruddlesden-Popper La2NiO4 intermediate structure. Exemplified for the archetypical LaNiO3 perovskite material, our results underscore the importance of focusing on both surface and bulk characterization for a thorough understanding of the catalyst dynamics and set the stage for a generalized concept in the understanding of state-of-the art catalyst materials on an atomic level.

12.
Adv Mater ; 32(9): e1907208, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31975474

RESUMEN

Antiferroelectric-based dielectric capacitors are receiving tremendous attention for their outstanding energy-storage performance and extraordinary flexibility in collecting pulsed powers. Nevertheless, the in situ atomic-scale structural-evolution pathway, inherently coupling to the energy storage process, has not been elucidated for the ultimate mechanistic understanding so far. Here, time- and atomic-resolution structural phase evolution in antiferroelectric PbZrO3 during storage of energy from the electron-beam illumination is reported. By employing state-of-the-art negative-spherical-aberration imaging technique, the quantitative transmission electron microscopy study presented herein clarifies that the hierarchical evolution of polar oxygen octahedra associated with the unit-cell volume change and polarization rotation accounts for the stepwise antiferroelectric-to-ferroelectric phase transition. In particular, an unconventional ferroelectric category-the ferrodistortive phase characteristic of a unique cycloidal polarization order-is established during the dynamic structure investigation. Through clarifying the atomic-scale phase transformation pathway, findings of this work unveil a new territory to explore novel ferrodistortive phases in energy-storage materials with the nonpolar-to-polar phase transitions.

13.
ACS Nano ; 14(4): 4456-4462, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32275386

RESUMEN

Materials with layered crystal structures and high in-plane anisotropy, such as black phosphorus, present unique properties and thus promise for applications in electronic and photonic devices. Recently, the layered structures of GeS2 and GeSe2 were utilized for high-performance polarization-sensitive photodetection in the short wavelength region due to their high in-plane optical anisotropy and wide band gap. The highly complex, low-symmetric (monoclinic) crystal structures are at the origin of the high in-plane optical anisotropy, but the structural nature of the corresponding nanostructures remains to be fully understood. Here, we present an atomic-scale characterization of monoclinic GeS2 nanostructures and quantify the in-plane structural anisotropy at the sub-angstrom level in real space by Cs-corrected scanning transmission electron microscopy. We elucidate the origin of this high in-plane anisotropy in terms of ordered and disordered arrangement of [GeS4] tetrahedra in GeS2 monolayers, through density functional theory (DFT) calculations and orbital-based bonding analyses. We also demonstrate high in-plane mechanical, electronic, and optical anisotropies in monolayer GeS2 and envision phase transitions under uniaxial strain that could potentially be exploited for nonvolatile memory applications.

14.
Beilstein J Nanotechnol ; 10: 1737-1744, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31501745

RESUMEN

In this contribution we analyze the influence of adsorption cycling, crystal size, and temperature on the switching behavior of the flexible Zr-based metal-organic framework DUT-98. We observe a shift in the gate-opening pressure upon cycling of adsorption experiments for micrometer-sized crystals and assign this to a fragmentation of the crystals. In a series of samples, the average crystal size of DUT-98 crystals was varied from 120 µm to 50 nm and the obtained solids were characterized by X-ray diffraction, infrared spectroscopy, as well as scanning and transmission electron microscopy. We analyzed the adsorption behavior by nitrogen and water adsorption at 77 K and 298 K, respectively, and show that adsorption-induced flexibility is only observed for micrometer-sized crystals. Nanometer-sized crystals were found to exhibit reversible type I adsorption behavior upon adsorption of nitrogen and exhibit a crystal-size-dependent steep water uptake of up to 20 mmol g-1 at 0.5 p/p 0 with potential for water harvesting and heat pump applications. We furthermore investigate the temperature-induced structural transition by in situ powder X-ray diffraction. At temperatures beyond 110 °C, the open-pore state of the nanometer-sized DUT-98 crystals is found to irreversibly transform to a closed-pore state. The connection of crystal fragmentation upon adsorption cycling and the crystal size dependence of the adsorption-induced flexibility is an important finding for evaluation of these materials in future adsorption-based applications. This work thus extends the limited amount of studies on crystal size effects in flexible MOFs and hopefully motivates further investigations in this field.

15.
Nanomaterials (Basel) ; 8(11)2018 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-30360546

RESUMEN

We investigated the possibility of tuning the local switching properties of memristive crystalline SrTiO 3 thin films by inserting nanoscale defect nucleation centers. For that purpose, we employed chemically-synthesized Au nanoparticles deposited on 0.5 wt%-Nb-doped SrTiO 3 single crystal substrates as a defect formation template for the subsequent growth of SrTiO 3 . We studied in detail the resulting microstructure and the local conducting and switching properties of the SrTiO 3 thin films. We revealed that the Au nanoparticles floated to the SrTiO 3 surface during growth, leaving behind a distorted thin film region in their vicinity. By employing conductive-tip atomic force microscopy, these distorted SrTiO 3 regions are identified as sites of preferential resistive switching. These findings can be attributed to the enhanced oxygen exchange reaction at the surface in these defective regions.

16.
Nanoscale ; 10(16): 7363-7368, 2018 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-29637969

RESUMEN

The recently discovered two-dimensional (2D) group IV chalcogenides attract much attention owing to their novel electronic and photonic properties. All the reported materials of this class favor (distorted) octahedral coordination via p bonding; by contrast, in the dichalcogenides where the bonding tendency approaches sp3, no corresponding 2D phase has been realized so far. Here, by engineering the composition of a chalcogenide heterostructure, the hitherto elusive GeTe2 is experimentally observed in a confined 2D environment. Density functional theory simulations predict the existence of a freestanding monolayer of octahedrally coordinated GeTe2 under tensile strain, and the existence of GeSe2 and GeS2 in the same form under equilibrium conditions. These 2D germanium dichalcogenides are either metallic or narrow gap semiconducting, and may lead to new applications in nanoscale electronics.

17.
Adv Mater ; : e1800957, 2018 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-29882270

RESUMEN

Resistive switching based on transition metal oxide memristive devices is suspected to be caused by the electric-field-driven motion and internal redistribution of oxygen vacancies. Deriving the detailed mechanistic picture of the switching process is complicated, however, by the frequently observed influence of the surrounding atmosphere. Specifically, the presence or absence of water vapor in the atmosphere has a strong impact on the switching properties, but the redox reactions between water and the active layer have yet to be clarified. To investigate the role of oxygen and water species during resistive switching in greater detail, isotope labeling experiments in a N2 /H218 O tracer gas atmosphere combined with time-of-flight secondary-ion mass spectrometry are used. It is explicitly demonstrated that during the RESET operation in resistive switching SrTiO3 -based memristive devices, oxygen is incorporated directly from water molecules or oxygen molecules into the active layer. In humid atmospheres, the reaction pathway via water molecules predominates. These findings clearly resolve the role of humidity as both oxidizing agent and source of protonic defects during the RESET operation.

18.
ACS Appl Mater Interfaces ; 9(7): 6539-6546, 2017 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-28141926

RESUMEN

Conductive domain walls (DWs) in ferroic oxides as device elements are a highly attractive research topic because of their robust and agile response to electric field. Charged DWs possessing metallic-type conductivity hold the highest promises in this aspect. However, their intricate creation, low stability, and interference with nonconductive DWs hinder their investigation and the progress toward future applications. Here, we find that conversion of the nominally neutral ferroelastic 90° DWs into partially charged DWs in Pb(Zr0.1Ti0.9)O3 thin films enables easy and robust control over the DW conductivity. By employing transmission electron microscopy, conductive atomic force microscopy and phase-field simulation, our study reveals that charging of the ferroelastic DWs is controlled by mutually coupled DW bending, type of doping, polarization orientation and work-function of the adjacent electrodes. Particularly, the doping outweighs other parameters in controlling the DW conductivity. Understanding the interplay of these key parameters not only allows us to control and optimize conductivity of such ferroelastic DWs in the oxide ferroelectrics but also paves the way for utilization of DW-based nanoelectronic devices in the future.

19.
ACS Nano ; 11(11): 11746-11754, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29125286

RESUMEN

In the presence of disorder, superconductivity exhibits short-range characteristics linked to localized Cooper pairs which are responsible for anomalous phase transitions and the emergence of quantum states such as the bosonic insulating state. Complementary to well-studied homogeneously disordered superconductors, superconductor-normal hybrid arrays provide tunable realizations of the degree of granular disorder for studying anomalous quantum phase transitions. Here, we investigate the superconductor-bosonic dirty metal transition in disordered nanodiamond arrays as a function of the dispersion of intergrain spacing, which ranges from angstroms to micrometers. By monitoring the evolved superconducting gaps and diminished coherence peaks in the single-quasiparticle density of states, we link the destruction of the superconducting state and the emergence of bosonic dirty metallic state to breaking of the global phase coherence and persistence of the localized Cooper pairs. The observed resistive bosonic phase transitions are well modeled using a series-parallel circuit in the framework of bosonic confinement and coherence.

20.
J Nanosci Nanotechnol ; 6(7): 2110-6, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17025134

RESUMEN

A hydrothermal method was developed for the synthesis of bismuth titanate nanostructured microspheres. The precursor powder was prepared using a diethylene glycol mediated coprecipitation method. The as-synthesized nanostructured microspheres consisting of granular nanoparticles and nano-platelets were obtained through a hydrothermal treatment of the precursor powder in aqueous sodium hydroxide solution. Tailoring of the morphology was achieved by changing the precursor quantity, sodium hydroxide concentration, and reaction time. The formation mechanism of the nanostructured microspheres probably involves aggregation, followed by dissolution and recrystallization. X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy were used to characterize the phase purities, morphologies, and composition of the products.


Asunto(s)
Bismuto/química , Cristalización/métodos , Microesferas , Nanotecnología/métodos , Hidróxido de Sodio/química , Titanio/química , Agua/química , Sustancias Macromoleculares/química , Ensayo de Materiales , Conformación Molecular , Tamaño de la Partícula , Soluciones , Solventes/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA