Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Biochem Biophys Res Commun ; 591: 88-94, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-34999259

RESUMEN

Candida albicans is an important opportunistic fungus in the clinic. In recent years, with the widespread use of antibiotics, drug-resistant strains have been isolated in the clinic, so finding new drug targets has become an urgent problem to be solved. The vacuole and mitochondria patch (vCLAMP) and the ER-mitochondria encounter structure (ERMES) are new types of inner membrane junction systems in Saccharomyces cerevisiae. However, the functions in maintaining cell survival of the two structures have not yet been elucidated in C. albicans. In this study, VAM6 and MDM34 knockout mutants (vam6Δ/Δmet-MDM34) were constructed using an induction system regulated by the MET3 promoter. PI-positive assays showed that deletion of vCLAMP and ERMES led to abnormal growth of C. albicans. Furthermore, the vam6Δ/Δmet-MDM34 mutant exhibited obvious mitochondrial fragmentation, mtDNA damage, reduced ATP levels, and abnormal mitochondrial membrane potential, indicating its important role in maintaining the structures and functions of mitochondria. Moreover, deletion of vCLAMP and ERMES inhibited filamentous growth. Overall This study shows that vCLAMP and ERMES play important roles in maintaining the survival of C. albicans cells.


Asunto(s)
Candida albicans/citología , Candida albicans/metabolismo , Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Mitocondrias/metabolismo , Vacuolas/metabolismo , Candida albicans/crecimiento & desarrollo , Supervivencia Celular , Proteínas Fúngicas/metabolismo , Hifa/crecimiento & desarrollo
2.
Hepatology ; 73(5): 1797-1815, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33058300

RESUMEN

BACKGROUND AND AIMS: Trimethylation of Lys36 on histone 3 (H3K36me3) catalyzed by histone methyltransferase SET domain-containing 2 (SETD2) is one of the most conserved epigenetic marks from yeast to mammals. SETD2 is frequently mutated in multiple cancers and acts as a tumor suppressor. APPROACH AND RESULTS: Here, using a liver-specific Setd2 depletion model, we found that Setd2 deficiency is sufficient to trigger spontaneous HCC. Meanwhile, Setd2 depletion significantly increased tumor and tumor size of a diethylnitrosamine-induced HCC model. The mechanistic study showed that Setd2 suppresses HCC not only through modulating DNA damage response, but also by regulating lipid metabolism in the liver. Setd2 deficiency down-regulated H3K36me3 enrichment and expression of cholesterol efflux genes and caused lipid accumulation. High-fat diet enhanced lipid accumulation and promoted the development of HCC in Setd2-deficient mice. Chromatin immunoprecipitation sequencing analysis further revealed that Setd2 depletion induced c-Jun/activator protein 1 (AP-1) activation in the liver, which was trigged by accumulated lipid. c-Jun acts as an oncogene in HCC and functions through inhibiting p53 in Setd2-deficient cells. CONCLUSIONS: We revealed the roles of Setd2 in HCC and the underlying mechanisms in regulating cholesterol homeostasis and c-Jun/AP-1 signaling.


Asunto(s)
Carcinoma Hepatocelular/etiología , N-Metiltransferasa de Histona-Lisina/deficiencia , Metabolismo de los Lípidos , Neoplasias Hepáticas/etiología , Hígado/metabolismo , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Colesterol/sangre , Inmunoprecipitación de Cromatina , Edición Génica , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células Hep G2 , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Triglicéridos/sangre
3.
Sci Total Environ ; 948: 174237, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-38942300

RESUMEN

Since the 1980s, there has been increasing concern over heavy metal pollution remediation. However, most research focused on the individual remediation technologies for heavy metal pollutants in either soil or water. Considering the potential migration of these pollutants, it is necessary to explore effective integrated remediation technologies for soil and water heavy metals. This review thoroughly examines non-phytoremediation technologies likes physical, chemical, and microbial remediation, as well as green remediation approaches involving terrestrial and aquatic phytoremediation. Non-phytoremediation technologies suffer from disadvantages like high costs, secondary pollution risks, and susceptibility to environmental factors. Conversely, phytoremediation technologies have gained significant attention due to their sustainable and environmentally friendly nature. Enhancements through chelating agents, biochar, microorganisms, and genetic engineering have demonstrated improved phytoremediation remediation efficiency. However, it is essential to address the environmental and ecological risks that may arise from the prolonged utilization of these materials and technologies. Lastly, this paper presents an overview of integrated remediation approaches for addressing heavy metal contamination in groundwater-soil-surface water systems and discusses the reasons for the research gaps and future directions. This paper offers valuable insights for comprehensive solutions to heavy metal pollution in water and soil, promoting integrated remediation and sustainable development.


Asunto(s)
Biodegradación Ambiental , Metales Pesados , Contaminantes del Suelo , Contaminantes Químicos del Agua , Metales Pesados/análisis , Metales Pesados/metabolismo , Contaminantes del Suelo/metabolismo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Restauración y Remediación Ambiental/métodos , Suelo/química
4.
J Fungi (Basel) ; 10(1)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38276033

RESUMEN

Lipid droplets (LDs) are intracellular organelles that play important roles in cellular lipid metabolism; they change their sizes and numbers in response to both intracellular and extracellular signals. Changes in LD size reflect lipid synthesis and degradation and affect many cellular activities, including energy supply and membrane synthesis. Here, we focused on the function of the endoplasmic reticulum-plasma membrane tethering protein Ice2 in LD dynamics in the fungal pathogen Candida albicans (C. albicans). Nile red staining and size quantification showed that the LD size increased in the ice2Δ/Δ mutant, indicating the critical role of Ice2 in the regulation of LD dynamics. A lipid content analysis further demonstrated that the mutant had lower phosphatidylcholine levels. As revealed with GFP labeling and fluorescence microscopy, the methyltransferase Cho2, which is involved in phosphatidylcholine synthesis, had poorer localization in the plasma membrane in the mutant than in the wild-type strain. Interestingly, the addition of the phosphatidylcholine precursor choline led to the recovery of normal-sized LDs in the mutant. These results indicated that Ice2 regulates LD size by controlling intracellular phosphatidylcholine levels and that endoplasmic reticulum-plasma membrane tethering proteins play a role in lipid metabolism regulation in C. albicans. This study provides significant findings for further investigation of the lipid metabolism in fungi.

5.
Microbiol Res ; 279: 127552, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38000336

RESUMEN

Histone proteins are important components of nucleosomes, which play an important role in regulating the accessibility of DNA and the function of genomes. However, the effect of histone proteins dosages on physiological processes is not clear in the human fungal pathogen Candida albicans. In this study, we found that the deletion of the histone protein H3 coding gene HHT21 and the histone protein H4 coding gene HHF1 resulted in a significant decrease in the expression dosage of the histone proteins H3 and H4, which had a significant impact on the localization of the histone protein H2A and plasmid maintenance. Stress sensitivity experiments showed that the mutants hht21Δ/Δ, hhf1Δ/Δ and hht21Δ/Δhhf1Δ/Δ were more sensitive to cell wall stress induced by Calcofluor White (CFW) than the wild-type strain. Further studies showed that the decrease in the dosage of the histone proteins H3 and H4 led to the change of cell wall components, increased chitin contents, and down-regulated expression of the SAP9, KAR2, and CRH11 genes involved in the cell wall integrity (CWI) pathway. Overexpression of SAP9 could rescue the sensitivity of the mutants to CFW. Moreover, the decrease in the histone protein s dosages affected the FAD-catalyzed oxidation of Ero1 protein, resulting in the obstruction of protein folding in the ER, and thus reduced resistance to CFW. It was also found that CFW induced a large amount of ROS accumulation in the mutants, and the addition of ROS scavengers could restore the growth of the mutants under CFW treatment. In addition, the reduction of the histone proteins dosages greatly weakened systemic infection and kidney fungal burden in mice, and hyphal development was significantly impaired in the mutants under macrophage treatment, indicating that the histone proteins dosages is very important for the virulence of C. albicans. This study revealed that histone proteins dosages play a key role in the cell wall stress response and pathogenicity in C. albicans.


Asunto(s)
Candida albicans , Proteínas Fúngicas , Humanos , Animales , Ratones , Proteínas Fúngicas/metabolismo , Virulencia , Histonas/genética , Histonas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Pared Celular/metabolismo
6.
Cell Genom ; 4(1): 100468, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38190104

RESUMEN

Chronic kidney disease is a leading cause of death and disability globally and impacts individuals of African ancestry (AFR) or with ancestry in the Americas (AMS) who are under-represented in genome-wide association studies (GWASs) of kidney function. To address this bias, we conducted a large meta-analysis of GWASs of estimated glomerular filtration rate (eGFR) in 145,732 AFR and AMS individuals. We identified 41 loci at genome-wide significance (p < 5 × 10-8), of which two have not been previously reported in any ancestry group. We integrated fine-mapped loci with epigenomic and transcriptomic resources to highlight potential effector genes relevant to kidney physiology and disease, and reveal key regulatory elements and pathways involved in renal function and development. We demonstrate the varying but increased predictive power offered by a multi-ancestry polygenic score for eGFR and highlight the importance of population diversity in GWASs and multi-omics resources to enhance opportunities for clinical translation for all.


Asunto(s)
Estudio de Asociación del Genoma Completo , Insuficiencia Renal Crónica , Humanos , Insuficiencia Renal Crónica/diagnóstico , Tasa de Filtración Glomerular/genética , Herencia Multifactorial/genética , Riñón/fisiología
7.
FEBS J ; 290(3): 855-871, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36152022

RESUMEN

The modification of chromatin by histone deacetylases (HDACs) has critical roles in transcriptional regulation. In this study, we identified the Rpd3 HDAC complex component Pho23 in Candida albicans and explored its role in the transcriptional regulation of physiological processes. PHO23 deletion increased autophagic activity and upregulated the transcription of ATG genes. Moreover, the deletion of PHO23 severely impaired cell wall stress resistance and reduced the cell wall integrity (CWI) pathway in response to cell wall stress. Furthermore, the pho23Δ/Δ mutant had partial defects in hyphal development and protease secretion, which were associated with the downregulation of genes involved in hyphal development (e.g. HWP1, ALS3 and ECE1) and genes encoding secreted aspartic proteases (e.g. SAP4, SAP5, SAP6 and SAP9). In addition, the deletion of PHO23 strongly attenuated systemic infection and kidney fungal burden in mice, demonstrating that Pho23 is required for the virulence of C. albicans. Together, our results revealed that Pho23 regulates many key physiological processes in C. albicans at the transcriptional level. These data also shed light on the potential for exploiting Rpd3 HDAC complex-related proteins as antifungal targets.


Asunto(s)
Candida albicans , Proteínas Fúngicas , Ratones , Animales , Candida albicans/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Virulencia/genética , Autofagia/genética , Pared Celular/genética , Pared Celular/metabolismo , Regulación Fúngica de la Expresión Génica
8.
J Fungi (Basel) ; 9(12)2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38132782

RESUMEN

DNA damage activates the DNA damage response and autophagy in C. albicans; however, the relationship between the DNA damage response and DNA damage-induced autophagy in C. albicans remains unclear. Mec1-Rad53 signaling is a critical pathway in the DNA damage response, but its role in DNA damage-induced autophagy and pathogenicity in C. albicans remains to be further explored. In this study, we compared the function of autophagy-related (Atg) proteins in DNA damage-induced autophagy and traditional macroautophagy and explored the role of Mec1-Rad53 signaling in regulating DNA damage-induced autophagy and pathogenicity. We found that core Atg proteins are required for these two types of autophagy, while the function of Atg17 is slightly different. Our results showed that Mec1-Rad53 signaling specifically regulates DNA damage-induced autophagy but has no effect on macroautophagy. The recruitment of Atg1 and Atg13 to phagophore assembly sites (PAS) was significantly inhibited in the mec1Δ/Δ and rad53Δ/Δ strains. The formation of autophagic bodies was obviously affected in the mec1Δ/Δ and rad53Δ/Δ strains. We found that DNA damage does not induce mitophagy and ER autophagy. We also identified two regulators of DNA damage-induced autophagy, Psp2 and Dcp2, which regulate DNA damage-induced autophagy by affecting the protein levels of Atg1, Atg13, Mec1, and Rad53. The deletion of Mec1 or Rad53 significantly reduces the ability of C. albicans to systematically infect mice and colonize the kidneys, and it makes C. albicans more susceptible to being killed by macrophages.

9.
Res Microbiol ; 174(3): 103996, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36328097

RESUMEN

The unfolded protein response (UPR) is an important pathway to prevent endoplasmic reticulum (ER) stress in eukaryotic cells. In Saccharomyces cerevisiae, Ire1 is a key regulatory factor required for HAC1 gene splicing for further production of functional Hac1 and activation of UPR gene expression. Autophagy is another mechanism involved in the attenuation of ER stress by ER-phagy, and Atg8 is a core protein in autophagy. Both autophagy and UPR are critical for ER stress response, but whether they act individually or in combination in Candida albicans is unknown. In this study, we explored the interaction between Ire1 and the autophagy protein Atg8 for the ER stress response by constructing the atg8Δ/Δire1Δ/Δ double mutant in the pathogenic fungus C. albicans. Compared to the single mutants atg8Δ/Δ or ire1Δ/Δ, atg8Δ/Δire1Δ/Δ exhibited much higher sensitivity to various ER stress-inducing agents and more severe attenuation of UPR gene expression under ER stress. Further investigations showed that the double mutant had a defect in ER-phagy, which was associated with attenuated vacuolar fusion under ER stress. This study revealed that Ire1 and Atg8 in combination function in the activation of the UPR and ER-phagy to maintain ER homeostasis under ER stress in C. albicans.


Asunto(s)
Autofagia , Candida albicans , Estrés del Retículo Endoplásmico , Proteínas Fúngicas , Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Candida albicans/fisiología , Estrés del Retículo Endoplásmico/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Represoras/genética , Respuesta de Proteína Desplegada , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
10.
Nanomaterials (Basel) ; 12(16)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-36014706

RESUMEN

The removal of contaminants of emerging concern (CECs) has become a hot research topic in the field of environmental engineering in recent years. In this work, a simple pyrolysis method was designed to prepare a high-performance biochar-loaded zero-valent copper (CuC) material for the catalytic degradation of antibiotics ENR by PMS. The results showed that 10 mg/L of ENR was completely removed within 30 min at an initial pH of 3, CuC 0.3 g/L, and PMS 2 mmol/L. Further studies confirmed that the reactive oxygen species (ROS) involved in ENR degradation are ·OH, SO4-·, 1O2, and O2-. Among them, 1O2 played a major role in degradation, whereas O2-· played a key role in the indirect generation of 1O2. On the one hand, CuC adsorbed and activated PMS to generate ·OH, SO4-· and O2-·. O2-· was unstable and reacted rapidly with H2O and ·OH to generate large amounts of 1O2. On the other hand, both the self-decomposition of PMS and direct activation of PMS by C=O on biochar also generated 1O2. Five byproducts were generated during degradation and eventually mineralized to CO2, H2O, NO3-, and F-. This study provides a facile strategy and new insights into the biochar-loaded zero-valent transition-metal-catalyzed PMS degradation of CECs.

11.
J Fungi (Basel) ; 8(3)2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35330254

RESUMEN

Heat-stable antifungal factor (HSAF) isolated from Lysobacter enzymogenes has shown a broad-spectrum of antifungal activities. However, little is known about its mode of action. In this study, we used the model filamentous fungus Neurospora crassa to investigate the antifungal mechanism of HSAF. We first used HSAF to treat the N. crassa strain at different time points. Spore germination, growth phenotype and differential gene expression analysis were conducted by utilizing global transcriptional profiling combined with genetic and physiological analyses. Our data showed that HSAF could significantly inhibit the germination and aerial hyphae growth of N. crassa. RNA-seq analysis showed that a group of genes, associated with cell wall formation and remodeling, were highly activated. Screening of N. crassa gene deletion mutants combined with scanning electron microscopic observation revealed that three fungal cell wall integrity-related genes played an important role in the interaction between N. crassa and L. enzymogens. In addition, Weighted Gene Co-Expression Network Analysis (WGCNA), accompanied by confocal microscopy observation revealed that HSAF could trigger autophagy-mediated degradation and eventually result in cell death in N. crassa. The findings of this work provided new insights into the interactions between the predatory Lysobacter and its fungal prey.

12.
Front Microbiol ; 12: 752670, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34917046

RESUMEN

Transient receptor potential (TRP) channel Yvc1 was related with hyphal growth, oxidative stress response, and pathogenicity. Calcineurin subunit Cnb1 was activated immediately in yeasts when exposed to severe stimulation. However, the relationship between Yvc1 and Cnb1-governed calcium ions and endoplasmic reticulum (ER) stress response remains unrevealed. In this study, we found that the mutant cnb1Δ/Δ was sensitive to TN, which was related with the overexpression of membrane calcium ion channels that could increase the cytosol calcium concentration. However, the growth of the cnb1Δ/Δyvc1Δ/Δ mutant was recovered and its cell vitality was better than the cnb1Δ/Δ strain. Meanwhile, the cellular calcium concentration was decreased and its fluctuation was weakened under ER stress in the cnb1Δ/Δyvc1Δ/Δ strain. To verify the regulation role of Yvc1 in the calcium concentration, we found that the addition of CaCl2 led to the worse viability, while the growth state was relieved under the treatment of EGTA in the cnb1Δ/Δ strain. In conclusion, the deletion of YVC1 could reduce the cellular calcium and relieve the ER stress sensitivity of the cnb1Δ/Δ strain. Thereby, our findings shed a novel light on the relationship between the Yvc1-governed cellular calcium concentration and ER stress response in C. albicans.

13.
Front Microbiol ; 11: 1633, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765463

RESUMEN

Lignocellulose is an abundant waste resource and has been considered as a promising material for production of biofuels or other valuable bio-products. Currently, one of the major bottlenecks in the economic utilization of lignocellulosic materials is the cost-efficiency of converting lignocellulose into soluble sugars for fermentation. One way to address this problem is to seek superior lignocellulose degradation enzymes or further improve current production yields of lignocellulases. In the present study, the lignocellulose degradation capacity of a thermophilic fungus Chaetomium thermophilum was firstly evaluated and compared to that of the biotechnological workhorse Trichoderma reesei. The data demonstrated that compared to T. reesei, C. thermophilum displayed substantially higher cellulose-utilizing efficiency with relatively lower production of cellulases, indicating that better cellulases might exist in C. thermophilum. Comparison of the protein secretome between C. thermophilum and T. reesei showed that the secreted protein categories were quite different in these two species. In addition, to prove that cellulases in C. thermophilum had better enzymatic properties, the major cellulase cellobiohydrolase I (CBH1) from C. thermophilum and T. reesei were firstly characterized, respectively. The data showed that the specific activity of C. thermophilum CBH1 was about 4.5-fold higher than T. reesei CBH1 in a wide range of temperatures and pH. To explore whether increasing CBH1 activity in T. reesei could contribute to improving the overall cellulose-utilizing efficiency of T. reesei, T. reesei cbh1 gene was replaced with C. thermophilum cbh1 gene by integration of C. thermophilum cbh1 gene into T. reesei cbh1 gene locus. The data surprisingly showed that this gene replacement not only increased the cellobiohydrolase activities by around 4.1-fold, but also resulted in stronger induction of other cellulases genes, which caused the filter paper activities, Azo-CMC activities and ß-glucosidase activities increased by about 2.2, 1.9, and 2.3-fold, respectively. The study here not only provided new resources of superior cellulases genes and new strategy to improve the cellulase production in T. reesei, but also contribute to opening the path for fundamental research on C. thermophilum.

14.
Huan Jing Ke Xue ; 37(11): 4247-4254, 2016 Nov 08.
Artículo en Zh | MEDLINE | ID: mdl-29964677

RESUMEN

Three-dimensional ordered mesoporous Co3O4 was prepared by nanocasting method with porous silicon KIT-6 as the hard template and firstly used to activate peroxymonosulfate for the degradation of rhodamine B. The structural properties were characterized by BET, H-TEM, XRD, XPS, FT-IR. The results showed that three-dimensional ordered mesoporous Co3O4 presented far superior catalytic activity over conventional nanoscale Co3O4 due to its abundant space mesoporous channel structure and the large specific surface areas. Higher catalyst dosage and higher peroxymonosulfate concentration favored the decolorization of rhodamine B. The removal of rhodamine B could be accelerated in the presence of Cl- and H2PO4-; however, the decolorization of rhodamine B would be inhibited in the presence of NO3-, SO42- and HCO3-. Sulfate radicals were identified as the dominant active species for the decolorization of rhodamine B through radicals quenching experiments. Three-dimensional ordered mesoporous Co3O4 showed excellent catalytic activity even after five consecutive cycles.

15.
Zhonghua Yi Xue Za Zhi ; 85(43): 3035-8, 2005 Nov 16.
Artículo en Zh | MEDLINE | ID: mdl-16324401

RESUMEN

OBJECTIVE: To investigate the clinicopathologic features of and appropriate treatment of ductal carcinoma in situ of the breast (DCIS). METHODS: The clinical and pathologic data of 41 cases of DCIS, aged 52.7 (30-82), 15 of which were diagnosed as with ductal carcinoma in situ with microinvasion (DCIS-MI) and of which 18 were in the Van Nuys grade I, 13 in the grade II, and 10 in the grade III, were collected and analyzed. Immunohistochemical analysis was performed to examine the expressions of estrogen receptor (ER), progesterone receptor (PR), proliferating cell nuclear antigen (PCNA), P53 and C-erbB-2. RESULTS: Microinvasion was correlated with the histologic categories (chi(2) = 4.60, P < 0.05) and tumor size (chi(2) = 9.78, P < 0.05) significantly. The expression rates of ER, PR, PCNA, P53, and C-erbB-2 were 68.3%, 65.9%, 63.4%, 26.8%, and 46.3%, respectively. There was no significant difference in the expression of the biologic markers between the patients with DCIS and those with DCIS-MI. The expression levels of ER, P53, and C-erbB-2 were correlated with the histologic categories significantly (chi(2) = 11.45, 11.97, 4.38, P < 0.05). CONCLUSION: The Van Nuys histologic classification accords with the requirement of clinical treatment and prognosis. The patients with DCIS should undergo individualized treatment.


Asunto(s)
Neoplasias de la Mama/patología , Carcinoma Intraductal no Infiltrante/patología , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Carcinoma Intraductal no Infiltrante/tratamiento farmacológico , Carcinoma Intraductal no Infiltrante/metabolismo , Femenino , Estudios de Seguimiento , Humanos , Inmunohistoquímica , Persona de Mediana Edad , Pronóstico , Receptor ErbB-2/biosíntesis , Receptores de Estrógenos/biosíntesis , Estudios Retrospectivos , Proteína p53 Supresora de Tumor/biosíntesis
16.
Adv Mater ; 27(5): 819-24, 2015 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-25492492

RESUMEN

Atomic-scale interface engineering in BaTiO3@TO2 nanofibers (TiO2 nano-fibers embedded with BaTiO3 nano-particles) leads to concurrent enhancement of electric displacement and breakdown strength in poly(vinylidene fluoride) (PVDF)-based nanocomposites. An ultrahigh energy density of ≈20 J cm(-3) is achieved with only 3 vol% nanofibers, which is by far the highest discharged energy density of PVDF-based nanocomposites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA