Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Mol Cell ; 76(3): 516-527.e7, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31492635

RESUMEN

The PTEN tumor suppressor is frequently mutated or deleted in cancer and regulates glucose metabolism through the PI3K-AKT pathway. However, whether PTEN directly regulates glycolysis in tumor cells is unclear. We demonstrate here that PTEN directly interacts with phosphoglycerate kinase 1 (PGK1). PGK1 functions not only as a glycolytic enzyme but also as a protein kinase intermolecularly autophosphorylating itself at Y324 for activation. The protein phosphatase activity of PTEN dephosphorylates and inhibits autophosphorylated PGK1, thereby inhibiting glycolysis, ATP production, and brain tumor cell proliferation. In addition, knockin expression of a PGK1 Y324F mutant inhibits brain tumor formation. Analyses of human glioblastoma specimens reveals that PGK1 Y324 phosphorylation levels inversely correlate with PTEN expression status and are positively associated with poor prognosis in glioblastoma patients. This work highlights the instrumental role of PGK1 autophosphorylation in its activation and PTEN protein phosphatase activity in governing glycolysis and tumorigenesis.


Asunto(s)
Neoplasias Encefálicas/enzimología , Glioblastoma/enzimología , Glucosa/metabolismo , Glucólisis , Fosfohidrolasa PTEN/metabolismo , Fosfoglicerato Quinasa/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular , Femenino , Glioblastoma/genética , Glioblastoma/patología , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Fosfohidrolasa PTEN/genética , Fosfoglicerato Quinasa/genética , Fosforilación , Pronóstico , Transducción de Señal , Factores de Tiempo , Carga Tumoral , Tirosina
2.
Nature ; 580(7804): 530-535, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32322062

RESUMEN

Cancer cells increase lipogenesis for their proliferation and the activation of sterol regulatory element-binding proteins (SREBPs) has a central role in this process. SREBPs are inhibited by a complex composed of INSIG proteins, SREBP cleavage-activating protein (SCAP) and sterols in the endoplasmic reticulum. Regulation of the interaction between INSIG proteins and SCAP by sterol levels is critical for the dissociation of the SCAP-SREBP complex from the endoplasmic reticulum and the activation of SREBPs1,2. However, whether this protein interaction is regulated by a mechanism other than the abundance of sterol-and in particular, whether oncogenic signalling has a role-is unclear. Here we show that activated AKT in human hepatocellular carcinoma (HCC) cells phosphorylates cytosolic phosphoenolpyruvate carboxykinase 1 (PCK1), the rate-limiting enzyme in gluconeogenesis, at Ser90. Phosphorylated PCK1 translocates to the endoplasmic reticulum, where it uses GTP as a phosphate donor to phosphorylate INSIG1 at Ser207 and INSIG2 at Ser151. This phosphorylation reduces the binding of sterols to INSIG1 and INSIG2 and disrupts the interaction between INSIG proteins and SCAP, leading to the translocation of the SCAP-SREBP complex to the Golgi apparatus, the activation of SREBP proteins (SREBP1 or SREBP2) and the transcription of downstream lipogenesis-related genes, proliferation of tumour cells, and tumorigenesis in mice. In addition, phosphorylation of PCK1 at Ser90, INSIG1 at Ser207 and INSIG2 at Ser151 is not only positively correlated with the nuclear accumulation of SREBP1 in samples from patients with HCC, but also associated with poor HCC prognosis. Our findings highlight the importance of the protein kinase activity of PCK1 in the activation of SREBPs, lipogenesis and the development of HCC.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Gluconeogénesis , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lipogénesis , Neoplasias Hepáticas/metabolismo , Proteínas de la Membrana/metabolismo , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Animales , Carcinogénesis , Carcinoma Hepatocelular/patología , Proliferación Celular , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Neoplasias Hepáticas/patología , Masculino , Proteínas de la Membrana/química , Ratones , Ratones Desnudos , Oxiesteroles/metabolismo , Fosforilación , Pronóstico , Unión Proteica , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo
3.
Mol Cell ; 70(2): 197-210.e7, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29677490

RESUMEN

EGFR activates phosphatidylinositide 3-kinase (PI3K), but the mechanism underlying this activation is not completely understood. We demonstrated here that EGFR activation resulted in lysine acetyltransferase 5 (KAT5)-mediated K395 acetylation of the platelet isoform of phosphofructokinase 1 (PFKP) and subsequent translocation of PFKP to the plasma membrane, where the PFKP was phosphorylated at Y64 by EGFR. Phosphorylated PFKP binds to the N-terminal SH2 domain of p85α, which is distinct from binding of Gab1 to the C-terminal SH2 domain of p85α, and recruited p85α to the plasma membrane resulting in PI3K activation. PI3K-dependent AKT activation results in enhanced phosphofructokinase 2 (PFK2) phosphorylation and production of fructose-2,6-bisphosphate, which in turn promotes PFK1 activation. PFKP Y64 phosphorylation-enhanced PI3K/AKT-dependent PFK1 activation and GLUT1 expression promoted the Warburg effect, tumor cell proliferation, and brain tumorigenesis. These findings underscore the instrumental role of PFKP in PI3K activation and enhanced glycolysis through PI3K/AKT-dependent positive-feedback regulation.


Asunto(s)
Neoplasias Encefálicas/enzimología , Glioblastoma/enzimología , Glucólisis , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfofructoquinasa-1 Tipo C/metabolismo , Acetilación , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase Ia , Activación Enzimática , Receptores ErbB/genética , Receptores ErbB/metabolismo , Retroalimentación Fisiológica , Fructosadifosfatos/metabolismo , Glioblastoma/genética , Glioblastoma/patología , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Humanos , Lisina Acetiltransferasa 5/genética , Lisina Acetiltransferasa 5/metabolismo , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/genética , Fosfofructoquinasa-1 Tipo C/genética , Fosfofructoquinasa-2/genética , Fosfofructoquinasa-2/metabolismo , Fosforilación , Unión Proteica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Dominios Homologos src
4.
Mol Biol Rep ; 49(8): 7275-7286, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35562515

RESUMEN

BACKGROUND: Discoidin domain receptor 1 (DDR1), a member of receptor tyrosine kinase, has been implicated in tumor progression. However, the function and underlying mechanism of DDR1 in lung adenocarcinoma (LUAD) progression is unclear. Thus, we explored the molecular regulatory mechanism of DDR1 in the migration of LUAD. METHODS: Transwell assays, wound healing assays and xenograft tumor assays were performed to study the function of DDR1 in the progression of LUAD. Immunoblotting and quantitative real-time polymerase chain reaction (RT-qPCR) were used to detect the expression levels of genes. Co-immunoprecipitation (co-IP) assays were performed to detect the interaction between DDR1 and AKT. Immunofluorescence and immunohistochemistry assays were used to determine the expression level of proteins in cells and tissues, respectively. RESULTS: DDR1 expression was significantly higher in LUAD tissues than in normal lung tissues, and the level of DDR1 was inversely correlated with prognosis in patients. We found that DDR1 promoted the migration and invasion of LUAD cells in vitro. Furthermore, ectopic expression of DDR1 in LUAD cells altered EMT-related markers expression. Importantly, the DDR1 protein interacted with AKT and phosphorylated AKT. The AKT inhibitor MK2206 interrupted Snail upregulation in DDR1-overexpressing LUAD cells. Finally, our study revealed that depletion of DDR1 attenuated LUAD cell migration in a tumor xenograft mouse model. CONCLUSION: Our findings uncovered that a high abundance of DDR1 increased the migration and invasion capability of LUAD cells via the AKT/Snail signaling axis and indicated that DDR1 could be a potential target for treating LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Receptor con Dominio Discoidina 1 , Neoplasias Pulmonares , Proteínas Proto-Oncogénicas c-akt , Factores de Transcripción de la Familia Snail , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Receptor con Dominio Discoidina 1/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Proteínas Proto-Oncogénicas c-akt/genética , Factores de Transcripción de la Familia Snail/genética
5.
Neoplasma ; 69(5): 1154-1164, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35818965

RESUMEN

Breast cancer is the most commonly diagnosed cancer among women, causing 15% of patient deaths. The metastasis of breast cancer cells is the leading cause of death for patients. Several studies have shown that Discoidin Domain Receptor 1 (DDR1) was highly expressed in breast cancer and could influence tumor cell behaviors. However, the specific role of DDR1 in breast cancer metastasis is still elusive. In this study, we uncovered that DDR1 is significantly increased in breast cancer and inversely correlated with the prognosis of patients. Knockdown of DDR1 suppressed the migration and invasion of breast cancer cells. Additionally, overexpression of DDR1 enhanced the metastatic capacity of cancer cells. Immunoblotting revealed that activation of Src and FAK, which are involved in cancer cell metastasis, were correlated with the expression level of DDR1. Co-immunoprecipitation experiments showed that DDR1 could bind to Src and FAK. Finally, the inhibition of FAK and Src could attenuate DDR1 enhanced migration ability of breast cancer cells. In summary, our study revealed that DDR1 was highly expressed in breast cancer and negatively correlated with the prognosis of breast cancer patients. DDR1 facilitates migration and invasion in breast cancer cells via activation of the Src-FAK signaling. Accordingly, blocking DDR1/Src/FAK axis is a promising therapeutic strategy for breast cancer treatment.


Asunto(s)
Neoplasias de la Mama , Receptor con Dominio Discoidina 1 , Femenino , Humanos , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular , Receptor con Dominio Discoidina 1/genética , Receptor con Dominio Discoidina 1/metabolismo , Pronóstico , Transducción de Señal , Genes src , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo
6.
Fish Shellfish Immunol ; 77: 13-21, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29555584

RESUMEN

Signal transducer and activator of transcription 3 (STAT3) is a member of the STAT family in response to cytokines and growth factors. In mammals, alternative splicing of STAT3 generates STAT3α and STAT3ß, which have distinct and overlapping functions. In the previous study, we have identified two spliceforms of Stat3α (Stat3α1 and Stat3α2) possessing all functional domains of Stat3 in grass carp (Ctenopharyngodon idella). In the present study, two Stat3ß variants (Stat3ß1 and Stat3ß2) without C-terminal transactivation domain were isolated from this species, and their transcripts were ubiquitously expressed in all examined tissues with the highest levels in liver. Further studies showed that Stat3ß1/2 had the ability to translocate into the nucleus upon activation, indicating their roles in transcriptional regulation. In support of this notion, grass carp Stat3ß1 and Stat3ß2 displayed the abilities to inhibit Interleukin-10 (Il-10) signaling and competitively impaired the transcriptional activities of Stat3α1/2. In particular, similar to their mammalian counterparts, grass carp Stat3ß1 and Stat3ß2 could enhance Stat3α1/2 phosphorylation upon cytokine stimulation. Interestingly, stat3ß1 and stat3ß2 transcripts were also found in zebrafish (Danio rerio) and goldfish (Carassius auratus), and each variant in these teleosts is generated through similar alternative splicing events, including exon skipping and intron retention. This highlights a conserved splicing event of stat3 gene during vertebrate evolution and indicates a potential physiological significance of generating unique Stat3 variants in fish. These results, along with the findings regarding Stat3α1/2, demonstrate the existence of Stat3 isoforms with functional diversity and redundancy in teleosts. It leads to the hypothesis that teleost-specific spliceforms of Stat3 gene may contribute to the complexity of Stat3 signaling in fishes, thereby benefiting them to adapt to evolution and environmental changes.


Asunto(s)
Carpas/genética , Carpas/inmunología , Enfermedades de los Peces/inmunología , Inmunidad Innata/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/inmunología , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Perfilación de la Expresión Génica , Factor de Transcripción STAT3/química , Alineación de Secuencia/veterinaria , Análisis de Secuencia de ADN/veterinaria , Transducción de Señal , Activación Transcripcional
7.
Fish Shellfish Immunol ; 71: 434-442, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29024769

RESUMEN

Interleukin (IL-) 23, a member of IL-12 family, is a composite cytokine with the subunits of p19 and p40. Although IL-12 and IL-23 share the p40 subunit, they play vastly different roles in immune regulation. In teleost, much emphasis has been placed on the identification of IL-12, but evidence for the existence of IL-23 is still lacking. In the present study, a p19 gene and three p40 paralogues were isolated and identified from grass carp, suggesting multiple assembly of IL-23 molecules in fish species. To address this issue, the existence of different p19/p40 heterodimers were examined by Co-Immunoprecipitation (Co-IP) assay, showing that only co-expression of p19 and each p40 subunit could produce the soluble proteins corresponding to three IL-23 isoforms. Additionally, bacterial infection could up-regulate the mRNA expression of p19, p40a and p40b but not p40c in head kidney, indicating distinct expression patterns of three p40 paralogues. Moreover, in vitro experiments demonstrated that both B-cell stimulator, LPS and T-cell mitogen, PHA markedly increased the mRNA levels of p19 and three p40 paralogues in grass carp periphery blood lymphocytes (PBLs). The simultaneous up-regulation of mRNA expression of p19 and p40 paralogues in response to immune stimuli supports the idea that p19 may form heterodimeric molecules with three p40 subunits in grass carp under immune activation. These findings for the first time highlight the potential of p19 and p40 for dimerization in fish, particularly the existence of three IL-23 isoforms as soluble heterodimeric cytokines in grass carp, thereby providing the basis for further investigating the function of IL-23 in fish immunity.


Asunto(s)
Carpas/genética , Carpas/inmunología , Enfermedades de los Peces/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Interleucina-23/genética , Interleucina-23/inmunología , Secuencia de Aminoácidos , Animales , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Perfilación de la Expresión Génica , Interleucina-23/química , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/inmunología , Alineación de Secuencia/veterinaria
8.
Fish Shellfish Immunol ; 42(2): 408-12, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25434741

RESUMEN

IκBα is a well-known member of the inhibitors of kappa B (IκB) family that controls NF-κB signaling by blocking NF-κB translocation from cytoplasm to nucleus. In the present study, an IκBα homologue was identified from grass carp (gcIκBα), showing the structural characteristics of IκB family. Moreover, mRNA expression of this molecule in grass carp periphery blood lymphocytes (PBLs) was enhanced significantly by both LPS and PHA in a time- and dose-dependent manner, indicating the involvement of gcIκBα in fish immune response. Further analysis demonstrated that LPS but not PHA induced gcIκBα phosphorylation and protein degradation in PBLs, implying different signaling pathways mediated by LPS and PHA in gcIκBα expression regulation in grass carp PBLs. In particular, the time-dependent oscillation of gcIκBα phosphorylation and total protein levels induced by LPS is in accordance with the characteristics of mammalian IκBα phosphorylation followed by protein degradation during NF-κB activation. In support of this notion, overexpression of gcIκBα was able to block both basal and LPS-stimulated NF-κB activity in grass carp kidney cell line, indicating the negatively regulatory role of gcIκBα in NF-κB activity as seen in mammals. Therefore, our results not only reveal a dynamic variation of NF-κB activity based on the activation and expression of IκBα for the first time, but also provide the direct evidence for the involvement of IκBα in NF-κB signaling in fish immune cells.


Asunto(s)
Carpas/genética , Carpas/inmunología , Proteínas de Peces/genética , Regulación de la Expresión Génica , Quinasa I-kappa B/genética , Transducción de Señal , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Carpas/metabolismo , Proteínas de Peces/metabolismo , Quinasa I-kappa B/metabolismo , Lipopolisacáridos/farmacología , Datos de Secuencia Molecular , FN-kappa B/metabolismo , Fitohemaglutininas/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Alineación de Secuencia/veterinaria
9.
Front Microbiol ; 15: 1367583, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585706

RESUMEN

The development of innovative methods for highly efficient production of recombinant proteins remains a prominent focus of research in the biotechnology field, primarily due to the fact that current commercial protein expression systems rely on expensive chemical inducers, such as isopropyl ß-D-thiogalactoside (IPTG). In our study, we designed a novel approach for protein expression by creating a plasmid that responds to copper. This specialized plasmid was engineered through the fusion of a copper-sensing element with an optimized multiple cloning site (MCS) sequence. This MCS sequence can be easily customized by inserting the coding sequences of target recombinant proteins. Once the plasmid was generated, it was introduced into an engineered Escherichia coli strain lacking copA and cueO. With this modified E. coli strain, we demonstrated that the presence of copper ions can efficiently trigger the induction of recombinant protein expression, resulting in the production of active proteins. Most importantly, this expression system can directly utilize copper-containing industrial wastewater as an inducer for protein expression while simultaneously removing copper from the wastewater. Thus, this study provides a low-cost and eco-friendly strategy for the large-scale recombinant protein production. To the best of our knowledge, this is the first report on the induction of recombinant proteins using industrial wastewater.

10.
Adv Sci (Weinh) ; 10(27): e2206380, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37541303

RESUMEN

Tumor cells often overexpress immune checkpoint proteins, including CD47, for immune evasion. However, whether or how oncogenic activation of receptor tyrosine kinases, which are crucial drivers in tumor development, regulates CD47 expression is unknown. Here, it is demonstrated that epidermal growth factor receptor (EGFR) activation induces CD47 expression by increasing the binding of c-Src to CD47, leading to c-Src-mediated CD47 Y288 phosphorylation. This phosphorylation inhibits the interaction between the ubiquitin E3 ligase TRIM21 and CD47, thereby abrogating TRIM21-mediated CD47 K99/102 polyubiquitylation and CD47 degradation. Knock-in expression of CD47 Y288F reduces CD47 expression, increases macrophage phagocytosis of tumor cells, and inhibits brain tumor growth in mice. In contrast, knock-in expression of CD47 K99/102R elicits the opposite effects compared to CD47 Y288F expression. Importantly, CD47-SIRPα blockade with an anti-CD47 antibody treatment significantly enhances EGFR-targeted cancer therapy. In addition, CD47 expression levels in human glioblastoma (GBM) specimens correlate with EGFR and c-Src activation and aggravation of human GBM. These findings elucidate a novel mechanism underlying CD47 upregulation in EGFR-activated tumor cells and underscore the role of the EGFR-c-Src-TRIM21-CD47 signaling axis in tumor evasion and the potential to improve the current cancer therapy with a combination of CD47 blockade with EGFR-targeted remedy.


Asunto(s)
Antígeno CD47 , Glioblastoma , Escape del Tumor , Animales , Humanos , Ratones , Antígeno CD47/metabolismo , Línea Celular Tumoral , Receptores ErbB , Glioblastoma/metabolismo , Fosforilación
11.
J Exp Clin Cancer Res ; 42(1): 340, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38098117

RESUMEN

BACKGROUND: Cancer cells undergo cellular adaptation through metabolic reprogramming to sustain survival and rapid growth under various stress conditions. However, how brain tumors modulate their metabolic flexibility in the naturally serine/glycine (S/G)-deficient brain microenvironment remain unknown. METHODS: We used a range of primary/stem-like and established glioblastoma (GBM) cell models in vitro and in vivo. To identify the regulatory mechanisms of S/G deprivation-induced metabolic flexibility, we employed high-throughput RNA-sequencing, transcriptomic analysis, metabolic flux analysis, metabolites analysis, chromatin immunoprecipitation (ChIP), luciferase reporter, nuclear fractionation, cycloheximide-chase, and glucose consumption. The clinical significances were analyzed in the genomic database (GSE4290) and in human GBM specimens. RESULTS: The high-throughput RNA-sequencing and transcriptomic analysis demonstrate that the de novo serine synthesis pathway (SSP) and glycolysis are highly activated in GBM cells under S/G deprivation conditions. Mechanistically, S/G deprivation rapidly induces reactive oxygen species (ROS)-mediated AMP-activated protein kinase (AMPK) activation and AMPK-dependent hypoxia-inducible factor (HIF)-1α stabilization and transactivation. Activated HIF-1α in turn promotes the expression of SSP enzymes phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase 1 (PSAT1), and phosphoserine phosphatase (PSPH). In addition, the HIF-1α-induced expression of glycolytic genes (GLUT1, GLUT3, HK2, and PFKFB2) promotes glucose uptake, glycolysis, and glycolytic flux to fuel SSP, leading to elevated de novo serine and glycine biosynthesis, NADPH/NADP+ ratio, and the proliferation and survival of GBM cells. Analyses of human GBM specimens reveal that the levels of overexpressed PHGDH, PSAT1, and PSPH are positively correlated with levels of AMPK T172 phosphorylation and HIF-1α expression and the poor prognosis of GBM patients. CONCLUSION: Our findings reveal that metabolic stress-enhanced glucose-derived de novo serine biosynthesis is a critical metabolic feature of GBM cells, and highlight the potential to target SSP for treating human GBM.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Glioblastoma , Humanos , Glioblastoma/patología , Serina , Glucosa/metabolismo , Glicina , ARN , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Línea Celular Tumoral , Microambiente Tumoral , Fosfofructoquinasa-2
12.
Fish Shellfish Immunol ; 33(2): 418-26, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22683816

RESUMEN

In mammals, retinoid-related orphan receptors (ROR) consist of three members as RORα, RORß and RORγ. It is well known that RORα plays a critical role in cerebellum development while RORγt directs T helper 17 (Th17) cell differentiation. So far, the knowledge on fish ROR family is limited as only zebrafish ROR family members have been characterized, showing that they play roles in embryonic and cerebellar development. In this study, we have cloned two paralogues for RORα (RORα1 and RORα2) and RORγ (RORγ1 and RORγ2) from grass carp (Ctenopharyngodon idellus). Phylogenetic analysis showed that grass carp RORα and RORγ were grouped in the clade of zebrafish RORα and RORγ, respectively. Real-time RT-PCR assay revealed that these four ROR transcripts exhibited similar expression patterns, in particular the high levels in pituitary, brain and some immune-related tissues, suggesting that all of them may play a role in endocrine and immune system of teleost. To explore the immune roles of grass carp RORα and RORγ, their expression was detected in periphery blood lymphocytes (PBLs) challenged by immune stimuli. Results showed that both RORα and RORγ mRNA levels were up-regulated by PHA but not LPS in PBLs, suggesting that their expression may be subject to different immune processes. In the same cell model, poly I:C stimulation induced RORγ1/2 but not RORα1/2 expression, pointing to the different roles of grass carp RORα and RORγ in immune response. Consistently, bacterial challenge significantly up-regulated the expression of these four ROR genes in spleen, headkidney and thymus. These results not only contribute to elucidate the roles of ROR in fish immunity but also facilitate to further clarify the existence of Th17-like cells in fish.


Asunto(s)
Carpas/genética , Carpas/inmunología , Receptores Nucleares Huérfanos/genética , Receptores Nucleares Huérfanos/inmunología , Adyuvantes Inmunológicos/farmacología , Aeromonas hydrophila/inmunología , Secuencia de Aminoácidos , Animales , Carpas/clasificación , Enfermedades de los Peces/inmunología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Linfocitos/efectos de los fármacos , Datos de Secuencia Molecular , Receptores Nucleares Huérfanos/química , Filogenia , Fitohemaglutininas/farmacología , Poli I-C/farmacología , Alineación de Secuencia
13.
Fish Shellfish Immunol ; 33(5): 1123-32, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22981915

RESUMEN

Tumor necrosis factor-alpha (TNF-α) is a potent regulatory cytokine, which serves as a key mediator of inflammation, immunity and apoptosis in mammals. Identification, expression and regulatory effects of TNF-α have been reported in various fish species, showing the structural and functional similarity or discrepancy between each other. In this study, TNF-α was identified from grass carp (Ctenopharyngodon idella) and the deduced grass carp TNF-α (gcTNF-α) protein possessed the TNF family signature motifs, a protease cleavage site, a transmembrane domain and two conserved cysteine residues. Further studies showed that gcTNF-α expression was induced with a rapid kinetics by immune challenge in vitro and in vivo. To characterize the function of gcTNF-α, recombinant gcTNF-α (rgcTNF-α) was prepared by using the Escherichia coli expression system. It was shown to enhance the mRNA expression of gcTNF-α and gcIL-1ß in head kidney leukocytes (HKLs), confirming the biological activity of rgcTNF-α. In the same model, NF-κB inhibitor (PDTC) was able to attenuate rgcTNF-α-induced gcTNF-α mRNA expression, implying the involvement of NF-κB pathway in fish TNF-α action. This notion was reinforced by the finding that rgcTNF-α could induce the phosphorylation of IκBα in a time-dependent oscillation in HKLs, indicating a dynamical variation of NF-κB activity as seen in mammals. In addition, rgcTNF-α could up-regulate the expression of two TNF receptor-associated factors (TRAF), TRAF1 and TRAF2, in a time- and dose-dependent manner, suggesting that gcTNF-α may function as a regulator of fish NF-κB pathway. These results for the first time reveal the link of gcTNF-α to the NF-κB pathway and provide a better understanding of TNF-α signaling in teleost immunity.


Asunto(s)
Carpas/inmunología , Regulación de la Expresión Génica/inmunología , Riñón Cefálico/citología , Leucocitos/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Análisis de Varianza , Animales , Secuencia de Bases , Western Blotting , Carpas/metabolismo , Clonación Molecular , Análisis por Conglomerados , ADN Complementario/genética , Ensayo de Inmunoadsorción Enzimática , Escherichia coli , Regulación de la Expresión Génica/efectos de los fármacos , Riñón Cefálico/metabolismo , Interleucina-1beta/metabolismo , Datos de Secuencia Molecular , FN-kappa B/antagonistas & inhibidores , Filogenia , Prolina/análogos & derivados , Prolina/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de ADN , Factor 1 Asociado a Receptor de TNF/metabolismo , Factor 2 Asociado a Receptor de TNF/metabolismo , Tiocarbamatos/farmacología , Factor de Necrosis Tumoral alfa/genética
14.
Front Oncol ; 12: 1017692, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36505792

RESUMEN

Gastric cancer (GC) is a leading contributor to global cancer incidence and mortality. According to the GLOBOCAN 2020 estimates of incidence and mortality for 36 cancers in 185 countries produced by the International Agency for Research on Cancer (IARC), GC ranks fifth and fourth, respectively, and seriously threatens the survival and health of people all over the world. Therefore, how to effectively treat GC has become an urgent problem for medical personnel and scientific workers at this stage. Due to the unobvious early symptoms and the influence of some adverse factors such as tumor heterogeneity and low immunogenicity, patients with advanced gastric cancer (AGC) cannot benefit significantly from treatments such as radical surgical resection, radiotherapy, chemotherapy, and targeted therapy. As an emerging cancer immunotherapy, oncolytic virotherapies (OVTs) can not only selectively lyse cancer cells, but also induce a systemic antitumor immune response. This unique ability to turn unresponsive 'cold' tumors into responsive 'hot' tumors gives them great potential in GC therapy. This review integrates most experimental studies and clinical trials of various oncolytic viruses (OVs) in the diagnosis and treatment of GC. It also exhaustively introduces the concrete mechanism of invading GC cells and the viral genome composition of adenovirus and herpes simplex virus type 1 (HSV-1). At the end of the article, some prospects are put forward to determine the developmental directions of OVTs for GC in the future.

15.
Front Immunol ; 13: 1027838, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36189223

RESUMEN

Gastric cancer (GC) is one of the most common malignancy and leading cause of cancer-related deaths worldwide. Due to asymptomatic or only nonspecific early symptoms, GC patients are usually in the advanced stage at first diagnosis and miss the best opportunity of treatment. Immunotherapies, especially immune checkpoint inhibitors (ICIs), have dramatically changed the landscape of available treatment options for advanced-stage cancer patients. However, with regards to existing ICIs, the clinical benefit of monotherapy for advanced gastric cancer (AGC) is quite limited. Therefore, it is urgent to explore an optimal target for the treatment of GC. In this review, we summarize the expression profiles and prognostic value of 20 common immune checkpoint-related genes in GC from Gene Expression Profiling Interactive Analysis (GEPIA) database, and then find that the adenosinergic pathway plays an indispensable role in the occurrence and development of GC. Moreover, we discuss the pathophysiological function of adenosinergic pathway in cancers. The accumulation of extracellular adenosine inhibits the normal function of immune effector cells and facilitate the effect of immunosuppressive cells to foster GC cells proliferation and migration. Finally, we provide insights into potential clinical application of adenosinergic-targeting therapies for GC patients.


Asunto(s)
Adenosina , Neoplasias Gástricas , Adenosina/metabolismo , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia , Transducción de Señal , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/terapia
16.
Genes Genomics ; 44(12): 1509-1517, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35917090

RESUMEN

BACKGROUND: Overexpression of PD-L1 is observed in many types of human cancer, including glioblastoma (GBM) and contributes to tumor immune evasion. In addition, GBM shows highly-activated aerobic glycolysis due to overexpression of phosphofructokinase 1 platelet isoform (PFKP), which the key enzyme in the glycolysis. However, it remains unclear whether the metabolic enzyme PFKP plays a role in the regulation of PD-L1 expression and GBM immune evasion. OBJECTIVE: We aimed to investigate the non-metabolic role of PFKP in PD-L1 expression-induced GBM immune evasion. METHODS: The mechanisms of PFKP-induced PD-L1 expression were studied by several experiments, including real-time PCR, immunoblot analysis, and ATP production. The coculture experiments using GBM cell and T cells were performed to evaluate the effect of PFKP on T cell activation. The clinical relationship between PFKP and PD-L1 was analyzed in The Cancer Genome Atlas (TCGA) database and in human GBM specimens. RESULTS: We showed that PFKP promotes EGFR activation-induced PD-L1 expression in human GBM cells. Importantly, we demonstrated that EGFR-phosphorylated PFKP Y64 plays an important role in AKT-mediated ß-catenin transactivation and subsequent PD-L1 transcriptional expression, thereby enhancing the GBM immune evasion. In addition, based on our findings, the levels of PFKP Y64 phosphorylation are positively correlated with PD-L1 expression in human GBM specimens, highlighting the clinical significance of PFKP Y64 phosphorylation in the GBM immune evasion. CONCLUSION: These findings provide new mechanistic insight into the regulation of PD-L1 expression by a non-metabolic function of PFKP on tumor cells.


Asunto(s)
Glioblastoma , Fosfofructoquinasa-1 Tipo C , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Receptores ErbB/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Evasión Inmune , Fosforilación , Isoformas de Proteínas/metabolismo , Fosfofructoquinasa-1 Tipo C/genética , Fosfofructoquinasa-1 Tipo C/metabolismo
17.
Cell Death Dis ; 13(11): 1002, 2022 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-36435833

RESUMEN

Glioblastoma (GBM) is a highly vascular malignant brain tumor that overexpresses vascular endothelial growth factor (VEGF) and phosphofructokinase 1 platelet isoform (PFKP), which catalyzes a rate-limiting reaction in glycolysis. However, whether PFKP and VEGF are reciprocally regulated during GBM tumor growth remains unknown. Here, we show that PFKP can promote EGFR activation-induced VEGF expression in HIF-1α-dependent and -independent manners in GBM cells. Importantly, we demonstrate that EGFR-phosphorylated PFKP Y64 has critical roles in both AKT/SP1-mediated transcriptional expression of HIF-1α and in the AKT-mediated ß-catenin S552 phosphorylation, to fully enhance VEGF transcription, subsequently promoting blood vessel formation and brain tumor growth. Levels of PFKP Y64 phosphorylation in human GBM specimens are positively correlated with HIF-1α expression, ß-catenin S552 phosphorylation, and VEGF expression. Conversely, VEGF upregulates PFKP expression in a PFKP S386 phosphorylation-dependent manner, leading to increased PFK enzyme activity, aerobic glycolysis, and proliferation in GBM cells. These findings highlight a novel mechanism underlying the mutual regulation that occurs between PFKP and VEGF for promoting GBM tumor growth and also suggest that targeting the PFKP/VEGF regulatory loop might show therapeutic potential for treating GBM patients.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Fosforilación , beta Catenina/genética , beta Catenina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfofructoquinasa-1/metabolismo , Factores de Crecimiento Endotelial Vascular/metabolismo , Neoplasias Encefálicas/genética , Isoformas de Proteínas/metabolismo , Receptores ErbB/metabolismo
18.
Cell Metab ; 34(9): 1312-1324.e6, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36007522

RESUMEN

High expression of PD-L1 in tumor cells contributes to tumor immune evasion. However, whether PD-L1 expression in tumor cells is regulated by the availability of nutrients is unknown. Here, we show that in human glioblastoma cells, high glucose promotes hexokinase (HK) 2 dissociation from mitochondria and its subsequent binding and phosphorylation of IκBα at T291. This leads to increased interaction between IκBα and µ-calpain protease and subsequent µ-calpain-mediated IκBα degradation and NF-κB activation-dependent transcriptional upregulation of PD-L1 expression. Expression of IκBα T291A in glioblastoma cells blocked high glucose-induced PD-L1 expression and promoted CD8+ T cell activation and infiltration into the tumor tissue, reducing brain tumor growth. Combined treatment with an HK inhibitor and an anti-PD-1 antibody eliminates tumor immune evasion and remarkably enhances the anti-tumor effect of immune checkpoint blockade. These findings elucidate a novel mechanism underlying the upregulation of PD-L1 expression mediated by aerobic glycolysis and underscore the roles of HK2 as a glucose sensor and a protein kinase in regulation of tumor immune evasion.


Asunto(s)
Antígeno B7-H1 , Glioblastoma , Línea Celular Tumoral , Glucosa , Glucólisis , Humanos , Inhibidor NF-kappaB alfa/metabolismo , Fosforilación , Escape del Tumor
19.
Am J Cancer Res ; 11(12): 5992-6003, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35018238

RESUMEN

Venous thromboembolism is the most common complication and the secondary cause of death in pancreatic cancer. Moreover, the hypercoagulable state induces microcirculation dysfunction, acidosis and hypoxia, and further enhances tumor immune evasion, tumor growth and metastasis. Numerous studies have revealed that patients with malignant tumors have high levels of IL-6, which stimulates hepatocytes to synthesize thrombopoietin, causing an increase in platelets. This study found that the concentration of IL-6 in pancreatic cancer patient sera was higher than that in healthy donors, while pancreatic cancer cells had low expression levels of IL-6, which was different from other types of cancer. This contradictory result prompted us to uncover the underlying mechanism. Our data revealed that pancreatic cancer enhanced IL-6 production in fibroblasts via the Jagged/Notch axis, while IL-6 further elevated Jagged-1/2 expression in a paracrine positive feedback loop in pancreatic cancer. Inhibition experiments and RNAi studies demonstrated that IL-6-induced Jagged-1/2 production in pancreatic cancer depended on STAT3 and that Jagged-1/2 enhanced IL-6 mRNA expression in HSFs through the NF-κB pathway. Finally, the animal study showed that knockdown of Jagged-1/2 or blockade of the Jagged/Notch pathway by Nirogacestat could alleviate pancreatic cancer-induced hypercoagulability. Accordingly, our findings clarified the key role of the Jagged/Notch/IL-6/STAT3 feedback loop in the development of a hypercoagulable state in pancreatic cancer, which also provides new therapeutic strategies for pancreatic cancer patients who suffer from hypercoagulability.

20.
Nat Cell Biol ; 22(3): 282-288, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32066906

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR), CRISPR interference and programmable base editing have transformed the manipulation of eukaryotic genomes for potential therapeutic applications1-4. Here, we exploited CRISPR interference and programmable base editing to determine their potential in editing a TERT gene promoter-activating mutation, which occurs in many diverse cancer types, particularly glioblastoma5-8. Correction of the -124C>T TERT promoter mutation to -124C was achieved using a single guide RNA (sgRNA)-guided and catalytically impaired Campylobacter jejuni CRISPR-associated protein 9-fused adenine base editor (CjABE). This modification blocked the binding of members of the E26 transcription factor family to the TERT promoter, reduced TERT transcription and TERT protein expression, and induced cancer-cell senescence and proliferative arrest. Local injection of adeno-associated viruses expressing sgRNA-guided CjABE inhibited the growth of gliomas harbouring TERT-promoter mutations. These preclinical proof-of-concept studies establish the feasibility of gene editing as a therapeutic approach for cancer and validate activated TERT-promoter mutations as a cancer-specific therapeutic target.


Asunto(s)
Neoplasias Encefálicas/genética , Sistemas CRISPR-Cas , Edición Génica , Glioblastoma/genética , Telomerasa/genética , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular , Senescencia Celular , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Masculino , Ratones Desnudos , Persona de Mediana Edad , Mutación , Regiones Promotoras Genéticas , Telomerasa/metabolismo , Acortamiento del Telómero , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA