Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
FASEB J ; 31(2): 569-583, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28148780

RESUMEN

Regulation of bone development, growth, and remodeling traditionally has been thought to depend on endocrine and autocrine/paracrine modulators. Recently, however, brain-derived signals have emerged as key regulators of bone metabolism, although their mechanisms of action have been poorly understood. We reveal the existence of an ancient parathyroid hormone (Pth)4 in zebrafish that was secondarily lost in the eutherian mammals' lineage, including humans, and that is specifically expressed in neurons of the hypothalamus and appears to be a central neural regulator of bone development and mineral homeostasis. Transgenic fish lines enabled mapping of axonal projections leading from the hypothalamus to the brainstem and spinal cord. Targeted laser ablation demonstrated an essential role for of pth4-expressing neurons in larval bone mineralization. Moreover, we show that Runx2 is a direct regulator of pth4 expression and that Pth4 can activate cAMP signaling mediated by Pth receptors. Finally, gain-of-function experiments show that Pth4 can alter calcium/phosphorus levels and affect expression of genes involved in phosphate homeostasis. Based on our discovery and characterization of Pth4, we propose a model for evolution of bone homeostasis in the context of the vertebrate transition from an aquatic to a terrestrial lifestyle.-Suarez-Bregua, P., Torres-Nuñez, E., Saxena, A., Guerreiro, P., Braasch, I., Prober, D. A., Moran, P., Cerda-Reverter, J. M., Du, S. J., Adrio, F., Power, D. M., Canario, A. V. M., Postlethwait, J. H., Bronner, M E., Cañestro, C., Rotllant, J. Pth4, an ancient parathyroid hormone lost in eutherian mammals, reveals a new brain-to-bone signaling pathway.


Asunto(s)
Evolución Biológica , Huesos/metabolismo , Encéfalo/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteína Relacionada con la Hormona Paratiroidea/metabolismo , Hormona Paratiroidea/metabolismo , Transducción de Señal/fisiología , Proteínas de Xenopus/metabolismo , Animales , Animales Modificados Genéticamente , Densidad Ósea , Clonación Molecular , Factor-23 de Crecimiento de Fibroblastos , Genómica , Larva , Mamíferos , Red Nerviosa , Neuronas/metabolismo , Hormona Paratiroidea/genética , Proteína Relacionada con la Hormona Paratiroidea/genética , Sintenía , Proteínas de Xenopus/genética , Pez Cebra/embriología
2.
Hum Mol Genet ; 23(13): 3349-61, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24488768

RESUMEN

GNE Myopathy is a rare recessively inherited neuromuscular disorder caused by mutations in the GNE gene, which codes for the key enzyme in the metabolic pathway of sialic acid synthesis. The process by which GNE mutations lead to myopathy is not well understood. By in situ hybridization and gne promoter-driven fluorescent transgenic fish generation, we have characterized the spatiotemporal expression pattern of the zebrafish gne gene and have shown that it is highly conserved compared with the human ortholog. We also show the deposition of maternal gne mRNA and maternal GNE protein at the earliest embryonic stage, emphasizing the critical role of gne in embryonic development. Injection of morpholino (MO)-modified antisense oligonucleotides specifically designed to knockdown gne, into one-cell embryos lead to a variety of phenotypic severity. Characterization of the gne knockdown morphants showed a significantly reduced locomotor activity as well as distorted muscle integrity, including a reduction in the number of muscle myofibers, even in mild or intermediate phenotype morphants. These findings were further confirmed by electron microscopy studies, where large gaps between sarcolemmas were visualized, although normal sarcomeric structures were maintained. These results demonstrate a critical novel role for gne in embryonic development and particularly in myofiber development, muscle integrity and activity.


Asunto(s)
Complejos Multienzimáticos/metabolismo , Músculo Esquelético/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Humanos , Microscopía Electrónica , Complejos Multienzimáticos/genética , Mutación , Oligonucleótidos Antisentido/genética , Pez Cebra , Proteínas de Pez Cebra/genética
3.
Proteome Sci ; 14(1): 13, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27610046

RESUMEN

BACKGROUND: Plenty of proteomic studies were performed to characterize the allotetraploid upland cotton fiber elongation process, whereas little is known about the elongating diploid cotton fiber proteome. METHODS: In this study, we used a two-dimensional electrophoresis-based comparative proteomic approach to profile dynamic proteomes of diploid Asian cotton ovules with attached fibers in the early stages of fiber elongation process. One-way ANOVA and Student-Newman-Keuls test were used to find the differentially displayed protein (DDP) spots. RESULTS: A total of 55 protein spots were found having different abundance ranging from 1 to 9 days post-anthesis (DPA) in a two-day interval. These 55 DDP spots were all successfully identified using high-resolution mass spectrometric analyses. Gene ontology analyses revealed that proteoforms involved in energy/carbohydrate metabolism, redox homeostasis, and protein metabolism are the most abundant. In addition, orthologues of the 13 DDP spots were also found in differential proteome of allotetraploid elongating cotton fibers, suggesting their possible essential roles in fiber elongation process. CONCLUSIONS: Our results not only revealed the dynamic proteome change of diploid Asian cotton fiber and ovule during early stages of fiber elongation process but also provided valuable resource for future studies on the molecular mechanism how the polyploidization improves the trait of fiber length.

4.
Artículo en Inglés | MEDLINE | ID: mdl-24157945

RESUMEN

The aim of this study was to characterise a primary cell culture isolated from fast skeletal muscle of the gilthead sea bream. Gene expression profiles during culture maturation were compared with those obtained from a fasting-refeeding model which is widely used to modulate myogenesis in vivo. Myogenesis is controlled by numerous extracellular signals together with intracellular transcriptional factors whose coordinated expression is critical for the appropriate development of muscle fibres. Full-length cDNAs for the transcription factors Myf5, Mrf4, Pax7 and Sox8 were cloned and sequenced for gilthead sea bream. Pax7, sox8, myod2 and myf5 levels were up-regulated during the proliferating phase of the myogenic cultures coincident with the highest expression of proliferating cell nuclear antigen (PCNA). In contrast, myogenin and mrf4 transcript abundance was highest during the differentiation phase of the culture when myotubes were present, and was correlated with increased myosin heavy chain (mhc) and desmin expression. In vivo, 30days of fasting resulted in muscle fibre atrophy, a reduction in myod2, myf5 and igf1 expression, lower number of Myod-positive cells, and decreased PCNA protein expression, whereas myogenin expression was not significantly affected. Myostatin1 (mstn1) and pax7 expression were up-regulated in fasted relative to well-fed individuals, consistent with a role for Pax7 in the reduction of myogenic cell activity with fasting. The primary cell cultures and fasting-feeding experiments described provide a foundation for the future investigations on the regulation of muscle growth in gilthead sea bream.


Asunto(s)
Proteínas de Peces/metabolismo , Desarrollo de Músculos , Mioblastos/fisiología , Factores Reguladores Miogénicos/metabolismo , Dorada/metabolismo , Animales , Células Cultivadas , Desmina/genética , Desmina/metabolismo , Proteínas de Peces/genética , Privación de Alimentos , Fibras Musculares de Contracción Rápida/metabolismo , Factores Reguladores Miogénicos/genética , Especificidad de Órganos , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Análisis de Secuencia de ADN , Somatomedinas/genética , Somatomedinas/metabolismo , Transcriptoma
5.
Transgenic Res ; 20(4): 787-98, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21113736

RESUMEN

Hemojuvelin, also known as RGMc, is encoded by hfe2 gene that plays an important role in iron homeostasis. hfe2 is specifically expressed in the notochord, developing somite and skeletal muscles during development. The molecular regulation of hfe2 expression is, however, not clear. We reported here the characterization of hfe2 gene expression and the regulation of its tissue-specific expression in zebrafish embryos. We demonstrated that the 6 kb 5'-flanking sequence upstream of the ATG start codon in the zebrafish hfe2 gene could direct GFP specific expression in the notochord, somites, and skeletal muscle of zebrafish embryos, recapitulating the expression pattern of the endogenous gene. However, the Tg(hfe2:gfp) transgene is also expressed in the liver of fish embryos, which did not mimic the expression of the endogenous hfe2 at the early stage. Nevertheless, the Tg(hfe2:gfp) transgenic zebrafish provides a useful model to study liver development. Treating Tg(hfe2:gfp) transgenic zebrafish embryos with valproic acid, a liver development inhibitor, significantly inhibited GFP expression in zebrafish. Together, these data indicate that the tissue specific expression of hfe2 in the notochord, somites and muscles is regulated by regulatory elements within the 6 kb 5'-flanking sequence of the hfe2 gene. Moreover, the Tg(hfe2:gfp) transgenic zebrafish line provides a useful model system for analyzing liver development in zebrafish.


Asunto(s)
Animales Modificados Genéticamente , Proteínas Fluorescentes Verdes/genética , Hemocromatosis/congénito , Hígado/crecimiento & desarrollo , Somitos/crecimiento & desarrollo , Transactivadores/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Empalme Alternativo/genética , Secuencia de Aminoácidos , Animales , Proteínas de Unión a Ácidos Grasos/genética , Proteínas Ligadas a GPI , Regulación del Desarrollo de la Expresión Génica , Hemocromatosis/genética , Proteína de la Hemocromatosis , Humanos , Hígado/metabolismo , Modelos Animales , Datos de Secuencia Molecular , Notocorda/crecimiento & desarrollo , Notocorda/metabolismo , Filogenia , Regiones Promotoras Genéticas , Somitos/metabolismo , Transactivadores/clasificación , Ácido Valproico/farmacología , Proteínas de Pez Cebra/clasificación
6.
Proc Natl Acad Sci U S A ; 105(2): 554-9, 2008 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-18182494

RESUMEN

Heat-shock protein 90alpha (Hsp90alpha) is a member of the molecular chaperone family involved in protein folding and assembly. The role of Hsp90alpha in the developmental process, however, remains unclear. Here we report that zebrafish contains two Hsp90alpha genes, Hsp90alpha1, and Hsp90alpha2. Hsp90alpha1 is specifically expressed in developing somites and skeletal muscles of zebrafish embryos. We have demonstrated that Hsp90alpha1 is essential for myofibril organization in skeletal muscles of zebrafish embryos. Knockdown of Hsp90alpha1 resulted in paralyzed zebrafish embryos with poorly organized myofibrils in skeletal muscles. In contrast, knockdown of Hsp90alpha2 had no effect on muscle contraction and myofibril organization. The filament defects could be rescued in a cell autonomous manner by an ectopic expression of Hsp90alpha1. Biochemical analyses revealed that knockdown of Hsp90alpha1 resulted in significant myosin degradation and up-regulation of unc-45b gene expression. These results indicate that Hsp90alpha1 plays an important role in muscle development, likely through facilitating myosin folding and assembly into organized myofibril filaments.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas HSP90 de Choque Térmico/química , Músculo Esquelético/embriología , Miofibrillas/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Proteínas Musculares/química , Miosinas/química , Oligonucleótidos Antisentido/química , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Pez Cebra , Proteínas de Pez Cebra/química
7.
FASEB J ; 23(6): 1988-2000, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19211926

RESUMEN

Myofibrillogenesis, the precise assembly of sarcomeric proteins into the highly organized sarcomeres, is essential for muscle cell differentiation and function. Myofibrillogenesis requires proper folding and assembly of newly synthesized sarcomeric proteins. sknac (skeletal naca) is an alternatively spliced isoform of naca, which encodes the nascent polypeptide-associated complex alpha polypeptide that binds to newly synthesized polypeptides emerging from the ribosome. sknac is specifically expressed in skeletal and cardiac muscles. However, little is known about the function of skNAC in muscle development in vivo. To determine skNAC function, we have isolated and characterized the sknac gene from zebrafish. Zebrafish sknac cDNA differs from naca by containing an extra large exon that encodes 815 aa. Knockdown of sknac expression by antisense oligos resulted in zebrafish embryos with skeletal muscle defects. The sknac-knockdown embryos showed a paralyzed phenotype with little muscle contraction. In contrast, injection of a control oligo had no effect. Immunostaining and histological analyses revealed that sknac-knockdown embryos contained disorganized thick and thin filaments. Western blot analysis revealed that myosin protein levels were significantly reduced. Collectively, these results demonstrate that skNAC plays a vital role in myofibril assembly and function during muscle cell differentiation.


Asunto(s)
Chaperonas Moleculares/metabolismo , Músculo Esquelético/fisiología , Miofibrillas/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra , Animales , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Hibridación in Situ , Chaperonas Moleculares/genética , Morfogénesis/fisiología , Músculo Esquelético/citología , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Isoformas de Proteínas/genética , Pez Cebra/anatomía & histología , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
8.
Hepatology ; 47(3): 986-95, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18306214

RESUMEN

UNLABELLED: Hepatic stimulating substance (HSS) was first isolated from weanling rat liver in 1975 and found to stimulate hepatic DNA synthesis both in vitro and in vivo. Since then, mammalian and human HSS have been investigated for their potential to treat hepatic diseases. However, the essential nature in composition and structure of HSS remain puzzling because HSS has not been completely purified. Heating, ethanol precipitation, and ion-exchange chromatographies had been carried out to isolate the protein with specific stimulating activity from newborn calf liver, and [(3)H]thymidine deoxyribose (TdR)/bromodeoxyuridine (BrdU) incorporation and carboxyfluorescein diacetate succinimidyl ester (CFSE)-based proliferation assay to determine the bioactivity in vitro and in vivo. We report the purification of a novel 30-kDa protein from a crude extract of calf liver HSS. This protein is a member of the leucine-rich acidic nuclear protein family (LANP) and has been named hepatopoietin Cn (HPPCn). Studies of partially hepatectomized (PH) mice show that levels of HPPCn messenger RNA (mRNA) increase after liver injury. Furthermore, the recombinant human protein (rhHPPCn) was shown to stimulate hepatic DNA synthesis and activate signaling pathways involved in hepatocyte proliferation in vitro and in vivo. CONCLUSION: HPPCn is a novel hepatic growth factor that plays a role in liver regeneration.


Asunto(s)
Replicación del ADN/efectos de los fármacos , Factor de Crecimiento de Hepatocito/genética , Factor de Crecimiento de Hepatocito/farmacología , Regeneración Hepática/efectos de los fármacos , Hígado/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Bovinos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Factor de Crecimiento de Hepatocito/aislamiento & purificación , Humanos , Hígado/metabolismo , Ratones , Datos de Secuencia Molecular , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología
9.
Transgenic Res ; 18(5): 669-83, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19347596

RESUMEN

To characterize the process of vertebral segmentation and disc formation in living animals, we analyzed tiggy-winkle hedgehog (twhh):green fluorescent protein (gfp) and sonic hedgehog (shh):gfp transgenic zebrafish models that display notochord-specific GFP expression. We found that they showed distinct patterns of expression in the intervertebral discs of late stage fish larvae and adult zebrafish. A segmented pattern of GFP expression was detected in the intervertebral disc of twhh:gfp transgenic fish. In contrast, little GFP expression was found in the intervertebral disc of shh:gfp transgenic fish. Treating twhh:gfp transgenic zebrafish larvae with exogenous retinoic acid (RA), a teratogenic factor on normal development, resulted in disruption of notochord segmentation and formation of oversized vertebrae. Histological analysis revealed that the oversized vertebrae are likely due to vertebral fusion. These studies demonstrate that the twhh:gfp transgenic zebrafish is a useful model for studying vertebral segmentation and disc formation, and moreover, that RA signaling may play a role in this process.


Asunto(s)
Proteínas Hedgehog/metabolismo , Disco Intervertebral/crecimiento & desarrollo , Notocorda/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Disco Intervertebral/fisiología , Notocorda/crecimiento & desarrollo , Pez Cebra/crecimiento & desarrollo
10.
Matrix Biol ; 27(6): 561-72, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18430553

RESUMEN

Sparc (Osteonectin), a matricellular glycoprotein expressed by many differentiated cells, is a major non-collagenous constituent of vertebrate bones. Recent studies indicate that Sparc expression appears early in development, although its function and regulation during embryogenesis are largely unknown. We cloned zebrafish sparc and investigated its role during development, using a mo rpholino antisense oligonucleotide-based knockdown approach. Consistent with its strong expression in the otic vesicle and developing pharyngeal cartilages, knockdown of Sparc function resulted in specific inner ear and cartilage defects that are highlighted by changes in gene expression, morphology and behavior. We rescued the knockdown phenotypes by co-injecting sparc mRNA, providing evidence that the knockdown phenotype is due specifically to impairment of Sparc function. A comparison of the phenotypes of Sparc knockdown and known zebrafish mutants with similar defects places Sparc downstream of sox9 in the genetic network that regulates development of the pharyngeal skeleton and inner ear of vertebrates.


Asunto(s)
Oído Interno/anatomía & histología , Oído Interno/embriología , Morfogénesis , Osteonectina/metabolismo , Faringe/anatomía & histología , Faringe/embriología , Proteínas de Pez Cebra/metabolismo , Animales , Tipificación del Cuerpo , Oído Interno/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Hibridación in Situ , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Osteonectina/genética , Faringe/metabolismo , Fenotipo , Esqueleto , Pez Cebra/anatomía & histología , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
11.
PLoS One ; 11(9): e0162928, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27632161

RESUMEN

GRIM-19 (Gene associated with Retinoid-Interferon-induced Mortality 19) is a subunit of mitochondrial respiratory complex I in mammalian systems, and it has been demonstrated to be a multifunctional protein involved in the cell cycle, cell motility and innate immunity. However, little is known about the molecular functions of its homologues in plants. Here, we characterised GhMCS1, an orthologue of human GRIM-19 from cotton (Gossypium hirsutum L.), and found that it was essential for maintaining complex integrity and mitochondrial function in cotton. GhMCS1 was detected in various cotton tissues, with high levels expressed in developing fibres and flowers and lower levels in leaves, roots and ovules. In fibres at different developmental stages, GhMCS1 expression peaked at 5-15 days post anthesis (dpa) and then decreased at 20 dpa and diminished at 25 dpa. By Western blot analysis, GhMCS1 was observed to be localised to the mitochondria of cotton leaves and to colocalise with complex I. In Arabidopsis, GhMCS1 overexpression enhanced the assembly of complex I and thus respiratory activity, whereas the GhMCS1 homologue (At1g04630) knockdown mutants showed significantly decreased respiratory activities. Furthermore, the mutants presented with some phenotypic changes, such as smaller whole-plant architecture, poorly developed seeds and fewer trichomes. More importantly, in the cotton fibres, both the GhMCS1 transcript and protein levels were correlated with respiratory activity and fibre developmental phase. Our results suggest that GhMCS1, a functional ortholog of the human GRIM-19, is an essential subunit of mitochondrial complex I and is involved in cotton fibre development. The present data may deepen our knowledge on the potential roles of mitochondria in fibre morphogenesis.


Asunto(s)
Fibra de Algodón , Complejo I de Transporte de Electrón/metabolismo , Gossypium/metabolismo , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Gossypium/crecimiento & desarrollo , Humanos , Proteínas de Plantas/química , Plantas Modificadas Genéticamente , Homología de Secuencia de Aminoácido
12.
Life Sci ; 149: 1-9, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26892146

RESUMEN

AIMS: Exercise training (ET) has a cardioprotective effect and can alter the molecular response to myocardial infarction (MI). The Neuregulin 1 (NRG1)/ErbB signaling plays a critical role in cardiac repair and regeneration in the failing heart. We sought to investigate whether ET following MI could activate the NRG1/ErbB signaling and promote cardiac repair and regeneration. MAIN METHODS: Male Sprague-Dawley rats were used to establish the MI model. Exercise-trained animals were subjected to four weeks of exercise (16m/min, 50min/d, 5d/wk) following the surgery. AG1478 was used as an inhibitor of ErbB (1mg/kg body weight, administered i.v. every other day during the process of training). NRG1/ErbB signaling activation, cardiomyocyte (CM) proliferation and apoptosis were evaluated. KEY FINDINGS: In the exercise-trained rats, NRG1 expression was up-regulated and ErbB/PI3K/Akt signaling was activated compared with the MI group. In addition, ET preserved heart function accompanied with increased numbers of BrdU(+) CMs, PCNA(+) CMs and c-kit(+) cells, and reduced apoptosis level in the MI rats. In contrast, blocking ErbB signaling by AG1478 attenuated the ET-induced cardiac repair and regeneration. SIGNIFICANCE: ET up-regulates NRG1 expression and activates ErbB2, ErbB4 and PI3K/Akt signal transduction to promote cardiac repair through endogenous regeneration. Activation of ErbB may be an underlying mechanism for the ET-induced cardiac repair and regeneration following MI.


Asunto(s)
Modelos Animales de Enfermedad , Infarto del Miocardio/metabolismo , Infarto del Miocardio/terapia , Neurregulina-1/biosíntesis , Proteínas Oncogénicas v-erbB/biosíntesis , Condicionamiento Físico Animal/métodos , Animales , Masculino , Proteínas Oncogénicas v-erbB/antagonistas & inhibidores , Quinazolinas/farmacología , Ratas , Ratas Sprague-Dawley , Tirfostinos/farmacología
13.
PLoS One ; 10(11): e0142573, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26562659

RESUMEN

Heat shock protein 90α plays a key role in myosin folding and thick filament assembly in muscle cells. To assess the structure and function of Hsp90α and its potential regulation by post-translational modification, we developed a combined knockdown and rescue assay in zebrafish embryos to systematically analyze the effects of various mutations on Hsp90α function in myosin thick filament organization. DNA constructs expressing the Hsp90α1 mutants with altered putative ATP binding, phosphorylation, acetylation or methylation sites were co-injected with Hsp90α1 specific morpholino into zebrafish embryos. Myosin thick filament organization was analyzed in skeletal muscles of the injected embryos by immunostaining. The results showed that mutating the conserved D90 residue in the Hsp90α1 ATP binding domain abolished its function in thick filament organization. In addition, phosphorylation mimicking mutations of T33D, T33E and T87E compromised Hsp90α1 function in myosin thick filament organization. Similarly, K287Q acetylation mimicking mutation repressed Hsp90α1 function in myosin thick filament organization. In contrast, K206R and K608R hypomethylation mimicking mutations had not effect on Hsp90α1 function in thick filament organization. Given that T33 and T87 are highly conserved residues involved post-translational modification (PTM) in yeast, mouse and human Hsp90 proteins, data from this study could indicate that Hsp90α1 function in myosin thick filament organization is potentially regulated by PTMs involving phosphorylation and acetylation.


Asunto(s)
Proteínas HSP90 de Choque Térmico/genética , Mutación , Miosinas/metabolismo , Proteínas de Pez Cebra/genética , Acetilación , Adenosina Trifosfato/metabolismo , Animales , Animales Modificados Genéticamente , Sitios de Unión/genética , Western Blotting , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Técnicas de Silenciamiento del Gen/métodos , Proteínas HSP90 de Choque Térmico/metabolismo , Inmunohistoquímica , Morfolinos/genética , Miofibrillas/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
14.
Artículo en Inglés | MEDLINE | ID: mdl-25448050

RESUMEN

Pax genes encode a highly conserved family of transcription factors that play crucial roles in the formation of tissues and organs during development. Pax3 plays crucial roles in patterning of the dorsal central nervous system (CNS), neural crest and skeletal muscle. Here, we identified two spliced isoforms of Pax3a and three spliced isoforms of Pax3b and characterized their expression patterns. Both of flounder Pax3a-1 and Pax3b-1 contain the conserved paired domain (PD), an octapeptide motif (OP), and a paired type homeodomain (HD). But the PD domain in Pax3a-2 and Pax3b-3 is not intact and there is no HD in Pax3b-2 and Pax3b-3. Pax3a and Pax3b show distinct temporal expression patterns during embryogenesis. Whole-mount in situ hybridization demonstrates that Pax3a and Pax3b are expressed in overlapping patterns in the dorsal central nervous system, with some subtle regional differences between the two genes. In addition, Pax3a is scattered in the somites while Pax3b is specifically expressed in the newly forming somites. RT-PCR results have shown that there were different expression patterns between the different isoforms. These results indicate subfunction partitioning of the duplicated Pax3 genes. The duplicated Pax3 may provide additional flexibility in fine-tuning neurogenesis and somitogenesis.


Asunto(s)
Proteínas de Peces/genética , Lenguado/genética , Secuencia de Aminoácidos , Animales , Embrión no Mamífero/metabolismo , Proteínas de Peces/metabolismo , Lenguado/embriología , Lenguado/metabolismo , Datos de Secuencia Molecular , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína
15.
Artículo en Inglés | MEDLINE | ID: mdl-26275626

RESUMEN

PAX are important regulators of developmental processes. PAX7 plays crucial roles in patterning of the dorsal central nervous system (CNS), neural crest (NC), and skeletal muscle. Here, we identified six spliced isoforms of pax7a and one pax7b and characterized their expression patterns. All of flounder Pax7a-1, Pax7a-2, Pax7a-3, and Pax7b contain a conserved paired domain (PD), an octapeptide motif (OP), and a paired type homeodomain (HD). However, the PD of Pax7a-4 and the HD of Pax7a-5 are not intact, and there is no HD in Pax7a-4 and Pax7a-6. pax7a and pax7b show distinct spatiotemporal expression patterns during embryogenesis. Whole-mount in situ hybridization demonstrates that the expression patterns of pax7a and pax7b are overlapping but distinguishable in the dorsal central nervous system. pax7a is expressed in most part of the brain and the neural tube, while pax7b is expressed exclusively in the diencephalon and the midbrain. In addition, pax7a is also expressed in the cranial NC and the trunk NC. RT-PCR results show that there were different expression patterns between the different isoforms. These results indicate subfunction partitioning of the duplicated pax7 genes. The duplicated pax7 may provide additional flexibility in fine-tuning neurogenesis and somitogenesis.


Asunto(s)
Desarrollo Embrionario , Proteínas de Peces/genética , Lenguado/embriología , Lenguado/genética , Factor de Transcripción PAX7/genética , Transcripción Genética , Animales , Encéfalo/metabolismo , Proteínas de Peces/química , Proteínas de Peces/metabolismo , Lenguado/metabolismo , Genes Duplicados , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Desarrollo de Músculos , Factor de Transcripción PAX7/química , Factor de Transcripción PAX7/metabolismo , Isoformas de Proteínas/química , Estructura Terciaria de Proteína
16.
Mech Dev ; 137: 33-44, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25892297

RESUMEN

Accumulation of misfolded or unfolded proteins in the endoplasmic reticulum (ER) triggers ER stress that initiates unfolded protein response (UPR). XBP1 is a transcription factor that mediates one of the key signaling pathways of UPR to cope with ER stress through regulating gene expression. Activation of XBP1 involves an unconventional mRNA splicing catalyzed by IRE1 endonuclease that removes an internal 26 nucleotides from xbp1 mRNA transcripts in the cytoplasm. Researchers have taken advantage of this unique activation mechanism to monitor XBP1 activation, thereby UPR, in cell culture and transgenic models. Here we report a Tg(ef1α:xbp1δ-gfp) transgenic zebrafish line to monitor XBP1 activation using GFP as a reporter especially in zebrafish oocytes and developing embryos. The Tg(ef1α:xbp1δ-gfp) transgene was constructed using part of the zebrafish xbp1 cDNA containing the splicing element. ER stress induced splicing results in the cDNA encoding a GFP-tagged partial XBP1 without the transactivation activation domain (XBP1Δ-GFP). The results showed that xbp1 transcripts mainly exist as the spliced active isoform in unfertilized oocytes and zebrafish embryos prior to zygotic gene activation at 3 hours post fertilization. A strong GFP expression was observed in unfertilized oocytes, eyes, brain and skeletal muscle in addition to a weak expression in the hatching gland. Incubation of transgenic zebrafish embryos with (dithiothreitol) DTT significantly induced XBP1Δ-GFP expression. Collectively, these studies unveil the presence of maternal xbp1 splicing in zebrafish oocytes, fertilized eggs and early stage embryos. The Tg(ef1α:xbp1δ-gfp) transgenic zebrafish provides a useful model for in vivo monitoring xbp1 splicing during development and under ER stress conditions.


Asunto(s)
Animales Modificados Genéticamente/genética , Estrés del Retículo Endoplásmico/genética , Empalme del ARN/genética , Factores de Transcripción/genética , Pez Cebra/genética , Animales , Proteínas de Unión al ADN/genética , Retículo Endoplásmico/genética , Expresión Génica/genética , Proteínas Nucleares/genética , Oocitos/fisiología , ARN Mensajero/genética , Transducción de Señal/genética , Respuesta de Proteína Desplegada/genética
17.
Comp Biochem Physiol B Biochem Mol Biol ; 134(1): 123-34, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12524040

RESUMEN

Myogenin is a member of the basic Helix-Loop-Helix transcription factor family that play key roles in myoblast specification and differentiation. Myogenin is specifically expressed in developing somite and skeletal muscles in zebrafish embryos. To determine the regulation of myogenin expression, we reported here the characterization of zebrafish myogenin gene and analysis of its promoter activity in zebrafish embryos. Our data showed that a 0.8-kb myogenin promoter was sufficient to direct correct temporal and spatial muscle-specific green fluorescence protein expression in zebrafish embryos. Sequence analysis identified two putative E box sites in the myogenin gene promoter. In addition, a MEF2 recognition site and a MEF3 binding site were also found in the promoter. Mutation of the E boxes, MEF2 or MEF3 binding site individually had little effect on the muscle-specificity and activity of the myogenin promoter. However, mutating these sites in various combinations, e.g. E boxes and MEF2 binding site, or MEF2 and MEF3 sites significantly reduced the activity of the promoter. Moreover, mutating the E boxes, MEF2 and MEF3 sites together almost abolished the activity of the promoter. These data indicate that muscle-specific expression of myogenin in zebrafish embryos is controlled by multiple regulatory elements in the promoter. In addition, because these regulatory elements control myogenin expression in mouse and human embryos, these data suggest that the regulatory mechanism controlling myogenin expression might be conserved during evolution.


Asunto(s)
Músculo Esquelético/embriología , Miogenina/biosíntesis , Regiones Promotoras Genéticas , Pez Cebra/embriología , Animales , Secuencia de Bases , Sitios de Unión , Proteínas de Unión al ADN/metabolismo , Genes Reporteros , Proteínas Fluorescentes Verdes , Humanos , Hibridación in Situ , Proteínas Luminiscentes/metabolismo , Factores de Transcripción MEF2 , Modelos Genéticos , Datos de Secuencia Molecular , Proteína MioD/genética , Proteína MioD/metabolismo , Factores Reguladores Miogénicos , Plásmidos/metabolismo , Factores de Tiempo , Factores de Transcripción/metabolismo
18.
Anat Rec (Hoboken) ; 297(9): 1650-62, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25125178

RESUMEN

Muscle fibers are composed of myofibrils, one of the most highly ordered macromolecular assemblies in cells. Recent studies demonstrate that members of the Smyd family play critical roles in myofibril assembly of skeletal and cardiac muscle during development. The Smyd family consists of five members including Smyd1, Smyd2, Smyd3, Smyd4, and Smyd5. They share two highly conserved structural and functional domains, namely the SET and MYND domains involved in lysine methylation and protein-protein interaction, respectively. Smyd1 is specifically expressed in muscle cells under the regulation of myogenic transcriptional factors of the MyoD and Mef2 families and the serum responsive factor. Loss of function studies reveal that Smyd1 is required for cardiomyogenesis and sarcomere assembly in skeletal and cardiac muscles. Smyd2, on another hand, is dispensable for heart development in mice. However, Smyd2 appears to play a role in myofilament organization in both skeletal and cardiac muscles via Hsp90 methylation. A Drosophila Smyd4 homologue is a muscle-specific transcriptional modulator involved in the development or function of adult muscle. The molecular mechanisms by which Smyd family proteins function in muscle cells are not well understood. It has been suggested that members of the Smyd family may use multiple mechanisms to control muscle development and cell differentiation, including transcriptional regulation, epigenetic regulation via histone methylation, and methylation of proteins other than histones, such as molecular chaperone Hsp90.


Asunto(s)
Corazón , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Animales , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Corazón/crecimiento & desarrollo , Humanos , Modelos Moleculares , Desarrollo de Músculos , Proteínas Musculares/química , Proteínas Musculares/genética , Músculo Esquelético/embriología , Músculo Esquelético/crecimiento & desarrollo , Conformación Proteica , Estructura Terciaria de Proteína , Transducción de Señal , Relación Estructura-Actividad , Transcripción Genética
19.
PLoS One ; 9(1): e86808, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24466251

RESUMEN

BACKGROUND: Smyd1, the founding member of the Smyd family including Smyd-1, 2, 3, 4 and 5, is a SET and MYND domain containing protein that plays a key role in myofibril assembly in skeletal and cardiac muscles. Bioinformatic analysis revealed that zebrafish genome contains two highly related smyd1 genes, smyd1a and smyd1b. Although Smyd1b function is well characterized in skeletal and cardiac muscles, the function of Smyd1a is, however, unknown. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the function of Smyd1a in muscle development, we isolated smyd1a from zebrafish, and characterized its expression and function during muscle development via gene knockdown and transgenic expression approaches. The results showed that smyd1a was strongly expressed in skeletal muscles of zebrafish embryos. Functional analysis revealed that knockdown of smyd1a alone had no significant effect on myofibril assembly in zebrafish skeletal muscles. However, knockdown of smyd1a and smyd1b together resulted in a complete disruption of myofibril organization in skeletal muscles, a phenotype stronger than knockdown of smyd1a or smyd1b alone. Moreover, ectopic expression of zebrafish smyd1a or mouse Smyd1 transgene could rescue the myofibril defects from the smyd1b knockdown in zebrafish embryos. CONCLUSION/SIGNIFICANCE: Collectively, these data indicate that Smyd1a and Smyd1b share similar biological activity in myofibril assembly in zebrafish embryos. However, Smyd1b appears to play a major role in this process.


Asunto(s)
Proteínas de Unión al ADN/genética , Embrión no Mamífero/metabolismo , N-Metiltransferasa de Histona-Lisina/fisiología , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Miofibrillas/metabolismo , Factores de Transcripción/genética , Proteínas de Pez Cebra/fisiología , Pez Cebra/genética , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/crecimiento & desarrollo , Western Blotting , Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Embrión no Mamífero/citología , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Hibridación in Situ , Ratones , Morfogénesis , Desarrollo de Músculos , Proteínas Musculares/metabolismo , Músculo Esquelético/citología , Fenotipo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/metabolismo , Transgenes/fisiología , Pez Cebra/crecimiento & desarrollo
20.
J Proteomics ; 82: 113-29, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23474080

RESUMEN

In this study, a comparative proteomic analysis was employed to identify fuzz fiber initiation-related proteins in wild-type diploid cotton (Gossypium arboreum L.) and its fuzzless mutant. Temporal changes in global proteomes were examined using 2-DE at five developmental time points for fuzz fiber initiation, and 71 differentially expressed protein species were identified by MS, 45 of which were preferentially accumulated in the wild-type. These proteins were assigned to several functional categories, mainly in cell response/signal transduction, redox homeostasis, protein metabolism and energy/carbohydrate metabolism. It was remarkable that more than ten key proteins with high-abundance were involved in gibberellic acid (GA) signaling and ROS scavenging, and increasing concentrations of active GAs and H2O2 were also detected approximately 5dpa in wild type ovules. Furthermore, in vivo GA and H2O2 treatments of ovules inside young bolls showed that these compounds can synergistically promote fuzz fiber initiation. Our findings not only described a dynamic protein network supporting fuzz initiation in diploid cotton fiber ovules, but also deepened our understanding of the molecular basis of cotton fiber initiation. BIOLOGICAL SIGNIFICANCE: Our study reported the identification of differentially expressed proteins in wild-type diploid cotton (G. arboreum L.) and its fuzzless mutant by comparative proteomic approach. In total, 71 protein species related to fuzz initiation were identified by MS. These proteins were assigned to several functional categories, mainly in energy/carbohydrate metabolism, protein metabolism, signal transduction, redox homeostasis etc. Importantly, a number of key proteins were found to be associated with GA signaling and ROS scavenging. In consistence with these findings, we detected the increase of GAs and H2O2 concentrations during fiber initiation, and our in vivo ovule experiments with GA and H2O2 injection and following microscopy observation of fuzz fiber initiation supported promoting effects of GA and H2O2 on cotton fiber initiation. These findings depicted a dynamic protein network supporting cotton fiber initiation in diploid cotton ovules. Our study is of major significance for understanding the molecular mechanisms controlling fuzz initiation and also provides a solid basis for further functional research of single nodes of this network in relation to cotton fiber initiation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/fisiología , Gossypium/metabolismo , Mutación , Proteínas de Plantas/biosíntesis , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Metabolismo de los Hidratos de Carbono/fisiología , Fibra de Algodón , Diploidia , Electroforesis en Gel Bidimensional , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Giberelinas/farmacología , Gossypium/genética , Peróxido de Hidrógeno/farmacología , Oxidantes/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Proteómica/métodos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA