Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Hum Mol Genet ; 31(15): 2639-2654, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35333353

RESUMEN

XBP1 variant 1 (Xv1) is the most abundant XBP1 variant and is highly enriched across cancer types but nearly none in normal tissues. Its expression is associated with poor patients' survival and is specifically required for survival of malignant cells, but the underlying mechanism is not known. Here we report that Xv1 upregulates the polyglutamylase tubulin tyrosine ligase-like 6 (TTLL6) and promotes mitosis of cancer cells. Like the canonical XBP1, Xv1 mRNA undergoes unconventional splicing by IRE1α under endoplasmic reticulum stress, but it is also constitutively spliced by IRE1ß. The spliced Xv1 mRNA encodes the active form of Xv1 protein (Xv1s). RNA sequencing in HeLa cells revealed that Xv1s overexpression regulates expression of genes that are not involved in the canonical unfolded protein response, including TTLL6 as a highly upregulated gene. Gel shift assay and chromatin immunoprecipitation revealed that Xv1s bind to the TTLL6 promoter region. Knockdown of TTLL6 caused death of cancer cells but not benign and normal cells, similar to the effects of knocking down Xv1. Moreover, overexpression of TTLL6 partially rescued BT474 cells from apoptosis induced by either TTLL6 or Xv1 knockdown, supporting TTLL6 as an essential downstream effector of Xv1 in regulating cancer cell survival. TTLL6 is localized in the mitotic spindle of cancer cells. Xv1 or TTLL6 knockdown resulted in decreased spindle polyglutamylation and interpolar spindle, as well as congression failure, mitotic arrest and cell death. These findings suggest that Xv1 is essential for cancer cell mitosis, which is mediated, at least in part, by increasing TTLL6 expression.


Asunto(s)
Endorribonucleasas , Neoplasias , Estrés del Retículo Endoplásmico , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Células HeLa , Humanos , Mitosis , Neoplasias/genética , Péptido Sintasas/genética , Proteínas Serina-Treonina Quinasas , ARN Mensajero/genética , Regulación hacia Arriba , Proteína 1 de Unión a la X-Box/genética
2.
Genomics ; 115(2): 110582, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36796653

RESUMEN

The oyster Ostrea denselamellosa is a live-bearing species with a sharp decline in the natural population. Despite recent breakthroughs in long-read sequencing, high quality genomic data are very limited in O. denselamellosa. Here, we carried out the first whole genome sequencing at the chromosome-level in O. denselamellosa. Our studies yielded a 636 Mb assembly with scaffold N50 around 71.80 Mb. 608.3 Mb (95.6% of the assembly) were anchored to 10 chromosomes. A total of 26,412 protein-coding genes were predicted, of which 22,636 (85.7%) were functionally annotated. By comparative genomics, we found that long interspersed nuclear element (LINE) and short interspersed nuclear element (SINE) made up a larger proportion in O. denselamellosa genome than in other oysters'. Moreover, gene family analysis showed some initial insight into its evolution. This high-quality genome of O. denselamellosa provides a valuable genomic resource for studies of evolution, adaption and conservation in oysters.


Asunto(s)
Ostrea , Animales , Ostrea/genética , Cromosomas , Genoma , Genómica , Secuenciación Completa del Genoma , Filogenia
3.
Genomics ; 115(6): 110747, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37977331

RESUMEN

Placopecten magellanicus (Gmelin, 1791), a deep-sea Atlantic scallop, holds significant commercial value as a benthic marine bivalve along the northwest Atlantic coast. Recognizing its economic importance, the need to reconstruct its genome assembly becomes apparent, fostering insights into natural resources and generic breeding potential. This study reports a high-quality chromosome-level genome of P. magellanicus, achieved through the integration of Illumina short read sequencing, PacBio HiFi sequencing, and Hi-C sequencing techniques. The resulting assembly spans 1778 Mb with a scaffold N50 of 86.71 Mb. An intriguing observation arises - the genome size of P. magellanicus surpasses that of its Pectinidae family peers by 1.80 to 2.46 times. Within this genome, 28,111 protein-coding genes were identified. Comparative genomic analysis involving five scallop species unveils the critical determinant of this expanded genome: the proliferation of repetitive sequences recently inserted, contributing to its enlarged size. The landscape of whole genome collinearity sheds light on the relationships among scallop species, enhancing our broader understanding of their genomic framework. This genome provides genomic resources for future molecular biology research on scallops and serves as a guide for the exploration of longevity-related genes in scallops.


Asunto(s)
Bivalvos , Pectinidae , Animales , Pectinidae/genética , Bivalvos/genética , Alimentos Marinos , Tamaño del Genoma , Cromosomas/genética
4.
Appl Opt ; 61(2): 417-421, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35200878

RESUMEN

To meet the requirements of fiber laser applications under extreme temperatures or when there is a large temperature difference, it is necessary to develop fiber lasers able to operate in a wide temperature range. At present, there is a lack of reports on high-power fiber lasers that can operate in a wide temperature range with low power fluctuations. Thus, we designed a 1 kW fiber oscillator that can operate in a wide temperature range through temperature-related rate equations. The output characteristics of the oscillator are measured in the operating temperature range from -30∘C to 20°C. The experimental results show that the laser output power fluctuates by 7% over the entire temperature range. It was discovered that as the ambient temperature decreased, the efficiency of the laser decreased, and this issue is discussed in detail. This work has guiding significance for the design of high-power fiber lasers operating at a wide temperature range, and simultaneously, to the best of our knowledge, it provides the first kilowatt fiber oscillator that can operate in a wide temperature range between -30∘C and 20°C.

5.
Biochem Biophys Res Commun ; 562: 69-75, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34038755

RESUMEN

XBP1 is a basic leucine zipper (bZIP) transcription factor and a key mediator of the endoplasmic reticulum (ER) stress-activated unfolded protein response (UPR). XBP1-mediated transcription facilitates cell adaptation to ER stress and also promotes tumor progression, while suppressing anti-tumor immunity. Here we report a novel XBP1 variant, namely XBP1 variant 1 (XBP1v1, Xv1 for short), that is specifically required for survival of cancer cells. Xv1 contains a cryptic first exon that is conserved only in humans and great apes. Comparing to XBP1, Xv1 encodes a protein with a different N-terminal sequence containing 25 amino acids. Analysis of RNAseq database reveals that Xv1 is broadly expressed across cancer types but almost none in normal tissues. Elevated Xv1 expression is associated with poor survival of patients with several types of cancer. Knockdown of Xv1 induces death of multiple cancer cell lines but has little effect on non-cancerous cells in vitro. Moreover, knockdown of Xv1 also inhibits growth of a xenograft breast tumor in mice. Together, our results indicate that Xv1 is essential for survival of cancer cells.


Asunto(s)
Variación Genética , Neoplasias/genética , Neoplasias/patología , Proteína 1 de Unión a la X-Box/genética , Animales , Línea Celular Tumoral , Supervivencia Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Desnudos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
6.
FASEB J ; 34(1): 1378-1397, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914689

RESUMEN

Zebrafish skeletal muscles are broadly divided into slow-twitch and fast-twitch muscle fibers. The slow fibers, which express a slow fiber-specific myosin heavy chain 1 (Smyhc1), are the first group of muscle fibers formed during myogenesis. To uncover Smyhc1 function in muscle growth, we generated three mutant alleles with reading frame shift mutations in the zebrafish smyhc1 gene using CRISPR. The mutants showed shortened sarcomeres with no thick filaments and M-lines in slow fibers of the mutant embryos. However, the formation of slow muscle precursors and expression of other slow muscle genes were not affected and fast muscles appeared normal. The smyhc1 mutant embryos and larvae showed reduced locomotion and food intake. The mutant larvae exhibited increased lethality of incomplete penetrance. Approximately 2/5 of the homozygous mutants were viable and grew into reproductive adults. These adult mutants displayed a typical pattern of slow and fast muscle fiber distribution, and regained normal slow muscle formation. Together, our studies indicate that Smyhc1 is essential for myogenesis in embryonic slow muscles, and loss of Smyhc1 results in defective sarcomere assembly, reduces larval motility and fish survival, but has no visible impact on muscle growth in juvenile and adult zebrafish that escape the larval lethality.


Asunto(s)
Locomoción , Cadenas Pesadas de Miosina/metabolismo , Sarcómeros/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/crecimiento & desarrollo , Animales , Mutación , Cadenas Pesadas de Miosina/genética , Sarcómeros/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
7.
Hum Mol Genet ; 27(20): 3542-3554, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30016436

RESUMEN

The fusion of myoblasts into multinucleated muscle fibers is vital to skeletal muscle development, maintenance and regeneration. Genetic mutations in the Myomaker (mymk) gene cause Carey-Fineman-Ziter syndrome (CFZS) in human populations. To study the regulation of mymk gene expression and function, we generated three mymk mutant alleles in zebrafish using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology and analyzed the effects of mymk knockout on muscle development and growth. Our studies demonstrated that knockout of mymk resulted in defective myoblast fusion in zebrafish embryos and increased mortality at larval stage around 35-45 days post-fertilization. The viable homozygous mutants were smaller in size and weighed approximately one-third the weight of the wild type (WT) sibling at 3 months old. The homozygous mutants showed craniofacial deformities, resembling the facial defect observed in human populations with CFZS. Histological analysis revealed that skeletal muscles of mymk mutants contained mainly small-size fibers and substantial intramuscular adipocyte infiltration. Single fiber analysis revealed that myofibers in mymk mutant were predominantly single-nucleated fibers. However, myofibers with multiple myonuclei were observed, although the number of nuclei per fiber was much less compared with that in WT fibers. Overexpression of sonic Hedgehog inhibited mymk expression in zebrafish embryos and blocked myoblast fusion. Collectively, these studies demonstrated that mymk is essential for myoblast fusion during muscle development and growth.


Asunto(s)
Proteínas de la Membrana/fisiología , Síndrome de Mobius/fisiopatología , Desarrollo de Músculos , Proteínas Musculares/fisiología , Músculo Esquelético/fisiopatología , Enfermedades Musculares/fisiopatología , Mioblastos/metabolismo , Síndrome de Pierre Robin/fisiopatología , Proteínas de Pez Cebra/fisiología , Pez Cebra/fisiología , Adipocitos/fisiología , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Larva/fisiología , Proteínas de la Membrana/genética , Síndrome de Mobius/metabolismo , Morfogénesis , Proteínas Musculares/genética , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Enfermedades Musculares/metabolismo , Mioblastos/fisiología , Síndrome de Pierre Robin/metabolismo , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
8.
FASEB J ; 33(5): 6209-6225, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30817176

RESUMEN

Two smyd1 paralogues, smyd1a and smyd1b, have been identified in zebrafish. Although Smyd1b function has been reported in fast muscle, its function in slow muscle and the function of Smyd1a, in general, are uncertain. In this study, we generated 2 smyd1a mutant alleles and analyzed the muscle defects in smyd1a and smyd1b single and double mutants in zebrafish. We demonstrated that knockout of smyd1a alone had no visible effect on muscle development and fish survival. This was in contrast to the smyd1b mutant, which exhibited skeletal and cardiac muscle defects, leading to early embryonic lethality. The smyd1a and smyd1b double mutants, however, showed a stronger muscle defect compared with smyd1a or smyd1b mutation alone, namely, the complete disruption of sarcomere organization in slow and fast muscles. Immunostaining revealed that smyd1a; smyd1b double mutations had no effect on myosin gene expression but resulted in a dramatic reduction of myosin protein levels in muscle cells of zebrafish embryos. This was accompanied by the up-regulation of hsp40 and hsp90-α1 gene expression. Together, our studies indicate that both Smyd1a and Smyd1b partake in slow and fast muscle development although Smyd1b plays a dominant role compared with Smyd1a.-Cai, M., Han, L., Liu, L., He, F., Chu, W., Zhang, J., Tian, Z., Du, S. Defective sarcomere assembly in smyd1a and smyd1b zebrafish mutants.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/genética , Desarrollo de Músculos , Sarcómeros/metabolismo , Proteínas de Pez Cebra/genética , Animales , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Corazón/embriología , Músculo Esquelético/embriología , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Miosinas/metabolismo , Regulación hacia Arriba , Pez Cebra
9.
Opt Express ; 26(14): 17830-17840, 2018 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-30114068

RESUMEN

The high-power all-fiber superfluorescent source operating near 980 nm is studied experimentally and numerically. In experiment, an all-fiber superfluorescent source operating near 980 nm is fabricated with the distributed side-coupled cladding-pumping (DSCCP) Yb-doped fiber (YDF). By optimizing the active fiber and angle-cleaving of the output port, a recorded 17.1-W output power and 14.6% slope efficiency of 980-nm ASE are obtained. No parasitic laser oscillation is observed at the maximum output power. The power scalability of the source is also numerically investigated. A simple but effective method is present to numerically determine the threshold of parasitic laser oscillation. It is found that the output power can be scaled up to 50 W and 100 W with the optical feedback of each output port suppressed to 1.2 × 10-6 and 7 × 10-7, respectively. It is also revealed that coupling coefficient should be larger than 6 to realize more than 50% slope efficiency. These results provide significant guidance for understanding and designing the high-power superfluorescent Yb-doped source (SYFS) operating near 980 nm and other sorts of three-level fiber sources.

10.
Dev Dyn ; 246(12): 992-1000, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28891223

RESUMEN

BACKGROUND: Mustn1 is a specific musculoskeletal protein that plays a critical role in myogenesis and chondrogenesis in vertebrates. Whole-mount in situ hybridization revealed that mustn1b mRNAs are specifically expressed in skeletal and cardiac muscles in Zebrafish embryos. However, the precise function and the regulatory elements required for its muscle-specific expression are largely unknown. RESULTS: The purpose of this study was to explore and uncover the target genomic regions that regulate mustn1b gene expression by in vivo functional characterization of the mustn1b promoter. We report here stable expression analyses of eGFP from fluorescent transgenic reporter Zebrafish line containing a 0.8kb_mustn1b-Tol2-eGFP construct. eGFP expression was specifically found in the skeletal and cardiac muscle tissues. We show that reporter Zebrafish lines generated replicate the endogenous mustn1b expression pattern in early Zebrafish embryos. Specific site directed-mutagenesis analysis revealed that promoter activity resides in two annotated genomic regulatory regions, each one corresponding to a specific functional transcription factor binding site. CONCLUSIONS: Our data indicate that mustn1b is specifically expressed in skeletal and cardiac muscle tissues and its muscle specificity is controlled by the 0.2-kb promoter and flanking sequences and in vivo regulated by the action of two sequence-specific families of transcription factors. Developmental Dynamics 246:992-1000, 2017. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Embrión no Mamífero/embriología , Desarrollo Musculoesquelético/fisiología , Proteínas Nucleares , Regiones Promotoras Genéticas/fisiología , Transcripción Genética/fisiología , Proteínas de Pez Cebra , Pez Cebra , Animales , Regulación del Desarrollo de la Expresión Génica , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
11.
Proteome Sci ; 14(1): 13, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27610046

RESUMEN

BACKGROUND: Plenty of proteomic studies were performed to characterize the allotetraploid upland cotton fiber elongation process, whereas little is known about the elongating diploid cotton fiber proteome. METHODS: In this study, we used a two-dimensional electrophoresis-based comparative proteomic approach to profile dynamic proteomes of diploid Asian cotton ovules with attached fibers in the early stages of fiber elongation process. One-way ANOVA and Student-Newman-Keuls test were used to find the differentially displayed protein (DDP) spots. RESULTS: A total of 55 protein spots were found having different abundance ranging from 1 to 9 days post-anthesis (DPA) in a two-day interval. These 55 DDP spots were all successfully identified using high-resolution mass spectrometric analyses. Gene ontology analyses revealed that proteoforms involved in energy/carbohydrate metabolism, redox homeostasis, and protein metabolism are the most abundant. In addition, orthologues of the 13 DDP spots were also found in differential proteome of allotetraploid elongating cotton fibers, suggesting their possible essential roles in fiber elongation process. CONCLUSIONS: Our results not only revealed the dynamic proteome change of diploid Asian cotton fiber and ovule during early stages of fiber elongation process but also provided valuable resource for future studies on the molecular mechanism how the polyploidization improves the trait of fiber length.

12.
Artículo en Inglés | MEDLINE | ID: mdl-24157945

RESUMEN

The aim of this study was to characterise a primary cell culture isolated from fast skeletal muscle of the gilthead sea bream. Gene expression profiles during culture maturation were compared with those obtained from a fasting-refeeding model which is widely used to modulate myogenesis in vivo. Myogenesis is controlled by numerous extracellular signals together with intracellular transcriptional factors whose coordinated expression is critical for the appropriate development of muscle fibres. Full-length cDNAs for the transcription factors Myf5, Mrf4, Pax7 and Sox8 were cloned and sequenced for gilthead sea bream. Pax7, sox8, myod2 and myf5 levels were up-regulated during the proliferating phase of the myogenic cultures coincident with the highest expression of proliferating cell nuclear antigen (PCNA). In contrast, myogenin and mrf4 transcript abundance was highest during the differentiation phase of the culture when myotubes were present, and was correlated with increased myosin heavy chain (mhc) and desmin expression. In vivo, 30days of fasting resulted in muscle fibre atrophy, a reduction in myod2, myf5 and igf1 expression, lower number of Myod-positive cells, and decreased PCNA protein expression, whereas myogenin expression was not significantly affected. Myostatin1 (mstn1) and pax7 expression were up-regulated in fasted relative to well-fed individuals, consistent with a role for Pax7 in the reduction of myogenic cell activity with fasting. The primary cell cultures and fasting-feeding experiments described provide a foundation for the future investigations on the regulation of muscle growth in gilthead sea bream.


Asunto(s)
Proteínas de Peces/metabolismo , Desarrollo de Músculos , Mioblastos/fisiología , Factores Reguladores Miogénicos/metabolismo , Dorada/metabolismo , Animales , Células Cultivadas , Desmina/genética , Desmina/metabolismo , Proteínas de Peces/genética , Privación de Alimentos , Fibras Musculares de Contracción Rápida/metabolismo , Factores Reguladores Miogénicos/genética , Especificidad de Órganos , Factor de Transcripción PAX7/genética , Factor de Transcripción PAX7/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Análisis de Secuencia de ADN , Somatomedinas/genética , Somatomedinas/metabolismo , Transcriptoma
13.
Mar Biotechnol (NY) ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822152

RESUMEN

The molluscan family Ostreidae, commonly known as oysters, is an important molluscan group due to its economic and ecological importance. In recent years, an abundance of genomic data of Ostreidae species has been generated and available in public domain. However, there is still a lack of a high-efficiency database platform to store and distribute these data with comprehensive tools. In this study, we developed an oyster genome database (OysterDB) to consolidate oyster genomic data. This database includes eight oyster genomes and 208,923 protein-coding gene annotations. Bioinformatic tools, such as BLAST and JBrowse, are integrated into the database to provide a user-friendly platform for homologous sequence searching, visualization of genomes, and screen for candidate gene information. Moreover, OysterDB will be continuously updated with ever-growing oyster genomic resources and facilitate future studies for comparative and functional genomic analysis of oysters ( http://oysterdb.com.cn/ ).

14.
Curr Biol ; 33(23): 5057-5070.e5, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37995698

RESUMEN

Sex determination in many fish species is remarkably plastic and temperature sensitive. Nile tilapia display a genetic sex-determination system (XX/XY). However, high-temperature treatment during critical thermosensitive periods can induce XX females into XXm pseudo-males, and this phenomenon is termed temperature-induced sex reversal (TISR). To investigate the molecular mechanism of TISR in Nile tilapia, we performed Iso-seq analysis and found a dramatic effect of high temperature on gene alternative splicing (AS). Kdm6bb histone demethylase showed a novel AS at intron 5 that generates Kdm6bb_tv1 transcripts without intron 5 and Kdm6bb_tv2 with intron 5. Kdm6bb_tv1 encodes a full-length protein while Kdm6bb_tv2 encodes a truncated protein. Expression analysis revealed that intron 5 splicing of Kdm6bb is male and gonad biased at larval stage, and only gonad biased at adult stage. High-temperature treatment induced intron 5 splicing in the gonads of XX and XY fish, resulting in increased Kdm6bb_tv1 expression. To directly test the role of Kdm6bb_tv1 in Nile tilapia TISR, we knocked out expression of Kdm6bb_tv1. However, Kdm6bb_tv1-/- homozygous mutants showed embryonic lethality. Overexpression of Kdm6bb_tv1, but not Kdm6bb_tv2, induced sex reversal of XX females into pseudo-males. Overexpression of Kdm6bb_tv1, as with high-temperature treatment, modified the promotor region of Gsdf and Dmrt1 by demethylating the trimethylated lysine 27 of histone 3 (H3K27me3), thereby increasing expression. Collectively, these studies demonstrate that AS of Kdm6bb intron 5 increases the expression of Kdm6bb_tv1, which acts as a direct link between high temperature and activation of Gsdf and Dmrt1 expression, leading to male sex determination.


Asunto(s)
Cíclidos , Animales , Femenino , Masculino , Cíclidos/genética , Empalme Alternativo , Temperatura , Gónadas/metabolismo , Diferenciación Sexual/genética
15.
Amino Acids ; 42(2-3): 1065-75, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21809079

RESUMEN

We have characterized the protein cross-linking enzyme transglutaminase (TGs) genes in zebrafish, Danio rerio, based on the analysis of their genomic organization and phylogenetics. Thirteen zebrafish TG genes (zTGs) have been identified, of which 11 show high homology to only 3 mammalian enzymes: TG1, TG2 and FXIIIa. No zebrafish homologues were identified for mammalian TGs 3-7. Real-time PCR analysis demonstrated distinct temporal expression profiles for zTGs in larvae and adult fish. Analysis by in situ hybridization revealed restricted expression of zTG2b and zFXIIIa in skeletal elements, resembling expression of their mammalian homologues in osteo-chondrogenic cells. Mammalian TG2 and FXIIIa have been implicated in promoting osteoblast differentiation and bone mineralization in vitro, however, mouse models lacking either gene have no skeletal phenotype likely due to a compensation effect. We show in this study that mineralization of the newly formed vertebrae is significantly reduced in fish grown for 5 days in the presence of TG inhibitor KCC-009 added at 3-5 days post fertilization. This treatment reduces average vertebrae mineralization by 30%, with complete inhibition in some fish, and no effect on the overall growth and vertebrae number. This is the first in vivo demonstration of the crucial requirement for the TG-catalyzed cross-linking activity in bone mineralization.


Asunto(s)
Calcificación Fisiológica , Familia de Multigenes , Transglutaminasas/genética , Pez Cebra/genética , Animales , Secuencia de Bases , Cartilla de ADN , Hibridación in Situ , Reacción en Cadena en Tiempo Real de la Polimerasa , Transglutaminasas/antagonistas & inhibidores
16.
Artículo en Inglés | MEDLINE | ID: mdl-35830921

RESUMEN

Activator of heat shock protein 90 (hsp90) ATPase (Aha1) is a Hsp90 co-chaperone required for Hsp90 ATPase activation. Aha1 is essential for yeast survival and muscle development in C. elegans under elevated temperature and hsp90-deficeiency induced stress conditions. The roles of Aha1 in vertebrates are poorly understood. Here, we characterized the expression and function of Aha1 in zebrafish. We showed that zebrafish genome contains two aha1 genes, aha1a and aha1b, that show distinct patterns of expression during development. Under the normal physiological conditions, aha1a is primarily expressed in skeletal muscle cells of zebrafish embryos, while aha1b is strongly expressed in the head region. aha1a and aha1b expression increased dramatically in response to heat shock induced stress. In addition, Aha1a-GFP fusion protein exhibited a dynamic translocation in muscle cells in response to heat shock. Moreover, upregulation of aha1 expression was also observed in hsp90a1 knockdown embryos that showed a muscle defect. Genetic studies demonstrated that knockout of aha1a, aha1b or both had no detectable effect on embryonic development, survival, and growth in zebrafish. The aha1a and aha1b mutant embryos showed normal muscle development and stress response in response to heat shock. Single or double aha1a and aha1b mutants could grow into normal reproductive adults with normal skeletal muscle structure and morphology compared with wild type control. Together, data from these studies indicate that Aha1a and Aha1b are involved in stress response. However, they are dispensable in zebrafish embryonic development, growth, and survival.


Asunto(s)
Embrión no Mamífero/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra , Adenosina Trifosfatasas/metabolismo , Animales , Expresión Génica , Proteínas HSP90 de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Pez Cebra/genética , Pez Cebra/metabolismo
17.
Dev Cell ; 57(13): 1582-1597.e6, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35709765

RESUMEN

Myoblast fusion is an indispensable process in skeletal muscle development and regeneration. Studies in Drosophila led to the discovery of the asymmetric fusogenic synapse, in which one cell invades its fusion partner with actin-propelled membrane protrusions to promote fusion. However, the timing and sites of vertebrate myoblast fusion remain elusive. Here, we show that fusion between zebrafish fast muscle cells is mediated by an F-actin-enriched invasive structure. Two cell adhesion molecules, Jam2a and Jam3b, are associated with the actin structure, with Jam2a being the major organizer. The Arp2/3 actin nucleation-promoting factors, WAVE and WASP-but not the bipartite fusogenic proteins, Myomaker or Myomixer-promote the formation of the invasive structure. Moreover, the convergence of fusogen-containing microdomains and the invasive protrusions is a prerequisite for cell membrane fusion. Thus, our study provides unprecedented insights into the cellular architecture and molecular determinants of the asymmetric fusogenic synapse in an intact vertebrate animal.


Asunto(s)
Actinas , Pez Cebra , Actinas/metabolismo , Animales , Fusión Celular , Drosophila/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Desarrollo de Músculos , Proteínas Musculares , Sinapsis/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
18.
Mar Biotechnol (NY) ; 24(5): 1023-1038, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36083384

RESUMEN

The development and growth of fish skeletal muscles require myoblast fusion to generate multinucleated myofibers. While zebrafish fast-twitch muscle can fuse to generate multinucleated fibers, the slow-twitch muscle fibers remain mononucleated in zebrafish embryos and larvae. The mechanism underlying the fiber-type-specific control of fusion remains elusive. Recent genetic studies using mice identified a long-sought fusion factor named Myomixer. To understand whether Myomixer is involved in the fiber-type specific fusion, we analyzed the transcriptional regulation of myomixer expression and characterized the muscle growth phenotype upon genetic deletion of myomixer in zebrafish. The data revealed that overexpression of Sonic Hedgehog (Shh) drastically inhibited myomixer expression and blocked myoblast fusion, recapitulating the phenotype upon direct genetic deletion of myomixer from zebrafish. The fusion defect in myomixer mutant embryos could be faithfully rescued upon re-expression of zebrafish myomixer gene or its orthologs from shark or human. Interestingly, myomixer mutant fish survived to adult stage though were notably smaller than wildtype siblings. Severe myopathy accompanied by the uncontrolled adipose infiltration was observed in both fast and slow muscle tissues of adult myomixer mutants. Collectively, our data highlight an indispensable role of myomixer gene for cell fusion during both embryonic muscle development and post-larval muscle growth.


Asunto(s)
Enfermedades Musculares , Pez Cebra , Animales , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Proteínas de la Membrana/genética , Ratones , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Mioblastos/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
19.
Mol Ecol Resour ; 22(1): 295-306, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34214251

RESUMEN

Ark shells are commercially important clam species that inhabit in muddy sediments of shallow coasts in East Asia. For a long time, the lack of genome resources has hindered scientific research of ark shells. Here, we report a high-quality chromosome-level genome assembly of Scapharca kagoshimensis, with an aim to unravel the molecular basis of heme biosynthesis, and develop genomic resources for genetic breeding and population genetics in ark shells. Nineteen scaffolds corresponding to 19 chromosomes were constructed from 938 contigs (contig N50 = 2.01 Mb) to produce a final high-quality assembly with a total length of 1.11 Gb and scaffold N50 around 60.64 Mb. The genome assembly represents 93.4% completeness via matching 303 eukaryota core conserved genes. A total of 24,908 protein-coding genes were predicted and 24,551 genes (98.56%) of which were functionally annotated. The enrichment analyses suggested that genes in heme biosynthesis pathways were expanded and positive selection of the haemoglobin genes was also found in the genome of S. kagoshimensis, which gives important insights into the molecular mechanisms and evolution of the heme biosynthesis in mollusca. The valuable genome assembly of S. kagoshimensis would provide a solid foundation for investigating the molecular mechanisms that underlie the diverse biological functions and evolutionary adaptations of S. kagoshimensis.


Asunto(s)
Arcidae , Scapharca , Animales , Cromosomas , Genómica , Hemo , Scapharca/genética
20.
G3 (Bethesda) ; 12(11)2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36165708

RESUMEN

Mactra veneriformis (Bivalvia: Mactridae) is a bivalve mollusk of major economic importance in China. Decreased natural yields of M. veneriformis have led to an urgent need for genomic resources. To address this problem and the currently limited knowledge of molecular evolution in this genus, we here report a high-quality chromosome-level genome assembly of M. veneriformis. Our approach yielded a 939.32 Mb assembled genome with an N50 contig length of 7,977.84 kb. Hi-C scaffolding of the genome resulted in assembly of 19 pseudochromosomes. Repetitive elements made up ∼51.79% of the genome assembly. A total of 29,315 protein-coding genes (PCGs) were predicted in M. veneriformis. Construction of a genome-level phylogenetic tree demonstrated that M. veneriformis and Ruditapes philippinarum diverged around 231 million years ago (MYA). Inter-species comparisons revealed that 493 gene families have undergone expansion and 449 have undergone contraction in the M. veneriformis genome. Chromosome-based macrosynteny analysis revealed a high degree of synteny between the 19 chromosomes of M. veneriformis and those of Patinopecten yessoensis. These results suggested that M. veneriformis has a similar karyotype to that of P. yessoensis, and that a highly conserved 19-chromosome karyotype was formed in the early differentiation stages of bivalves. In summary, the genomic resources generated in this work serve as a valuable reference for investigating the molecular mechanisms underlying biological functions in M. veneriformis and will facilitate future genetic improvement and disease treatment in this economically important species. Furthermore, the assembled genome greatly improves our understanding of early genomic evolution of the Bivalvia.


Asunto(s)
Bivalvos , Cromosomas , Animales , Filogenia , Cromosomas/genética , Genoma , Bivalvos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA