Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Glob Chang Biol ; 26(11): 6424-6444, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32777119

RESUMEN

Anthropogenic climate change is causing our oceans to lose oxygen and become more acidic at an unprecedented rate, threatening marine ecosystems and their associated animals. In deep-sea environments, where conditions have typically changed over geological timescales, the associated animals, adapted to these stable conditions, are expected to be highly vulnerable to any change or direct human impact. Our study coalesces one of the longest deep-sea observational oceanographic time series, reaching back to the 1960s, with a modern visual survey that characterizes almost two vertical kilometers of benthic seamount ecosystems. Based on our new and rigorous analysis of the Line P oceanographic monitoring data, the upper 3,000 m of the Northeast Pacific (NEP) has lost 15% of its oxygen in the last 60 years. Over that time, the oxygen minimum zone (OMZ), ranging between approximately 480 and 1,700 m, has expanded at a rate of 3.0 ± 0.7 m/year (due to deepening at the bottom). Additionally, carbonate saturation horizons above the OMZ have been shoaling at a rate of 1-2 m/year since the 1980s. Based on our visual surveys of four NEP seamounts, these deep-sea features support ecologically important taxa typified by long life spans, slow growth rates, and limited mobility, including habitat-forming cold water corals and sponges, echinoderms, and fish. By examining the changing conditions within the narrow realized bathymetric niches for a subset of vulnerable populations, we resolve chemical trends that are rapid in comparison to the life span of the taxa and detrimental to their survival. If these trends continue as they have over the last three to six decades, they threaten to diminish regional seamount ecosystem diversity and cause local extinctions. This study highlights the importance of mitigating direct human impacts as species continue to suffer environmental changes beyond our immediate control.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Peces , Humanos , Concentración de Iones de Hidrógeno , Océanos y Mares
3.
PeerJ ; 11: e16024, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37846312

RESUMEN

Management of deep-sea fisheries in areas beyond national jurisdiction by Regional Fisheries Management Organizations/Arrangements (RFMO/As) requires identification of areas with Vulnerable Marine Ecosystems (VMEs). Currently, fisheries data, including trawl and longline bycatch data, are used by many RFMO/As to inform the identification of VMEs. However, the collection of such data creates impacts and there is a need to collect non-invasive data for VME identification and monitoring purposes. Imagery data from scientific surveys satisfies this requirement, but there currently is no established framework for identifying VMEs from images. Thus, the goal of this study was to bring together a large international team to determine current VME assessment protocols and establish preliminary global consensus guidelines for identifying VMEs from images. An initial assessment showed a lack of consistency among RFMO/A regions regarding what is considered a VME indicator taxon, and hence variability in how VMEs might be defined. In certain cases, experts agreed that a VME could be identified from a single image, most often in areas of scleractinian reefs, dense octocoral gardens, multiple VME species' co-occurrence, and chemosynthetic ecosystems. A decision flow chart is presented that gives practical interpretation of the FAO criteria for single images. To further evaluate steps of the flow chart related to density, data were compiled to assess whether scientists perceived similar density thresholds across regions. The range of observed densities and the density values considered to be VMEs varied considerably by taxon, but in many cases, there was a statistical difference in what experts considered to be a VME compared to images not considered a VME. Further work is required to develop an areal extent index, to include a measure of confidence, and to increase our understanding of what levels of density and diversity correspond to key ecosystem functions for VME indicator taxa. Based on our results, the following recommendations are made: 1. There is a need to establish a global consensus on which taxa are VME indicators. 2. RFMO/As should consider adopting guidelines that use imagery surveys as an alternative (or complement) to using bycatch and trawl surveys for designating VMEs. 3. Imagery surveys should also be included in Impact Assessments. And 4. All industries that impact the seafloor, not just fisheries, should use imagery surveys to detect and identify VMEs.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Conservación de los Recursos Naturales/métodos , Explotaciones Pesqueras
4.
Sci Rep ; 11(1): 21944, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34753952

RESUMEN

Biological hotspots are places with outstanding biodiversity features, and their delineation is essential to the design of marine protected areas (MPAs). For the Central Coast of Canada's Northern Shelf Bioregion, where an MPA network is being developed, we identified hotspots for structural corals and large-bodied sponges, which are foundation species vulnerable to bottom contact fisheries, and for Sebastidae, a fish family which includes species that are long-lived (> 100 years), overexploited, evolutionary distinctive, and at high trophic levels. Using 11 years of survey data that spanned from inland fjords to oceanic waters, we derived hotspot indices that accounted for species characteristics and abundances and examined hotspot distribution across depths and oceanographic subregions. The results highlight previously undocumented hotspot distributions, thereby informing the placement of MPAs for which high levels of protection are warranted. Given the vulnerability of the taxa that we examined to cumulative fishery impacts, prospective MPAs derived from our data should be considered for interim protection measures during the protracted period between final network design and the enactment of MPA legislations. These recommendations reflect our scientific data, which are only one way of understanding the seascape. Our surveys did not cover many locations known to Indigenous peoples as biologically important. Consequently, Indigenous knowledge should also contribute substantially to the design of the MPA network.


Asunto(s)
Antozoos , Ecosistema , Perciformes , Poríferos , Animales , Biodiversidad , Canadá , Conservación de los Recursos Naturales/métodos , Océano Pacífico
6.
PLoS One ; 11(10): e0165513, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27792782

RESUMEN

Partially owing to their isolation and remote distribution, research on seamounts is still in its infancy, with few comprehensive datasets and empirical evidence supporting or refuting prevailing ecological paradigms. As anthropogenic activity in the high seas increases, so does the need for better understanding of seamount ecosystems and factors that influence the distribution of sensitive benthic communities. This study used quantitative community analyses to detail the structure, diversity, and distribution of benthic mega-epifauna communities on Cobb Seamount, a shallow seamount in the Northeast Pacific Ocean. Underwater vehicles were used to visually survey the benthos and seafloor in ~1600 images (~5 m2 in size) between 34 and 1154 m depth. The analyses of 74 taxa from 11 phyla resulted in the identification of nine communities. Each community was typified by taxa considered to provide biological structure and/or be a primary producer. The majority of the community-defining taxa were either cold-water corals, sponges, or algae. Communities were generally distributed as bands encircling the seamount, and depth was consistently shown to be the strongest environmental proxy of the community-structuring processes. The remaining variability in community structure was partially explained by substrate type, rugosity, and slope. The study used environmental metrics, derived from ship-based multibeam bathymetry, to model the distribution of communities on the seamount. This model was successfully applied to map the distribution of communities on a 220 km2 region of Cobb Seamount. The results of the study support the paradigms that seamounts are diversity 'hotspots', that the majority of seamount communities are at risk to disturbance from bottom fishing, and that seamounts are refugia for biota, while refuting the idea that seamounts have high endemism.


Asunto(s)
Ecosistema , Modelos Teóricos , Océano Pacífico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA