Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Plant Biotechnol J ; 22(6): 1536-1548, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38226779

RESUMEN

Salvianolic acids (SA), such as rosmarinic acid (RA), danshensu (DSS), and their derivative salvianolic acid B (SAB), etc. widely existed in Lamiaceae and Boraginaceae families, are of interest due to medicinal properties in the pharmaceutical industries. Hundreds of studies in past decades described that 4-coumaroyl-CoA and 4-hydroxyphenyllactic acid (4-HPL) are common substrates to biosynthesize SA with participation of rosmarinic acid synthase (RAS) and cytochrome P450 98A (CYP98A) subfamily enzymes in different plants. However, in our recent study, several acyl donors and acceptors included DSS as well as their ester-forming products all were determined in SA-rich plants, which indicated that previous recognition to SA biosynthesis is insufficient. Here, we used Salvia miltiorrhiza, a representative important medicinal plant rich in SA, to elucidate the diversity of SA biosynthesis. Various acyl donors as well as acceptors are catalysed by SmRAS to form precursors of RA and two SmCYP98A family members, SmCYP98A14 and SmCYP98A75, are responsible for different positions' meta-hydroxylation of these precursors. SmCYP98A75 preferentially catalyses C-3' hydroxylation, and SmCYP98A14 preferentially catalyses C-3 hydroxylation in RA generation. In addition, relative to C-3' hydroxylation of the acyl acceptor moiety in RA biosynthesis, SmCYP98A75 has been verified as the first enzyme that participates in DSS formation. Furthermore, SmCYP98A enzymes knockout resulted in the decrease and overexpression leaded to dramatic increase of SA accumlation. Our study provides new insights into SA biosynthesis diversity in SA-abundant species and versatility of CYP98A enzymes catalytic preference in meta-hydroxylation reactions. Moreover, CYP98A enzymes are ideal metabolic engineering targets to elevate SA content.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Salvia miltiorrhiza , Hidroxilación , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Salvia miltiorrhiza/metabolismo , Salvia miltiorrhiza/genética , Salvia miltiorrhiza/enzimología , Polifenoles/metabolismo , Polifenoles/biosíntesis , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Alquenos
2.
Phytochemistry ; 221: 114053, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38479587

RESUMEN

Schisandra lignans are the main bioactive compounds found in Schisandra chinensis fruits, such as schisandrol lignans and schisandrin lignans, which play important roles in organ protection or other clinical roles. Pinoresinol-lariciresinol reductase (PLR) plays a pivotal role in plant lignan biosynthesis, however, limited research has been conducted on S. chinensis PLR to date. This study identified five genes as ScPLR, successfully cloned their coding sequences, and elucidated their catalytic capabilities. ScPLR3-5 could recognize both pinoresinol and lariciresinol as substrates, and convert them into lariciresinol and secoisolariciresinol, respectively, while ScPLR2 exclusively catalyzed the conversion of (+)-pinoresinol into (+)-lariciresinol. Transcript-metabolite correlation analysis indicated that ScPLR2 exhibited unique properties that differed from the other members. Molecular docking and site-directed mutagenesis revealed that Phe271 and Leu40 in the substrate binding motif were crucial for the catalytic activity of ScPLR2. This study serves as a foundation for understanding the essential enzymes involved in schisandra lignan biosynthesis.


Asunto(s)
Ciclooctanos , Furanos , Lignanos , Compuestos Policíclicos , Schisandra , Schisandra/química , Schisandra/metabolismo , Simulación del Acoplamiento Molecular , Oxidorreductasas/metabolismo , Lignanos/química
3.
Bioresour Technol ; 232: 113-118, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28214697

RESUMEN

A systematic study was performed to understand interactions among biomass loading during ionic liquid (IL) pretreatment, biomass type and biomass structures. White poplar and eucalyptus samples were pretreated using 1-ethyl-3-methylimidazolium acetate (EmimOAc) at 110°C for 3h at biomass loadings of 5, 10, 15, 20 and 25wt%. All of the samples were chemically characterized and tested for enzymatic hydrolysis. Physical structures including biomass crystallinity and porosity were measured by X-ray diffraction (XRD) and small angle neutron scattering (SANS), respectively. SANS detected pores of radii ranging from ∼25 to 625Å, enabling assessment of contributions of pores with different sizes to increased porosity after pretreatment. Contrasting dependences of sugar conversion on white poplar and eucalyptus as a function of biomass loading were observed and cellulose crystalline structure was found to play an important role.


Asunto(s)
Biomasa , Eucalyptus/química , Líquidos Iónicos/química , Difracción de Neutrones , Populus/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Celulosa/química , Hidrólisis , Imidazoles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA