Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Neuroimage ; 298: 120798, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39153521

RESUMEN

Functional magnetic resonance imaging research employing regional homogeneity (ReHo) analysis has uncovered aberrant local brain connectivity in individuals with mild cognitive impairment (MCI) and Alzheimer's disease (AD) in comparison with healthy controls. However, the precise localization, extent, and possible overlap of these aberrations are still not fully understood. To bridge this gap, we applied a novel meta-analytic and Bayesian method (minimum Bayes Factor Activation Likelihood Estimation, mBF-ALE) for a systematic exploration of local functional connectivity alterations in MCI and AD brains. We extracted ReHo data via a standardized MEDLINE database search, which included 35 peer-reviewed experiments, 1,256 individuals with AD or MCI, 1,118 healthy controls, and 205 x-y-z coordinates of ReHo variation. We then separated the data into two distinct datasets: one for MCI and the other for AD. Two mBF-ALE analyses were conducted, thresholded at "very strong evidence" (mBF ≥ 150), with a minimum cluster size of 200 mm³. We also assessed the spatial consistency and sensitivity of our Bayesian results using the canonical version of the ALE algorithm. For MCI, we observed two clusters of ReHo decrease and one of ReHo increase. Decreased local connectivity was notable in the left precuneus (Brodmann area - BA 7) and left inferior temporal gyrus (BA 20), while increased connectivity was evident in the right parahippocampal gyrus (BA 36). The canonical ALE confirmed these locations, except for the inferior temporal gyrus. In AD, one cluster each of ReHo decrease and increase were found, with decreased connectivity in the right posterior cingulate cortex (BA 30 extending to BA 23) and increased connectivity in the left posterior cingulate cortex (BA 31). These locations were confirmed by the canonical ALE. The identification of these distinct functional connectivity patterns sheds new light on the complex pathophysiology of MCI and AD, offering promising directions for future neuroimaging-based interventions. Additionally, the use of a Bayesian framework for statistical thresholding enhances the robustness of neuroimaging meta-analyses, broadening its applicability to small datasets.

2.
Neurosci Biobehav Rev ; 164: 105791, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38960075

RESUMEN

Despite over two decades of neuroimaging research, a unanimous definition of the pattern of structural variation associated with autism spectrum disorder (ASD) has yet to be found. One potential impeding issue could be the sometimes ambiguous use of measurements of variations in gray matter volume (GMV) or gray matter concentration (GMC). In fact, while both can be calculated using voxel-based morphometry analysis, these may reflect different underlying pathological mechanisms. We conducted a coordinate-based meta-analysis, keeping apart GMV and GMC studies of subjects with ASD. Results showed distinct and non-overlapping patterns for the two measures. GMV decreases were evident in the cerebellum, while GMC decreases were mainly found in the temporal and frontal regions. GMV increases were found in the parietal, temporal, and frontal brain regions, while GMC increases were observed in the anterior cingulate cortex and middle frontal gyrus. Age-stratified analyses suggested that such variations are dynamic across the ASD lifespan. The present findings emphasize the importance of considering GMV and GMC as distinct yet synergistic indices in autism research.


Asunto(s)
Trastorno del Espectro Autista , Sustancia Gris , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/patología , Humanos , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen por Resonancia Magnética , Neuroimagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA