RESUMEN
International travel has been the major source for the rapid spread of new SARS-CoV-2 variants across the globe. During SARS-CoV-2 genomic surveillance, a total of 212 SARS-CoV-2 positive clinical specimens were sequenced using next-generation sequencing. A complete SARS-CoV-2 genome could be retrieved from 90 clinical specimens. Of them, 14 sequences belonged to the Eta variant from clinical specimens of international travelers (n = 12) and local residents (n = 2) of India, and 76 belonged to other SARS-CoV-2 variants. Of all the Eta-positive specimens, the virus isolates were obtained from the clinical specimens of six international travelers. Many variants of interest have been found to cause substantial community transmission or cluster infections. The detection of this variant with lethal E484K mutation across the globe and India necessitates persistent genomic surveillance of the SARS-CoV-2 variants, which would aid in taking preventive action.
Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutación , SARS-CoV-2/genéticaRESUMEN
Enterically transmitted waterborne hepatitis E (HE) caused due to hepatitis E virus (HEV) prevails as a significant public health problem endemic to India. Due to short-term viremia/fecal excretion and poor in vitro transmissibility of HEV, HE diagnosis depends on detection of specific IgM antibodies in serum. Present study evaluated performances of two in-house and six commercial IgM detection enzyme-linked immunosorbent assays (ELISAs) using sera collected from volunteers/acute hepatitis patients (n = 716). The in-house ELISAs were based on complete and truncated open reading frame 2 (ORF2) proteins containing neutralizing epitope/s region of genotype 1 HEV (ORF2p, 1-660 amino acid (a.a.) and T1NEp, 458-607 a.a., respectively). The commercial ELISAs included Wantai (China), MP Diagnostics (MPD) (Singapore), DIA.PRO Diagnostics (Italy), MBS (Italy), abia (Germany), and ImmunoVision (USA). T1NE ELISA showed 97.0% positive percent agreement (PPA), 99.4% negative percent agreement (NPA), and 98.6% concordance (κ = 0.97, P = 0.0000) with ORF2 ELISA. ORF2, T1NE, Wantai, and MPD ELISAs agreed on results for 88% of sera tested. Two percent sera showed reactivity in each combination of three and two of aforementioned four ELISAs. Remaining 8% sera were single ELISA reactive. PPA and NPA value ranges were 76.3-99.0% and 84.8-99.5%, respectively. Pairwise concordances between all the eight ELISAs ranged from 88.0 to 100% (κ: 0.74-1.00). Both the in-house ELISAs agreed better with Wantai over MPD ELISA. In conclusion, both ORF2 and T1NE ELISAs were equally efficient in diagnosing HEV infections. T1NEp proved to be an excellent tool in HE sero-diagnosis and is worth exploring in development of simple rapid tests. KEY POINTS: ⢠In-house ELISA based on bacterially expressed neutralizing epitope/s region protein ⢠In-house ELISA based on complete ORF2 protein expressed in insect cells ⢠Comparison of two in-house and six commercial anti-HEV IgM antibody detection ELISAs.
Asunto(s)
Hepatitis E , Humanos , Hepatitis E/diagnóstico , Sistemas de Lectura Abierta , China , Alemania , Ensayo de Inmunoadsorción EnzimáticaRESUMEN
The B.1.1.7 (Alpha) variant has been detected in Mumbai, India during February 2021. Subsequently, we retrieved 43 sequences from specimens of 51 COVID-19 cases from Mumbai. The sequence analysis revealed that the cases were mainly affected with Alpha variant which suggests its role in community transmission of SARS-CoV-2 in Mumbai, India.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiología , India/epidemiologíaRESUMEN
Background: Recent studies on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reveal that Omicron variant BA.1 and sub-lineages have revived the concern over resistance to antiviral drugs and vaccine-induced immunity. The present study aims to analyze the clinical profile and genome characterization of the SARS-CoV-2 variant in eastern Uttar Pradesh (UP), North India. Methods: Whole-genome sequencing (WGS) was conducted for 146 SARS-CoV-2 samples obtained from individuals who tested coronavirus disease 2019 (COVID-19) positive between the period of 1 January 2022 and 24 February 2022, from three districts of eastern UP. The details regarding clinical and hospitalized status were captured through telephonic interviews after obtaining verbal informed consent. A maximum-likelihood phylogenetic tree was created for evolutionary analysis using MEGA7. Results: The mean age of study participants was 33.9 ± 13.1 years, with 73.5% accounting for male patients. Of the 98 cases contacted by telephone, 30 (30.6%) had a travel history (domestic/international), 16 (16.3%) reported having been infected with COVID-19 in past, 79 (80.6%) had symptoms, and seven had at least one comorbidity. Most of the sequences belonged to the Omicron variant, with BA.1 (6.2%), BA.1.1 (2.7%), BA.1.1.1 (0.7%), BA.1.1.7 (5.5%), BA.1.17.2 (0.7%), BA.1.18 (0.7%), BA.2 (30.8%), BA.2.10 (50.7%), BA.2.12 (0.7%), and B.1.617.2 (1.3%) lineages. BA.1 and BA.1.1 strains possess signature spike mutations S:A67V, S:T95I, S:R346K, S:S371L, S:G446S, S:G496S, S:T547K, S:N856K, and S:L981F, and BA.2 contains S:V213G, S:T376A, and S:D405N. Notably, ins214EPE (S1- N-Terminal domain) mutation was found in a significant number of Omicron BA.1 and sub-lineages. The overall Omicron BA.2 lineage was observed in 79.5% of women and 83.2% of men. Conclusion: The current study showed a predominance of the Omicron BA.2 variant outcompeting the BA.1 over a period in eastern UP. Most of the cases had a breakthrough infection following the recommended two doses of vaccine with four in five cases being symptomatic. There is a need to further explore the immune evasion properties of the Omicron variant.
RESUMEN
We estimated the effectiveness of two doses of the ChAdOx1 nCoV-19 (Covishield) vaccine against any COVID-19 infection among individuals ≥45 years in Chennai, Tamil Nadu, India. A community-based cohort study was conducted from May to September 2021 in a selected geographic area in Chennai. The estimated sample size was 10,232. We enrolled 69,435 individuals, of which 21,793 were above 45 years. Two-dose coverage of Covishield in the 18+ and 45+ age group was 18% and 31%, respectively. Genomic analysis of 74 out of the 90 aliquots collected from the 303 COVID-19-positive individuals in the 45+ age group showed delta variants and their sub-lineages. The vaccine's effectiveness against COVID-19 disease in the ≥45 age group was 61.3% (95% CI: 43.6-73.4) at least 2 weeks after receiving the second dose of Covishield. We demonstrated the effectiveness of two doses of the ChAdOx1 vaccine against the delta variant in the general population of Chennai. We recommend similar future studies considering emerging variants and newer vaccines. Two-dose vaccine coverage could be ensured to protect against COVID-19 infection.
RESUMEN
Background: During the second wave of the COVID-19 pandemic, outbreaks of Zika were reported from Kerala, Uttar Pradesh, and Maharashtra, India in 2021. The Dengue and Chikungunya negative samples were retrospectively screened to determine the presence of the Zika virus from different geographical regions of India. Methods: During May to October 2021, the clinical samples of 1475 patients, across 13 states and a union territory of India were screened and re-tested for Dengue, Chikungunya and Zika by CDC Trioplex Real time RT-PCR. The Zika rRTPCR positive samples were further screened with anti-Zika IgM and Plaque Reduction Neutralization Test. Next generation sequencing was used for further molecular characterization. Results: The positivity was observed for Zika (67), Dengue (121), and Chikungunya (10) amongst screened cases. The co-infections of Dengue/Chikungunya, Dengue/Zika, and Dengue/Chikungunya/Zika were also observed. All Zika cases were symptomatic with fever (84%) and rash (78%) as major presenting symptoms. Of them, four patients had respiratory distress, one presented with seizures, and one with suspected microcephaly at birth. The Asian Lineage of Zika and all four serotypes of Dengue were found in circulation. Conclusion: Our study indicates the spread of the Zika virus to several states of India and an urgent need to strengthen its surveillance.
RESUMEN
BACKGROUND: During October 2020, Delta variant was detected for the first time in India and rampantly spread across the globe. It also led to second wave of pandemic in India which affected millions of people. However, there is limited information pertaining to the SARS-CoV-2 strain infecting the children in India. METHODS: Here, we assessed the SARS-CoV-2 lineages circulating in the pediatric population of India during the second wave of the pandemic. Clinical and demographic details linked with the nasopharyngeal/oropharyngeal swabs (NPS/OPS) collected from SARS-CoV-2 cases (n = 583) aged 0-18 year and tested positive by real-time RT-PCR were retrieved from March to June 2021. RESULTS: Symptoms were reported among 37.2% of patients and 14.8% reported to be hospitalized. The E gene CT value had significant statistical difference at the point of sample collection when compared to that observed in the sequencing laboratory. Out of these 512 sequences 372 were VOCs, 51 were VOIs. Most common lineages observed were Delta, followed by Kappa, Alpha and B.1.36, seen in 65.82%, 9.96%, 6.83% and 4.68%, respectively in the study population. CONCLUSION: Overall, it was observed that Delta strain was the leading cause of SARS-CoV-2 infection in Indian children during the second wave of the pandemic. We emphasize on the need of continuous genomic surveillance in SARS-CoV-2 infection even amongst children.
Asunto(s)
COVID-19 , Humanos , Niño , COVID-19/epidemiología , SARS-CoV-2/genética , India/epidemiología , Pueblo AsiaticoRESUMEN
OBJECTIVES: India introduced BBV152/Covaxin and AZD1222/Covishield vaccines in January 2021. We estimated the effectiveness of these vaccines against severe COVID-19 among individuals aged ≥45 years. METHODS: We did a multi-centric, hospital-based, case-control study between May and July 2021. Cases were severe COVID-19 patients, and controls were COVID-19 negative individuals from 11 hospitals. Vaccine effectiveness (VE) was estimated for complete (2 doses ≥ 14 days) and partial (1 dose ≥ 21 days) vaccination; interval between two vaccine doses and vaccination against the Delta variant. We used the random effects logistic regression model to calculate the adjusted odds ratios (aOR) with a 95% confidence interval (CI) after adjusting for relevant known confounders. RESULTS: We enrolled 1143 cases and 2541 control patients. The VE of complete vaccination was 85% (95% CI: 79-89%) with AZD1222/Covishield and 71% (95% CI: 57-81%) with BBV152/Covaxin. The VE was highest for 6-8 weeks between two doses of AZD1222/Covishield (94%, 95% CI: 86-97%) and BBV152/Covaxin (93%, 95% CI: 34-99%). The VE estimates were similar against the Delta strain and sub-lineages. CONCLUSION: BBV152/Covaxin and AZD1222/Covishield were effective against severe COVID-19 among the Indian population during the period of dominance of the highly transmissible Delta variant in the second wave of the pandemic. An escalation of two-dose coverage with COVID-19 vaccines is critical to reduce severe COVID-19 and further mitigate the pandemic in the country.
Asunto(s)
COVID-19 , Vacunas contra la Influenza , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , Estudios de Casos y Controles , ChAdOx1 nCoV-19 , Hospitales , Humanos , SARS-CoV-2RESUMEN
From March to June 2021, India experienced a deadly second wave of COVID-19, with an increased number of post-vaccination breakthrough infections reported across the country. To understand the possible reason for these breakthroughs, we collected 677 clinical samples (throat swab/nasal swabs) of individuals from 17 states/Union Territories of the country who had received two doses (n = 592) and one dose (n = 85) of vaccines and tested positive for COVID-19. These cases were telephonically interviewed and clinical data were analyzed. A total of 511 SARS-CoV-2 genomes were recovered with genome coverage of higher than 98% from both groups. Analysis of both groups determined that 86.69% (n = 443) of them belonged to the Delta variant, along with Alpha, Kappa, Delta AY.1, and Delta AY.2. The Delta variant clustered into four distinct sub-lineages. Sub-lineage I had mutations in ORF1ab A1306S, P2046L, P2287S, V2930L, T3255I, T3446A, G5063S, P5401L, and A6319V, and in N G215C; Sub-lineage II had mutations in ORF1ab P309L, A3209V, V3718A, G5063S, P5401L, and ORF7a L116F; Sub-lineage III had mutations in ORF1ab A3209V, V3718A, T3750I, G5063S, and P5401L and in spike A222V; Sub-lineage IV had mutations in ORF1ab P309L, D2980N, and F3138S and spike K77T. This study indicates that majority of the breakthrough COVID-19 clinical cases were infected with the Delta variant, and only 9.8% cases required hospitalization, while fatality was observed in only 0.4% cases. This clearly suggests that the vaccination does provide reduction in hospital admission and mortality.